organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(6-Bromo-3,4-di­hydro-2H-1,4-benz­oxazin-4-yl)-2,2-di­chloro­ethanone

aCollege of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
*Correspondence e-mail: fuying@neau.edu.cn

(Received 19 April 2012; accepted 13 July 2012; online 21 July 2012)

The title compound, C10H8BrCl2NO2, is a target mol­ecule in our research on herbicide safeners. The oxazine ring has an envelope conformation, with puckering parameters close to ideal values [Q = 0.498 (3) Å, θ = 53.7 (3)° and φ = 253.4 (4)°]. The crystal structure is stabilized by C—H⋯O, C—H⋯Cl and C—H⋯Br inter­actions.

Related literature

For general background on 1,4-benzoxazine, see: Mizar & Myrboh (2006[Mizar, P. & Myrboh, B. (2006). Tetrahedron Lett. 47, 7823-7826.]); Macias et al. (2006[Macias, F. A., Marin, D., Oliveros-Bastidas, A., Chinchilla, D., Simonet, A. M. & Molinillo, J. M. G. (2006). J. Agric. Food Chem. 54, 991-1000.]); Tang et al. (2011[Tang, Z. L., Chen, W. W., Zhu, Z. H. & Liu, H. W. (2011). J. Heterocycl. Chem. 48, 255-260.]). For the herbicide safener activity of N-dichloro­acetyl benzoxazine derivatives, see: Burton et al. (1994[Burton, J. D., Maness, E. P., Monks, D. W. & Robinson, D. K. (1994). Pestic. Biochem. Physiol. 48, 163-172.]); Hatzios & Burgos (2004[Hatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454-457.]); Loniovereror (1993[Loniovereror, G. L. (1993). Weed Res. 33, 311-318.]); Scarponi & Buono (2005[Scarponi, L. & Buono, D. D. (2005). J. Agric. Food Chem. 53, 2483-2488.]). For the synthetic procedure, see: Fu et al. (2011[Fu, Y., Zhang, S. S. & Ye, F. (2011). Indian J. Heterocycl. Chem. 20, 405-406.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8BrCl2NO2

  • Mr = 324.97

  • Monoclinic, P 21 /n

  • a = 6.8220 (8) Å

  • b = 23.567 (3) Å

  • c = 7.3746 (9) Å

  • β = 93.545 (1)°

  • V = 1183.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.91 mm−1

  • T = 298 K

  • 0.40 × 0.38 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.228, Tmax = 0.335

  • 11742 measured reflections

  • 2924 independent reflections

  • 2924 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.09

  • 2924 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.98 2.20 3.101 (3) 153
C12—H12B⋯Cl2i 0.97 2.88 3.664 (3) 139
C11—H11B⋯Br1ii 0.97 2.99 3.853 (3) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z-1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted benzoxazine derivatives have attracted attention because of their widespread application as fungicides and insecticides (Mizar & Myrboh, 2006; Macias et al., 2006; Tang et al., 2011). N-dichloroacetyl benzoxazines have been used as herbicide safeners, which protect the crop from injury by herbicides (Burton et al., 1994; Hatzios & Burgos, 2004; Loniovereror, 1993; Scarponi & Buono, 2005). As a part of our ongoing investigations of different herbicide safeners, we prepared the title compound (Fu et al., 2011).

The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules are linked by weak intermolecular C—H···O, C—H···Cl, and C—H···Br interactions to form one-dimensional chains (Fig. 2, Table 1).

Related literature top

For general background on 1,4-benzoxazine, see: Mizar & Myrboh (2006); Macias et al. (2006); Tang et al. (2011). For the herbicide safener activity of N-dichloroacetyl benzoxazine derivatives, see: Burton et al. (1994); Hatzios & Burgos (2004); Loniovereror (1993); Scarponi & Buono (2005). For the synthetic procedure, see: Fu et al. (2011).

Experimental top

The title compound was prepared according to the literature procedure (Fu et al., 2011).

The single crystal suitable for X-ray structural analysis was obtained by slow evaporation of a solution of the title compound in petroleum ether and ethyl acetate (v/v = 5:1) at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distances of 0.93–0.98 Å, and with Uiso(H) = 1.2–1.5 Ueq(C).

Structure description top

Substituted benzoxazine derivatives have attracted attention because of their widespread application as fungicides and insecticides (Mizar & Myrboh, 2006; Macias et al., 2006; Tang et al., 2011). N-dichloroacetyl benzoxazines have been used as herbicide safeners, which protect the crop from injury by herbicides (Burton et al., 1994; Hatzios & Burgos, 2004; Loniovereror, 1993; Scarponi & Buono, 2005). As a part of our ongoing investigations of different herbicide safeners, we prepared the title compound (Fu et al., 2011).

The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules are linked by weak intermolecular C—H···O, C—H···Cl, and C—H···Br interactions to form one-dimensional chains (Fig. 2, Table 1).

