organic compounds
1-(6-Bromo-3,4-dihydro-2H-1,4-benzoxazin-4-yl)-2,2-dichloroethanone
aCollege of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
*Correspondence e-mail: fuying@neau.edu.cn
The title compound, C10H8BrCl2NO2, is a target molecule in our research on herbicide safeners. The oxazine ring has an with puckering parameters close to ideal values [Q = 0.498 (3) Å, θ = 53.7 (3)° and φ = 253.4 (4)°]. The is stabilized by C—H⋯O, C—H⋯Cl and C—H⋯Br interactions.
Related literature
For general background on 1,4-benzoxazine, see: Mizar & Myrboh (2006); Macias et al. (2006); Tang et al. (2011). For the herbicide safener activity of N-dichloroacetyl benzoxazine derivatives, see: Burton et al. (1994); Hatzios & Burgos (2004); Loniovereror (1993); Scarponi & Buono (2005). For the synthetic procedure, see: Fu et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812032011/fy2057sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812032011/fy2057Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812032011/fy2057Isup3.cml
The title compound was prepared according to the literature procedure (Fu et al., 2011).
The single crystal suitable for X-ray structural analysis was obtained by slow evaporation of a solution of the title compound in petroleum ether and ethyl acetate (v/v = 5:1) at room temperature.
All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distances of 0.93–0.98 Å, and with Uiso(H) = 1.2–1.5 Ueq(C).
Substituted benzoxazine derivatives have attracted attention because of their widespread application as fungicides and insecticides (Mizar & Myrboh, 2006; Macias et al., 2006; Tang et al., 2011). N-dichloroacetyl benzoxazines have been used as herbicide safeners, which protect the crop from injury by herbicides (Burton et al., 1994; Hatzios & Burgos, 2004; Loniovereror, 1993; Scarponi & Buono, 2005). As a part of our ongoing investigations of different herbicide safeners, we prepared the title compound (Fu et al., 2011).
The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules are linked by weak intermolecular C—H···O, C—H···Cl, and C—H···Br interactions to form one-dimensional chains (Fig. 2, Table 1).
For general background on 1,4-benzoxazine, see: Mizar & Myrboh (2006); Macias et al. (2006); Tang et al. (2011). For the herbicide safener activity of N-dichloroacetyl benzoxazine derivatives, see: Burton et al. (1994); Hatzios & Burgos (2004); Loniovereror (1993); Scarponi & Buono (2005). For the synthetic procedure, see: Fu et al. (2011).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H8BrCl2NO2 | F(000) = 640.0 |
Mr = 324.97 | Dx = 1.824 Mg m−3 Dm = 1.824 Mg m−3 Dm measured by not measured |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4705 reflections |
a = 6.8220 (8) Å | θ = 2.8–25.8° |
b = 23.567 (3) Å | µ = 3.91 mm−1 |
c = 7.3746 (9) Å | T = 298 K |
β = 93.545 (1)° | Block, colourless |
V = 1183.4 (3) Å3 | 0.40 × 0.38 × 0.28 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 2924 independent reflections |
Radiation source: fine-focus sealed tube | 2924 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
φ and ω scans | θmax = 28.3°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −9→9 |
Tmin = 0.228, Tmax = 0.335 | k = −31→30 |
11742 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0487P)2 + 0.7003P] where P = (Fo2 + 2Fc2)/3 |
2924 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.92 e Å−3 |
C10H8BrCl2NO2 | V = 1183.4 (3) Å3 |
Mr = 324.97 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.8220 (8) Å | µ = 3.91 mm−1 |
b = 23.567 (3) Å | T = 298 K |
c = 7.3746 (9) Å | 0.40 × 0.38 × 0.28 mm |
β = 93.545 (1)° |
Bruker SMART APEX CCD area-detector diffractometer | 2924 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 2924 reflections with I > 2σ(I) |
Tmin = 0.228, Tmax = 0.335 | Rint = 0.020 |