For general background on 1,4-benzoxazine, see: Mizar & Myrboh (2006); Macias et al. (2006); Tang et al. (2011). For the herbicide safener activity of N-dichloroacetyl benzoxazine derivatives, see: Burton et al. (1994); Hatzios & Burgos (2004); Loniovereror (1993); Scarponi & Buono (2005). For the synthetic procedure, see: Fu et al. (2011).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for the title compound, showing the intramolecular C–H···Br interaction as dashed lines.
1-(6-Bromo-3,4-dihydro-2H-1,4-benzoxazin-4-yl)-2,2-dichloroethanone top
Crystal data top
C10H8BrCl2NO2F(000) = 640.0
Mr = 324.97Dx = 1.824 Mg m3
Dm = 1.824 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4705 reflections
a = 6.8220 (8) Åθ = 2.8–25.8°
b = 23.567 (3) ŵ = 3.91 mm1
c = 7.3746 (9) ÅT = 298 K
β = 93.545 (1)°Block, colourless
V = 1183.4 (3) Å30.40 × 0.38 × 0.28 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2924 independent reflections
Radiation source: fine-focus sealed tube2924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.228, Tmax = 0.335k = 3130
11742 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.7003P]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C10H8BrCl2NO2V = 1183.4 (3) Å3
Mr = 324.97Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8220 (8) ŵ = 3.91 mm1
b = 23.567 (3) ÅT = 298 K
c = 7.3746 (9) Å0.40 × 0.38 × 0.28 mm
β = 93.545 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2924 reflections with I > 2σ(I)
Tmin = 0.228, Tmax = 0.335Rint = 0.020
11742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.09Δρmax = 0.44 e Å3
2924 reflectionsΔρmin = 0.92 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.5861 (5)0.13121 (15)0.7608 (5)0.0693 (9)
H11A0.55040.16520.82510.083*
H11B0.48560.12430.66440.083*
C120.7804 (5)0.14020 (15)0.6796 (4)0.0640 (9)
H12A0.81800.10620.61600.077*
H12B0.77080.17130.59330.077*
C130.9285 (5)0.02632 (13)1.2299 (4)0.0535 (7)
H130.92800.00211.31730.064*
C10.7665 (5)0.03564 (13)1.1156 (4)0.0561 (7)
H10.65590.01301.12400.067*
C20.7655 (4)0.07871 (12)0.9869 (4)0.0484 (6)
C31.0255 (4)0.23991 (11)0.6714 (3)0.0464 (6)
H30.88720.24380.62890.056*
O10.5943 (3)0.08487 (10)0.8818 (3)0.0658 (6)
C51.0986 (4)0.10184 (10)1.0846 (3)0.0414 (5)
H51.21190.12321.07420.050*
C61.0390 (4)0.20127 (11)0.8395 (3)0.0436 (6)
C70.9324 (4)0.11209 (10)0.9693 (3)0.0403 (5)
C81.0934 (4)0.05971 (11)1.2139 (4)0.0440 (6)
O21.1457 (3)0.21396 (9)0.9706 (3)0.0601 (6)
N10.9288 (3)0.15339 (9)0.8282 (3)0.0477 (5)
Br11.31802 (5)0.046715 (14)1.37285 (4)0.06190 (14)
Cl21.12004 (16)0.30735 (4)0.72659 (12)0.0759 (3)
Cl31.15557 (16)0.20811 (5)0.49693 (13)0.0834 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0554 (18)0.069 (2)0.079 (2)0.0032 (15)0.0341 (16)0.0157 (17)
C120.072 (2)0.0626 (18)0.0528 (16)0.0159 (15)0.0313 (15)0.0025 (14)
C130.0639 (18)0.0466 (14)0.0513 (15)0.0081 (13)0.0138 (13)0.0011 (12)
C10.0510 (16)0.0524 (16)0.0665 (18)0.0156 (13)0.0155 (14)0.0071 (13)
C20.0414 (13)0.0462 (14)0.0570 (15)0.0054 (11)0.0018 (11)0.0139 (12)
C30.0450 (13)0.0492 (14)0.0436 (13)0.0012 (11)0.0083 (11)0.0065 (11)
O10.0448 (11)0.0669 (14)0.0835 (15)0.0111 (10)0.0128 (10)0.0057 (12)
C50.0423 (13)0.0382 (12)0.0434 (12)0.0042 (10)0.0004 (10)0.0012 (10)
C60.0411 (12)0.0449 (13)0.0430 (13)0.0011 (10)0.0121 (10)0.0052 (10)
C70.0420 (13)0.0356 (12)0.0428 (12)0.0021 (10)0.0022 (10)0.0046 (10)
C80.0512 (14)0.0406 (13)0.0405 (12)0.0024 (11)0.0043 (11)0.0002 (10)
O20.0667 (13)0.0535 (11)0.0559 (11)0.0221 (10)0.0302 (10)0.0168 (9)
N10.0520 (13)0.0427 (11)0.0455 (11)0.0083 (10)0.0194 (10)0.0016 (9)
Br10.0668 (2)0.0634 (2)0.05402 (19)0.00348 (14)0.00809 (14)0.01693 (13)
Cl20.1089 (7)0.0562 (5)0.0599 (5)0.0264 (4)0.0170 (4)0.0171 (4)
Cl30.0936 (7)0.0934 (7)0.0651 (5)0.0173 (5)0.0213 (5)0.0018 (5)
Geometric parameters (Å, º) top
C11—O11.409 (4)C2—C71.397 (4)
C11—C121.503 (5)C3—C61.536 (3)
C11—H11A0.9700C3—Cl21.754 (3)
C11—H11B0.9700C3—Cl31.774 (3)
C12—N11.479 (3)C3—H30.9800
C12—H12A0.9700C5—C81.379 (4)
C12—H12B0.9700C5—C71.396 (3)
C13—C11.365 (5)C5—H50.9300
C13—C81.384 (4)C6—O21.211 (3)
C13—H130.9300C6—N11.356 (3)
C1—C21.390 (4)C7—N11.424 (3)
C1—H10.9300C8—Br11.895 (3)
C2—O11.369 (3)
O1—C11—C12111.1 (3)C6—C3—Cl3109.09 (19)
O1—C11—H11A109.4Cl2—C3—Cl3110.98 (16)
C12—C11—H11A109.4C6—C3—H3108.8
O1—C11—H11B109.4Cl2—C3—H3108.8
C12—C11—H11B109.4Cl3—C3—H3108.8
H11A—C11—H11B108.0C2—O1—C11116.1 (2)
N1—C12—C11108.3 (3)C8—C5—C7119.5 (2)
N1—C12—H12A110.0C8—C5—H5120.3
C11—C12—H12A110.0C7—C5—H5120.3
N1—C12—H12B110.0O2—C6—N1123.9 (2)
C11—C12—H12B110.0O2—C6—C3120.1 (2)
H12A—C12—H12B108.4N1—C6—C3116.0 (2)
C1—C13—C8119.2 (3)C5—C7—C2118.8 (2)
C1—C13—H13120.4C5—C7—N1122.7 (2)
C8—C13—H13120.4C2—C7—N1118.4 (2)
C13—C1—C2120.6 (3)C5—C8—C13121.6 (3)
C13—C1—H1119.7C5—C8—Br1119.3 (2)
C2—C1—H1119.7C13—C8—Br1119.1 (2)
O1—C2—C1115.6 (3)C6—N1—C7122.7 (2)
O1—C2—C7124.0 (3)C6—N1—C12124.9 (2)
C1—C2—C7120.4 (3)C7—N1—C12112.2 (2)
C6—C3—Cl2110.32 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.982.203.101 (3)153
C12—H12B···Cl2i0.972.883.664 (3)139
C11—H11B···Br1ii0.972.993.853 (3)148
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC10H8BrCl2NO2
Mr324.97
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.8220 (8), 23.567 (3), 7.3746 (9)
β (°) 93.545 (1)
V3)1183.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.91
Crystal size (mm)0.40 × 0.38 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.228, 0.335
No. of measured, independent and
observed [I > 2σ(I)] reflections
11742, 2924, 2924
Rint0.020
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.09
No. of reflections2924
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.92