11742 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.44 e Å−3 |
2924 reflections | Δρmin = −0.92 e Å−3 |
145 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.5861 (5) | 0.13121 (15) | 0.7608 (5) | 0.0693 (9) | |
H11A | 0.5504 | 0.1652 | 0.8251 | 0.083* | |
H11B | 0.4856 | 0.1243 | 0.6644 | 0.083* | |
C12 | 0.7804 (5) | 0.14020 (15) | 0.6796 (4) | 0.0640 (9) | |
H12A | 0.8180 | 0.1062 | 0.6160 | 0.077* | |
H12B | 0.7708 | 0.1713 | 0.5933 | 0.077* | |
C13 | 0.9285 (5) | 0.02632 (13) | 1.2299 (4) | 0.0535 (7) | |
H13 | 0.9280 | −0.0021 | 1.3173 | 0.064* | |
C1 | 0.7665 (5) | 0.03564 (13) | 1.1156 (4) | 0.0561 (7) | |
H1 | 0.6559 | 0.0130 | 1.1240 | 0.067* | |
C2 | 0.7655 (4) | 0.07871 (12) | 0.9869 (4) | 0.0484 (6) | |
C3 | 1.0255 (4) | 0.23991 (11) | 0.6714 (3) | 0.0464 (6) | |
H3 | 0.8872 | 0.2438 | 0.6289 | 0.056* | |
O1 | 0.5943 (3) | 0.08487 (10) | 0.8818 (3) | 0.0658 (6) | |
C5 | 1.0986 (4) | 0.10184 (10) | 1.0846 (3) | 0.0414 (5) | |
H5 | 1.2119 | 0.1232 | 1.0742 | 0.050* | |
C6 | 1.0390 (4) | 0.20127 (11) | 0.8395 (3) | 0.0436 (6) | |
C7 | 0.9324 (4) | 0.11209 (10) | 0.9693 (3) | 0.0403 (5) | |
C8 | 1.0934 (4) | 0.05971 (11) | 1.2139 (4) | 0.0440 (6) | |
O2 | 1.1457 (3) | 0.21396 (9) | 0.9706 (3) | 0.0601 (6) | |
N1 | 0.9288 (3) | 0.15339 (9) | 0.8282 (3) | 0.0477 (5) | |
Br1 | 1.31802 (5) | 0.046715 (14) | 1.37285 (4) | 0.06190 (14) | |
Cl2 | 1.12004 (16) | 0.30735 (4) | 0.72659 (12) | 0.0759 (3) | |
Cl3 | 1.15557 (16) | 0.20811 (5) | 0.49693 (13) | 0.0834 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0554 (18) | 0.069 (2) | 0.079 (2) | −0.0032 (15) | −0.0341 (16) | −0.0157 (17) |
C12 | 0.072 (2) | 0.0626 (18) | 0.0528 (16) | −0.0159 (15) | −0.0313 (15) | −0.0025 (14) |
C13 | 0.0639 (18) | 0.0466 (14) | 0.0513 (15) | −0.0081 (13) | 0.0138 (13) | 0.0011 (12) |
C1 | 0.0510 (16) | 0.0524 (16) | 0.0665 (18) | −0.0156 (13) | 0.0155 (14) | −0.0071 (13) |
C2 | 0.0414 (13) | 0.0462 (14) | 0.0570 (15) | −0.0054 (11) | −0.0018 (11) | −0.0139 (12) |
C3 | 0.0450 (13) | 0.0492 (14) | 0.0436 (13) | 0.0012 (11) | −0.0083 (11) | 0.0065 (11) |
O1 | 0.0448 (11) | 0.0669 (14) | 0.0835 (15) | −0.0111 (10) | −0.0128 (10) | −0.0057 (12) |
C5 | 0.0423 (13) | 0.0382 (12) | 0.0434 (12) | −0.0042 (10) | −0.0004 (10) | 0.0012 (10) |
C6 | 0.0411 (12) | 0.0449 (13) | 0.0430 (13) | −0.0011 (10) | −0.0121 (10) | 0.0052 (10) |
C7 | 0.0420 (13) | 0.0356 (12) | 0.0428 (12) | −0.0021 (10) | −0.0022 (10) | −0.0046 (10) |
C8 | 0.0512 (14) | 0.0406 (13) | 0.0405 (12) | 0.0024 (11) | 0.0043 (11) | 0.0002 (10) |
O2 | 0.0667 (13) | 0.0535 (11) | 0.0559 (11) | −0.0221 (10) | −0.0302 (10) | 0.0168 (9) |
N1 | 0.0520 (13) | 0.0427 (11) | 0.0455 (11) | −0.0083 (10) | −0.0194 (10) | 0.0016 (9) |
Br1 | 0.0668 (2) | 0.0634 (2) | 0.05402 (19) | 0.00348 (14) | −0.00809 (14) | 0.01693 (13) |
Cl2 | 0.1089 (7) | 0.0562 (5) | 0.0599 (5) | −0.0264 (4) | −0.0170 (4) | 0.0171 (4) |
Cl3 | 0.0936 (7) | 0.0934 (7) | 0.0651 (5) | 0.0173 (5) | 0.0213 (5) | 0.0018 (5) |
C11—O1 | 1.409 (4) | C2—C7 | 1.397 (4) |
C11—C12 | 1.503 (5) | C3—C6 | 1.536 (3) |
C11—H11A | 0.9700 | C3—Cl2 | 1.754 (3) |
C11—H11B | 0.9700 | C3—Cl3 | 1.774 (3) |
C12—N1 | 1.479 (3) | C3—H3 | 0.9800 |
C12—H12A | 0.9700 | C5—C8 | 1.379 (4) |
C12—H12B | 0.9700 | C5—C7 | 1.396 (3) |
C13—C1 | 1.365 (5) | C5—H5 | 0.9300 |
C13—C8 | 1.384 (4) | C6—O2 | 1.211 (3) |
C13—H13 | 0.9300 | C6—N1 | 1.356 (3) |
C1—C2 | 1.390 (4) | C7—N1 | 1.424 (3) |
C1—H1 | 0.9300 | C8—Br1 | 1.895 (3) |
C2—O1 | 1.369 (3) | ||
O1—C11—C12 | 111.1 (3) | C6—C3—Cl3 | 109.09 (19) |
O1—C11—H11A | 109.4 | Cl2—C3—Cl3 | 110.98 (16) |
C12—C11—H11A | 109.4 | C6—C3—H3 | 108.8 |
O1—C11—H11B | 109.4 | Cl2—C3—H3 | 108.8 |
C12—C11—H11B | 109.4 | Cl3—C3—H3 | 108.8 |
H11A—C11—H11B | 108.0 | C2—O1—C11 | 116.1 (2) |
N1—C12—C11 | 108.3 (3) | C8—C5—C7 | 119.5 (2) |
N1—C12—H12A | 110.0 | C8—C5—H5 | 120.3 |
C11—C12—H12A | 110.0 | C7—C5—H5 | 120.3 |
N1—C12—H12B | 110.0 | O2—C6—N1 | 123.9 (2) |
C11—C12—H12B | 110.0 | O2—C6—C3 | 120.1 (2) |
H12A—C12—H12B | 108.4 | N1—C6—C3 | 116.0 (2) |
C1—C13—C8 | 119.2 (3) | C5—C7—C2 | 118.8 (2) |
C1—C13—H13 | 120.4 | C5—C7—N1 | 122.7 (2) |
C8—C13—H13 | 120.4 | C2—C7—N1 | 118.4 (2) |
C13—C1—C2 | 120.6 (3) | C5—C8—C13 | 121.6 (3) |
C13—C1—H1 | 119.7 | C5—C8—Br1 | 119.3 (2) |
C2—C1—H1 | 119.7 | C13—C8—Br1 | 119.1 (2) |
O1—C2—C1 | 115.6 (3) | C6—N1—C7 | 122.7 (2) |
O1—C2—C7 | 124.0 (3) | C6—N1—C12 | 124.9 (2) |
C1—C2—C7 | 120.4 (3) | C7—N1—C12 | 112.2 (2) |
C6—C3—Cl2 | 110.32 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.98 | 2.20 | 3.101 (3) | 153 |
C12—H12B···Cl2i | 0.97 | 2.88 | 3.664 (3) | 139 |
C11—H11B···Br1ii | 0.97 | 2.99 | 3.853 (3) | 148 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x−1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C10H8BrCl2NO2 |
Mr | 324.97 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 6.8220 (8), 23.567 (3), 7.3746 (9) |
β (°) | 93.545 (1) |
V (Å3) | 1183.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.91 |
Crystal size (mm) | 0.40 × 0.38 × 0.28 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.228, 0.335 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11742, 2924, 2924 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.102, 1.09 |
No. of reflections | 2924 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.92 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.98 | 2.20 | 3.101 (3) | 152.6 |
C12—H12B···Cl2i | 0.97 | 2.88 | 3.664 (3) | 138.9 |
C11—H11B···Br1ii | 0.97 | 2.99 | 3.853 (3) | 148.2 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x−1, y, z−1. |
Acknowledgements
The authors thank the National Nature Science Foundation of China (grant No. 31101473), the Science and Technology Research Project of Heilongjiang Education Department (grant No. 12521002), the Research Science Foundation in Technology Innovation of Harbin (grant No. 2012RFXXN002) and the Northeast Agricultural University Doctoral Foundation for generously supporting this study.
References
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burton, J. D., Maness, E. P., Monks, D. W. & Robinson, D. K. (1994). Pestic. Biochem. Physiol. 48, 163–172. CrossRef Web of Science Google Scholar
Fu, Y., Zhang, S. S. & Ye, F. (2011). Indian J. Heterocycl. Chem. 20, 405–406. CAS Google Scholar
Hatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454–457. Web of Science CrossRef CAS Google Scholar
Loniovereror, G. L. (1993). Weed Res. 33, 311–318. Google Scholar
Macias, F. A., Marin, D., Oliveros-Bastidas, A., Chinchilla, D., Simonet, A. M. & Molinillo, J. M. G. (2006). J. Agric. Food Chem. 54, 991–1000. Web of Science PubMed CAS Google Scholar
Mizar, P. & Myrboh, B. (2006). Tetrahedron Lett. 47, 7823–7826. Web of Science CrossRef CAS Google Scholar
Scarponi, L. & Buono, D. D. (2005). J. Agric. Food Chem. 53, 2483–2488. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, Z. L., Chen, W. W., Zhu, Z. H. & Liu, H. W. (2011). J. Heterocycl. Chem. 48, 255–260. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted benzoxazine derivatives have attracted attention because of their widespread application as fungicides and insecticides (Mizar & Myrboh, 2006; Macias et al., 2006; Tang et al., 2011). N-dichloroacetyl benzoxazines have been used as herbicide safeners, which protect the crop from injury by herbicides (Burton et al., 1994; Hatzios & Burgos, 2004; Loniovereror, 1993; Scarponi & Buono, 2005). As a part of our ongoing investigations of different herbicide safeners, we prepared the title compound (Fu et al., 2011).
The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules are linked by weak intermolecular C—H···O, C—H···Cl, and C—H···Br interactions to form one-dimensional chains (Fig. 2, Table 1).