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.982.203.101 (3)152.6
C12—H12B···Cl2i0.972.883.664 (3)138.9
C11—H11B···Br1ii0.972.993.853 (3)148.2
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z1.
 

Acknowledgements

The authors thank the National Nature Science Foundation of China (grant No. 31101473), the Science and Technology Research Project of Heilongjiang Education Department (grant No. 12521002), the Research Science Foundation in Technology Innovation of Harbin (grant No. 2012RFXXN002) and the Northeast Agricultural University Doctoral Foundation for generously supporting this study.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurton, J. D., Maness, E. P., Monks, D. W. & Robinson, D. K. (1994). Pestic. Biochem. Physiol. 48, 163–172.  CrossRef Web of Science Google Scholar
First citationFu, Y., Zhang, S. S. & Ye, F. (2011). Indian J. Heterocycl. Chem. 20, 405–406.  CAS Google Scholar
First citationHatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454–457.  Web of Science CrossRef CAS Google Scholar
First citationLoniovereror, G. L. (1993). Weed Res. 33, 311–318.  Google Scholar
First citationMacias, F. A., Marin, D., Oliveros-Bastidas, A., Chinchilla, D., Simonet, A. M. & Molinillo, J. M. G. (2006). J. Agric. Food Chem. 54, 991–1000.  Web of Science PubMed CAS Google Scholar
First citationMizar, P. & Myrboh, B. (2006). Tetrahedron Lett. 47, 7823–7826.  Web of Science CrossRef CAS Google Scholar
First citationScarponi, L. & Buono, D. D. (2005). J. Agric. Food Chem. 53, 2483–2488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z. L., Chen, W. W., Zhu, Z. H. & Liu, H. W. (2011). J. Heterocycl. Chem. 48, 255–260.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds