organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diosgenone: a second P21 polymorph

aEscuelas de Ingeniería en Petróleos e Ingeniería Química, Universidad del Istmo, Ciudad Universitaria s/n, Sto. Domingo Tehuantepec, Oax. 70760, Mexico, bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, and cFacultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico
*Correspondence e-mail: maguhdez@hotmail.com

(Received 15 June 2012; accepted 26 June 2012; online 7 July 2012)

Diosgenone [(20S,22R,25R)-spirost-4-en-3-one, C27H40O3] has been proposed as a new therapeutic alternative for the treatment of malaria. The first X-ray structure report for diosgenone was by Piro et al. [(2002). Z. Naturforsch. Teil C, 57, 947–950] in the space group P21 (Z′ = 2). We now report a new polymorph in the same space group, with two mol­ecules in the asymmetric unit. Both mol­ecules have similar conformations, characterized by a skewed envelope A ring, which contains the C=C bond conjugated with the ketone functionality at C3. The dimorphism results from a modification of the relative orientation of the mol­ecules in the asymmetric unit: two independent mol­ecules were arranged anti­parallel in the Piro report, while they are parallel in the present determination.

Related literature

For the potential application of diosgenone as an anti­malarial drug, see: Saez et al. (1998[Saez, J., Cardona, W., Espinal, D., Blair, S., Mesa, J., Bocar, M. & Jossang, A. (1998). Tetrahedron, 54, 10771-10778.]); Echeverri et al. (2001[Echeverri, M., Blair, S., Carmona, J. & Pérez, P. (2001). Am. J. Chin. Med. 29, 477-484.]). For a biotransformation of diosgenone, see: Wang et al. (2007[Wang, F.-Q., Li, B., Wang, W., Zhang, C.-G. & Wei, D.-Z. (2007). Appl. Microbiol. Biotechnol. 77, 771-777.], 2009[Wang, W., Wang, F.-Q. & Wei, D.-Z. (2009). Appl. Environ. Microbiol. 75, 4202-4205.]). For the synthesis of diosgenone, see: Hunter & Priest (2006[Hunter, A. C. & Priest, S.-M. (2006). Steroids, 71, 30-33.]). For the structure of a monoclinic polymorph of diosgenone, see: Piro et al. (2002[Piro, O. E., Castellano, E. E., Tobón Zapata, G. E., Blair Trujillo, S. & Baran, E. J. (2002). Z. Naturforsch. Teil C, 57, 947-950.]).

[Scheme 1]

Experimental

Crystal data
  • C27H40O3

  • Mr = 412.59

  • Monoclinic, P 21

  • a = 10.3396 (6) Å

  • b = 7.6466 (4) Å

  • c = 29.9511 (17) Å

  • β = 97.207 (5)°

  • V = 2349.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 136 K

  • 0.44 × 0.19 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.984, Tmax = 0.996

  • 11305 measured reflections

  • 5346 independent reflections

  • 3908 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.099

  • S = 1.03

  • 5346 reflections

  • 549 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A natural source of diosgenone is Solanun nudum (Saez et al., 1998), present in different regions of South America. This steroid is also synthesized by oxidation of diosgenin, for instance, through the Swern oxidation. We obtained it using a modified Jones oxidation described in the literature (Hunter & Priest, 2006). The interest in diosgenone is currently growing, since it has been proposed by a group working in Colombia as a new therapeutic alternative for the treatment of malaria (Echeverri et al., 2001; Saez et al., 1998). This claim is in line with the fact that Solanun nudum is used by the community of Tumaco (Narino, Colombia) as a cure for malaria. A more academic interest is related to the biotransformation of diosgenone to isonuatigenone (C25-hydroxylation), which rearranges in acid media into nuatigenone, a rare nuatigenin-type steroid (Wang et al., 2007, 2009). These studies allow a postulate for a new pathway of diosgenin metabolism.

The X-ray structure for diosgenone was described in space group P21 (Piro et al., 2002; CSD refcode: LUKXAQ). We have now discovered that a second polymorph in the same space group may be obtained if the crystallization is carried out by slow evaporation of an AcOEt/acetone (4:1) solution, while Piro et al. crystallized diosgenone from an ethanolic solution. The asymmetric unit, as in the previous report, contains two independent molecules (Fig. 1), with very similar conformations. The r.m.s. deviation for the fitted molecules is less than 0.2 Å. No significant conformational modification is observed by comparing molecules in both polymorphs: calculated r.m.s. deviations for pairs of molecules taken in different crystal forms are in the range 0.17 to 0.32 Å, the largest deviations being for the methyl group bonded to C25 in the F ring. However, simulated X-ray powder patterns for each form (Fig. 2) show clearly that these crystal forms are dimorphic. The crystal modification should thus be due to a reorientation of independent molecules in the asymmetric unit. In the case of the previously described structure (Piro et al., 2002), the asymmetric unit may be described with two molecules arranged in such a way that the AF rings sequence of one molecule is oriented antiparallel to the AF sequence of the other one. In contrast, the asymmetric unit of the title polymorph described herein includes two parallel molecules (see insets in Fig. 2).

Related literature top

For the potential application of diosgenone as an antimalarial drug, see: Saez et al. (1998); Echeverri et al. (2001). For a biotransformation of diosgenone, see: Wang et al. (2007, 2009). For the synthesis of diosgenone, see: Hunter & Priest (2006). For the structure of a monoclinic polymorph of diosgenone, see: Piro et al. (2002).

Experimental top

The title steroid was synthesized from diosgenin using a Jones oxidation described previously (Hunter & Priest, 2006). Diosgenine (2 g, 4.8 mmol) was dissolved in a CH2Cl2/acetone mixture (40 and 132 ml) and this solution was cooled to 263 K. Under stirring, the Jones reagent was added slowly, over 10 min., maintaining the temperature below 283 K. After addition, the mixture was further stirred at room temperature, until the color turned from orange to green. 2-Propanol was then added in order to eliminate the unreacted Jones reagent, and the product was extracted with AcOEt, washed with water, and dried over Na2SO4. The crude product was purified by chromatography on silica gel (AcOEt/hexane, 1:9 v/v), affording the title steroid (yield: 20%) and the Δ4-3,6 dione derivative. 13C-NMR for diosgenone: δ = 36.6 (C-1), 33.9 (C-2), 199.5 (C-3), 123.8 (C-4), 171.1 (C-5), 32.8 (C-6), 32.1 (C-7), 35.1 (C-8), 53.7 (C-9), 38.6 (C-10), 20.8 (C-11), 39.6 (C-12), 40.3 (C-13), 55.6 (C-14), 31.6 (C-15), 80.6 (C-16), 61.9 (C-17), 17.3 (C-18), 16.3 (C-19), 41.6 (C-20), 14.5 (C-21), 109.2 (C-22), 31.3 (C-23), 28.7 (C-24), 30.2 (C-25), 66.8 (C-26), 17.1 (C-27). Suitable single crystals were obtained by slow evaporation of an AcOEt/acetone (8:2) solution.

Refinement top

All H atoms were placed in idealized positions and refined as riding on their carrier atoms. Isotropic displacement parameters were calculated as Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl H atoms and x = 1.2 otherwise. Absolute configuration was assigned from chiral centers with known configuration in the steroidal nucleus, and measured Friedel pairs (3382) were merged.

Structure description top

A natural source of diosgenone is Solanun nudum (Saez et al., 1998), present in different regions of South America. This steroid is also synthesized by oxidation of diosgenin, for instance, through the Swern oxidation. We obtained it using a modified Jones oxidation described in the literature (Hunter & Priest, 2006). The interest in diosgenone is currently growing, since it has been proposed by a group working in Colombia as a new therapeutic alternative for the treatment of malaria (Echeverri et al., 2001; Saez et al., 1998). This claim is in line with the fact that Solanun nudum is used by the community of Tumaco (Narino, Colombia) as a cure for malaria. A more academic interest is related to the biotransformation of diosgenone to isonuatigenone (C25-hydroxylation), which rearranges in acid media into nuatigenone, a rare nuatigenin-type steroid (Wang et al., 2007, 2009). These studies allow a postulate for a new pathway of diosgenin metabolism.

The X-ray structure for diosgenone was described in space group P21 (Piro et al., 2002; CSD refcode: LUKXAQ). We have now discovered that a second polymorph in the same space group may be obtained if the crystallization is carried out by slow evaporation of an AcOEt/acetone (4:1) solution, while Piro et al. crystallized diosgenone from an ethanolic solution. The asymmetric unit, as in the previous report, contains two independent molecules (Fig. 1), with very similar conformations. The r.m.s. deviation for the fitted molecules is less than 0.2 Å. No significant conformational modification is observed by comparing molecules in both polymorphs: calculated r.m.s. deviations for pairs of molecules taken in different crystal forms are in the range 0.17 to 0.32 Å, the largest deviations being for the methyl group bonded to C25 in the F ring. However, simulated X-ray powder patterns for each form (Fig. 2) show clearly that these crystal forms are dimorphic. The crystal modification should thus be due to a reorientation of independent molecules in the asymmetric unit. In the case of the previously described structure (Piro et al., 2002), the asymmetric unit may be described with two molecules arranged in such a way that the AF rings sequence of one molecule is oriented antiparallel to the AF sequence of the other one. In contrast, the asymmetric unit of the title polymorph described herein includes two parallel molecules (see insets in Fig. 2).

For the potential application of diosgenone as an antimalarial drug, see: Saez et al. (1998); Echeverri et al. (2001). For a biotransformation of diosgenone, see: Wang et al. (2007, 2009). For the synthesis of diosgenone, see: Hunter & Priest (2006). For the structure of a monoclinic polymorph of diosgenone, see: Piro et al. (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Simulated powder diffraction patterns for both P21 polymorphs of the title compound. Spectra were calculated with Mercury (Macrae et al., 2008) with λ = 1.5418 Å, by steps of 0.002° and peak shape defined by a FWHM of 0.05° in 2θ. The insets for each polymorph represent the asymmetric unit for the crystal, omitting H atoms for clarity. The asymmetric unit for the previously reported form (Piro et al., 2002) has been regrouped in order to be comparable to the unit used for the refinement of the new polymorph.
(20S,22R,25R)-Spirost-4-en-3-one top
Crystal data top
C27H40O3F(000) = 904
Mr = 412.59Dx = 1.167 Mg m3
Monoclinic, P21Melting point: 432 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 10.3396 (6) ÅCell parameters from 2248 reflections
b = 7.6466 (4) Åθ = 3.4–26.0°
c = 29.9511 (17) ŵ = 0.07 mm1
β = 97.207 (5)°T = 136 K
V = 2349.3 (2) Å3Prism, colourless
Z = 40.44 × 0.19 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
5346 independent reflections
Radiation source: Enhance (Mo) X-ray Source3908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.4685 pixels mm-1θmax = 26.7°, θmin = 3.4°
ω scansh = 139
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
k = 99
Tmin = 0.984, Tmax = 0.996l = 3734
11305 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.2215P]
where P = (Fo2 + 2Fc2)/3
5346 reflections(Δ/σ)max = 0.001
549 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.18 e Å3
0 constraints
Crystal data top
C27H40O3V = 2349.3 (2) Å3
Mr = 412.59Z = 4
Monoclinic, P21Mo Kα radiation
a = 10.3396 (6) ŵ = 0.07 mm1
b = 7.6466 (4) ÅT = 136 K
c = 29.9511 (17) Å0.44 × 0.19 × 0.05 mm
β = 97.207 (5)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
5346 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
3908 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.996Rint = 0.042
11305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
5346 reflectionsΔρmin = 0.18 e Å3
549 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5754 (3)0.1116 (4)0.69355 (10)0.0372 (8)
H1A0.58680.01390.71540.045*
H1B0.49000.16660.69600.045*
C20.5743 (3)0.0383 (4)0.64620 (10)0.0406 (8)
H2A0.65590.02750.64430.049*
H2B0.50030.04390.63970.049*
C30.5620 (3)0.1816 (4)0.61200 (11)0.0368 (8)
O30.5019 (2)0.1613 (3)0.57407 (8)0.0489 (6)
C40.6307 (3)0.3437 (4)0.62540 (11)0.0339 (7)
H4A0.63290.43330.60350.041*
C50.6909 (3)0.3724 (4)0.66703 (10)0.0283 (7)
C60.7742 (3)0.5326 (4)0.67710 (10)0.0341 (7)
H6A0.76130.61250.65090.041*
H6B0.86710.49740.68160.041*
C70.7426 (3)0.6299 (4)0.71874 (10)0.0319 (7)
H7A0.65650.68710.71190.038*
H7B0.80850.72280.72630.038*
C80.7402 (3)0.5111 (4)0.75955 (9)0.0251 (6)
H8A0.83050.46690.76910.030*
C90.6494 (3)0.3532 (4)0.74742 (10)0.0274 (7)
H9A0.56080.40360.73820.033*
C100.6836 (3)0.2473 (4)0.70624 (10)0.0291 (7)
C110.6363 (3)0.2383 (4)0.78883 (10)0.0337 (8)
H11A0.57280.14360.78010.040*
H11B0.72150.18320.79910.040*
C120.5917 (3)0.3425 (4)0.82764 (10)0.0309 (7)
H12A0.50260.38800.81850.037*
H12B0.58860.26460.85390.037*
C130.6838 (3)0.4950 (4)0.84101 (9)0.0261 (7)
C140.6932 (3)0.6075 (4)0.79873 (10)0.0253 (7)
H14A0.60200.64500.78800.030*
C150.7635 (3)0.7722 (4)0.81842 (10)0.0302 (7)
H15A0.85810.75100.82640.036*
H15B0.75080.87160.79710.036*
C160.6966 (3)0.8054 (4)0.86036 (10)0.0294 (7)
H16A0.63020.90040.85440.035*
C170.6305 (3)0.6331 (4)0.87178 (10)0.0263 (7)
H17A0.53420.64440.86330.032*
C180.8184 (3)0.4264 (4)0.86118 (10)0.0326 (7)
H18A0.86290.37520.83730.049*
H18B0.80750.33700.88390.049*
H18C0.87050.52320.87530.049*
C190.8168 (3)0.1547 (4)0.71607 (10)0.0339 (7)
H19A0.88440.24120.72580.051*
H19B0.83760.09640.68870.051*
H19C0.81300.06760.73990.051*
C200.6594 (3)0.6163 (4)0.92306 (10)0.0313 (7)
H20A0.72540.52140.92990.038*
C210.5398 (3)0.5704 (4)0.94613 (11)0.0421 (9)
H21A0.50740.45460.93610.063*
H21B0.47140.65770.93820.063*
H21C0.56400.56950.97880.063*
C220.7243 (3)0.7909 (4)0.93750 (10)0.0290 (7)
O220.78615 (18)0.8456 (3)0.90003 (6)0.0311 (5)
C230.8256 (3)0.7808 (4)0.97853 (10)0.0339 (8)
H23A0.90060.71090.97110.041*
H23B0.78770.71951.00290.041*
C240.8740 (3)0.9597 (4)0.99535 (11)0.0367 (8)
H24A0.92551.01380.97330.044*
H24B0.93130.94701.02420.044*
C250.7585 (3)1.0770 (4)1.00196 (10)0.0340 (8)
H25A0.71121.02301.02570.041*
C260.6669 (3)1.0798 (4)0.95837 (11)0.0359 (8)
H26A0.59091.15460.96220.043*
H26B0.71241.13210.93440.043*
O260.62185 (19)0.9090 (3)0.94460 (7)0.0328 (5)
C270.7991 (4)1.2607 (5)1.01715 (12)0.0480 (9)
H27A0.72171.32841.02210.072*
H27B0.84301.31760.99390.072*
H27C0.85881.25451.04520.072*
C510.2234 (4)0.4065 (5)0.50640 (11)0.0479 (9)
H51A0.27700.31600.52360.058*
H51B0.13090.38230.50940.058*
C520.2432 (4)0.3930 (5)0.45691 (12)0.0513 (10)
H52A0.33740.40160.45420.062*
H52B0.21220.27730.44520.062*
C530.1716 (3)0.5336 (5)0.42910 (12)0.0475 (9)
O530.1312 (2)0.5121 (4)0.38911 (8)0.0611 (8)
C540.1587 (3)0.7000 (5)0.45163 (11)0.0421 (9)
H54A0.11510.79270.43480.051*
C550.2052 (3)0.7301 (5)0.49495 (11)0.0386 (8)
C560.2100 (4)0.9128 (5)0.51395 (11)0.0471 (9)
H56A0.15870.99140.49220.056*
H56B0.30150.95420.51770.056*
C570.1576 (4)0.9241 (5)0.55872 (11)0.0462 (9)
H57A0.06220.90470.55400.055*
H57B0.17341.04320.57120.055*
C580.2201 (3)0.7912 (4)0.59259 (11)0.0351 (8)
H58A0.31580.81580.59840.042*
C590.2006 (3)0.6060 (4)0.57195 (11)0.0345 (8)
H59A0.10440.59200.56390.041*
C600.2604 (3)0.5871 (4)0.52681 (11)0.0354 (8)
C610.2428 (4)0.4588 (4)0.60576 (11)0.0426 (9)
H61A0.21400.34520.59210.051*
H61B0.33910.45690.61170.051*
C620.1873 (3)0.4792 (4)0.65045 (11)0.0402 (8)
H62A0.09150.46410.64540.048*
H62B0.22380.38700.67150.048*
C630.2195 (3)0.6582 (4)0.67138 (11)0.0307 (7)
C640.1640 (3)0.7983 (4)0.63715 (10)0.0318 (7)
H64A0.06880.77270.63000.038*
C650.1743 (3)0.9677 (4)0.66473 (10)0.0383 (8)
H65A0.26471.01330.66870.046*
H65B0.11491.05880.65040.046*
C660.1328 (3)0.9077 (4)0.70958 (11)0.0349 (8)
H66A0.04020.94140.71140.042*
C670.1481 (3)0.7065 (4)0.71224 (11)0.0333 (8)
H67A0.05950.65180.70820.040*
C680.3673 (3)0.6767 (5)0.68339 (11)0.0392 (8)
H68A0.40070.57760.70210.059*
H68B0.38680.78590.70000.059*
H68C0.40890.67830.65570.059*
C690.4108 (3)0.6055 (5)0.53395 (11)0.0443 (9)
H69A0.44360.60930.50470.066*
H69B0.44900.50520.55120.066*
H69C0.43490.71360.55050.066*
C700.2126 (3)0.6711 (4)0.76027 (11)0.0357 (8)
H70A0.30580.64090.75840.043*
C710.1534 (4)0.5204 (5)0.78430 (13)0.0572 (11)
H71A0.19590.51300.81540.086*
H71B0.16650.41060.76860.086*
H71C0.05990.54090.78430.086*
C720.2107 (3)0.8498 (4)0.78344 (11)0.0325 (7)
O720.2163 (2)0.9736 (3)0.74834 (7)0.0345 (5)
C730.3239 (3)0.8823 (5)0.81953 (11)0.0421 (9)
H73A0.40470.89300.80520.051*
H73B0.33390.77990.83990.051*
C740.3084 (3)1.0466 (5)0.84749 (11)0.0442 (9)
H74A0.37871.05100.87310.053*
H74B0.31581.15180.82870.053*
C750.1776 (3)1.0458 (5)0.86483 (10)0.0397 (8)
H75A0.17450.94210.88500.048*
C760.0728 (3)1.0224 (4)0.82481 (11)0.0367 (8)
H76A0.01391.02260.83550.044*
H76B0.07611.12230.80400.044*
O760.08903 (19)0.8629 (3)0.80108 (7)0.0373 (5)
C770.1522 (4)1.2083 (5)0.89150 (12)0.0548 (10)
H77A0.22421.22560.91560.082*
H77B0.07061.19400.90460.082*
H77C0.14531.31020.87150.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (19)0.0340 (18)0.0368 (19)0.0103 (16)0.0045 (15)0.0027 (16)
C20.0393 (19)0.0381 (19)0.044 (2)0.0111 (16)0.0023 (16)0.0079 (17)
C30.0295 (17)0.043 (2)0.037 (2)0.0026 (15)0.0015 (15)0.0086 (17)
O30.0464 (14)0.0565 (16)0.0406 (14)0.0030 (13)0.0077 (12)0.0125 (13)
C40.0335 (17)0.0310 (17)0.0366 (19)0.0048 (15)0.0017 (15)0.0014 (16)
C50.0225 (15)0.0267 (16)0.0353 (18)0.0033 (13)0.0022 (13)0.0018 (15)
C60.0373 (18)0.0281 (17)0.0368 (18)0.0049 (15)0.0037 (15)0.0009 (15)
C70.0304 (16)0.0256 (16)0.0391 (19)0.0055 (14)0.0021 (14)0.0025 (15)
C80.0226 (15)0.0221 (15)0.0303 (16)0.0017 (13)0.0023 (12)0.0017 (14)
C90.0236 (15)0.0218 (15)0.0360 (17)0.0023 (12)0.0003 (13)0.0032 (14)
C100.0275 (16)0.0245 (15)0.0347 (18)0.0040 (13)0.0015 (14)0.0027 (14)
C110.0376 (18)0.0217 (15)0.041 (2)0.0076 (14)0.0032 (15)0.0004 (15)
C120.0297 (16)0.0270 (16)0.0363 (18)0.0068 (14)0.0054 (14)0.0041 (15)
C130.0216 (15)0.0259 (15)0.0309 (17)0.0024 (13)0.0034 (13)0.0023 (14)
C140.0197 (14)0.0225 (15)0.0329 (17)0.0022 (12)0.0004 (13)0.0020 (14)
C150.0347 (17)0.0219 (16)0.0345 (18)0.0051 (14)0.0065 (15)0.0028 (14)
C160.0286 (16)0.0286 (16)0.0310 (17)0.0015 (14)0.0038 (13)0.0041 (14)
C170.0184 (14)0.0240 (15)0.0367 (18)0.0006 (13)0.0039 (13)0.0037 (15)
C180.0302 (17)0.0318 (17)0.0359 (18)0.0061 (14)0.0053 (14)0.0028 (15)
C190.0386 (18)0.0293 (17)0.0333 (18)0.0044 (16)0.0028 (14)0.0003 (15)
C200.0273 (16)0.0302 (17)0.0377 (18)0.0043 (14)0.0092 (14)0.0042 (15)
C210.041 (2)0.0377 (19)0.051 (2)0.0022 (16)0.0211 (17)0.0015 (17)
C220.0275 (16)0.0313 (17)0.0297 (17)0.0058 (14)0.0093 (14)0.0024 (15)
O220.0297 (11)0.0341 (12)0.0302 (11)0.0033 (10)0.0061 (9)0.0011 (10)
C230.0325 (18)0.0353 (18)0.0340 (18)0.0090 (15)0.0043 (15)0.0007 (16)
C240.0354 (18)0.043 (2)0.0316 (18)0.0026 (16)0.0053 (15)0.0024 (16)
C250.0391 (18)0.0338 (18)0.0303 (17)0.0016 (15)0.0088 (15)0.0002 (15)
C260.0363 (18)0.0296 (18)0.044 (2)0.0050 (14)0.0132 (16)0.0007 (16)
O260.0270 (11)0.0319 (12)0.0403 (13)0.0046 (10)0.0073 (10)0.0001 (11)
C270.050 (2)0.043 (2)0.053 (2)0.0026 (18)0.0111 (18)0.0088 (19)
C510.063 (3)0.040 (2)0.041 (2)0.0044 (19)0.0073 (19)0.0030 (18)
C520.068 (3)0.040 (2)0.048 (2)0.010 (2)0.014 (2)0.0079 (19)
C530.039 (2)0.063 (3)0.041 (2)0.019 (2)0.0092 (17)0.003 (2)
O530.0594 (16)0.087 (2)0.0365 (15)0.0273 (16)0.0049 (13)0.0063 (15)
C540.0335 (19)0.055 (2)0.037 (2)0.0004 (17)0.0001 (16)0.0055 (18)
C550.0303 (18)0.047 (2)0.038 (2)0.0033 (16)0.0013 (15)0.0010 (17)
C560.061 (2)0.0367 (19)0.039 (2)0.0054 (18)0.0082 (18)0.0119 (18)
C570.063 (2)0.0325 (19)0.040 (2)0.0067 (18)0.0077 (18)0.0005 (17)
C580.0340 (18)0.0296 (17)0.0393 (19)0.0023 (15)0.0045 (15)0.0047 (16)
C590.0317 (17)0.0293 (17)0.0409 (19)0.0041 (15)0.0016 (15)0.0016 (16)
C600.0352 (18)0.0341 (18)0.0361 (19)0.0007 (15)0.0009 (15)0.0024 (16)
C610.056 (2)0.0251 (18)0.049 (2)0.0011 (16)0.0124 (18)0.0003 (16)
C620.045 (2)0.0276 (17)0.048 (2)0.0004 (16)0.0076 (17)0.0036 (17)
C630.0244 (16)0.0280 (16)0.0401 (19)0.0008 (14)0.0046 (14)0.0058 (15)
C640.0298 (16)0.0240 (16)0.0386 (19)0.0010 (14)0.0067 (14)0.0022 (15)
C650.044 (2)0.0308 (18)0.0369 (19)0.0047 (16)0.0083 (16)0.0069 (16)
C660.0290 (17)0.0326 (17)0.0405 (19)0.0017 (14)0.0060 (15)0.0038 (16)
C670.0227 (16)0.0305 (18)0.046 (2)0.0039 (14)0.0008 (14)0.0036 (16)
C680.0287 (17)0.048 (2)0.041 (2)0.0065 (16)0.0050 (15)0.0124 (17)
C690.0361 (18)0.053 (2)0.043 (2)0.0024 (17)0.0017 (16)0.0069 (18)
C700.0302 (17)0.0338 (18)0.043 (2)0.0029 (15)0.0058 (15)0.0086 (17)
C710.079 (3)0.036 (2)0.060 (3)0.001 (2)0.021 (2)0.012 (2)
C720.0230 (16)0.0364 (18)0.0382 (19)0.0005 (14)0.0039 (14)0.0108 (16)
O720.0356 (12)0.0330 (12)0.0330 (12)0.0068 (10)0.0031 (10)0.0020 (10)
C730.0271 (17)0.060 (2)0.038 (2)0.0022 (17)0.0009 (15)0.0130 (19)
C740.0326 (18)0.064 (2)0.0323 (18)0.0096 (18)0.0087 (15)0.0074 (19)
C750.045 (2)0.043 (2)0.0304 (18)0.0048 (17)0.0014 (15)0.0095 (17)
C760.0329 (18)0.0352 (19)0.0417 (19)0.0019 (16)0.0030 (15)0.0005 (17)
O760.0275 (11)0.0351 (13)0.0499 (14)0.0038 (10)0.0080 (10)0.0017 (11)
C770.064 (3)0.063 (3)0.035 (2)0.007 (2)0.0005 (18)0.0020 (19)
Geometric parameters (Å, º) top
C1—C21.524 (4)C51—C521.525 (5)
C1—C101.538 (4)C51—C601.539 (5)
C1—H1A0.9900C51—H51A0.9900
C1—H1B0.9900C51—H51B0.9900
C2—C31.495 (5)C52—C531.497 (5)
C2—H2A0.9900C52—H52A0.9900
C2—H2B0.9900C52—H52B0.9900
C3—O31.234 (4)C53—O531.229 (4)
C3—C41.460 (5)C53—C541.455 (5)
C4—C51.340 (4)C54—C551.346 (4)
C4—H4A0.9500C54—H54A0.9500
C5—C61.506 (4)C55—C561.507 (5)
C5—C101.524 (4)C55—C601.515 (4)
C6—C71.522 (4)C56—C571.511 (5)
C6—H6A0.9900C56—H56A0.9900
C6—H6B0.9900C56—H56B0.9900
C7—C81.526 (4)C57—C581.522 (4)
C7—H7A0.9900C57—H57A0.9900
C7—H7B0.9900C57—H57B0.9900
C8—C141.517 (4)C58—C641.521 (4)
C8—C91.544 (4)C58—C591.548 (4)
C8—H8A1.0000C58—H58A1.0000
C9—C111.540 (4)C59—C611.540 (4)
C9—C101.553 (4)C59—C601.562 (4)
C9—H9A1.0000C59—H59A1.0000
C10—C191.544 (4)C60—C691.549 (4)
C11—C121.528 (4)C61—C621.529 (4)
C11—H11A0.9900C61—H61A0.9900
C11—H11B0.9900C61—H61B0.9900
C12—C131.527 (4)C62—C631.525 (4)
C12—H12A0.9900C62—H62A0.9900
C12—H12B0.9900C62—H62B0.9900
C13—C181.538 (4)C63—C681.531 (4)
C13—C141.544 (4)C63—C641.543 (4)
C13—C171.548 (4)C63—C671.552 (4)
C14—C151.535 (4)C64—C651.533 (4)
C14—H14A1.0000C64—H64A1.0000
C15—C161.529 (4)C65—C661.531 (4)
C15—H15A0.9900C65—H65A0.9900
C15—H15B0.9900C65—H65B0.9900
C16—O221.445 (3)C66—O721.448 (4)
C16—C171.543 (4)C66—C671.547 (4)
C16—H16A1.0000C66—H66A1.0000
C17—C201.533 (4)C67—C701.532 (4)
C17—H17A1.0000C67—H67A1.0000
C18—H18A0.9800C68—H68A0.9800
C18—H18B0.9800C68—H68B0.9800
C18—H18C0.9800C68—H68C0.9800
C19—H19A0.9800C69—H69A0.9800
C19—H19B0.9800C69—H69B0.9800
C19—H19C0.9800C69—H69C0.9800
C20—C211.531 (4)C70—C711.526 (5)
C20—C221.532 (4)C70—C721.534 (5)
C20—H20A1.0000C70—H70A1.0000
C21—H21A0.9800C71—H71A0.9800
C21—H21B0.9800C71—H71B0.9800
C21—H21C0.9800C71—H71C0.9800
C22—O221.423 (3)C72—O721.421 (4)
C22—O261.428 (3)C72—O761.428 (3)
C22—C231.513 (4)C72—C731.510 (4)
C23—C241.521 (5)C73—C741.529 (5)
C23—H23A0.9900C73—H73A0.9900
C23—H23B0.9900C73—H73B0.9900
C24—C251.526 (4)C74—C751.508 (4)
C24—H24A0.9900C74—H74A0.9900
C24—H24B0.9900C74—H74B0.9900
C25—C261.514 (4)C75—C771.518 (5)
C25—C271.520 (5)C75—C761.522 (4)
C25—H25A1.0000C75—H75A1.0000
C26—O261.429 (4)C76—O761.432 (4)
C26—H26A0.9900C76—H76A0.9900
C26—H26B0.9900C76—H76B0.9900
C27—H27A0.9800C77—H77A0.9800
C27—H27B0.9800C77—H77B0.9800
C27—H27C0.9800C77—H77C0.9800
C2—C1—C10113.5 (2)C52—C51—C60112.9 (3)
C2—C1—H1A108.9C52—C51—H51A109.0
C10—C1—H1A108.9C60—C51—H51A109.0
C2—C1—H1B108.9C52—C51—H51B109.0
C10—C1—H1B108.9C60—C51—H51B109.0
H1A—C1—H1B107.7H51A—C51—H51B107.8
C3—C2—C1111.0 (3)C53—C52—C51112.0 (3)
C3—C2—H2A109.4C53—C52—H52A109.2
C1—C2—H2A109.4C51—C52—H52A109.2
C3—C2—H2B109.4C53—C52—H52B109.2
C1—C2—H2B109.4C51—C52—H52B109.2
H2A—C2—H2B108.0H52A—C52—H52B107.9
O3—C3—C4122.1 (3)O53—C53—C54122.0 (4)
O3—C3—C2121.9 (3)O53—C53—C52122.0 (4)
C4—C3—C2116.0 (3)C54—C53—C52116.0 (3)
C5—C4—C3123.2 (3)C55—C54—C53123.7 (3)
C5—C4—H4A118.4C55—C54—H54A118.2
C3—C4—H4A118.4C53—C54—H54A118.2
C4—C5—C6120.4 (3)C54—C55—C56120.9 (3)
C4—C5—C10123.5 (3)C54—C55—C60123.0 (3)
C6—C5—C10116.0 (3)C56—C55—C60116.0 (3)
C5—C6—C7112.7 (2)C55—C56—C57112.9 (3)
C5—C6—H6A109.1C55—C56—H56A109.0
C7—C6—H6A109.1C57—C56—H56A109.0
C5—C6—H6B109.1C55—C56—H56B109.0
C7—C6—H6B109.1C57—C56—H56B109.0
H6A—C6—H6B107.8H56A—C56—H56B107.8
C6—C7—C8113.1 (2)C56—C57—C58112.6 (3)
C6—C7—H7A109.0C56—C57—H57A109.1
C8—C7—H7A109.0C58—C57—H57A109.1
C6—C7—H7B109.0C56—C57—H57B109.1
C8—C7—H7B109.0C58—C57—H57B109.1
H7A—C7—H7B107.8H57A—C57—H57B107.8
C14—C8—C7111.7 (2)C64—C58—C57112.6 (3)
C14—C8—C9108.5 (2)C64—C58—C59109.8 (3)
C7—C8—C9110.3 (2)C57—C58—C59108.8 (3)
C14—C8—H8A108.7C64—C58—H58A108.6
C7—C8—H8A108.7C57—C58—H58A108.6
C9—C8—H8A108.7C59—C58—H58A108.6
C11—C9—C8111.7 (2)C61—C59—C58113.2 (3)
C11—C9—C10113.2 (2)C61—C59—C60113.0 (3)
C8—C9—C10113.7 (2)C58—C59—C60112.6 (3)
C11—C9—H9A105.8C61—C59—H59A105.7
C8—C9—H9A105.8C58—C59—H59A105.7
C10—C9—H9A105.8C60—C59—H59A105.7
C5—C10—C1109.8 (2)C55—C60—C51110.0 (3)
C5—C10—C19107.8 (2)C55—C60—C69108.3 (3)
C1—C10—C19110.0 (3)C51—C60—C69109.3 (3)
C5—C10—C9108.8 (2)C55—C60—C59108.6 (3)
C1—C10—C9108.5 (2)C51—C60—C59108.8 (3)
C19—C10—C9112.0 (2)C69—C60—C59111.8 (3)
C12—C11—C9112.4 (2)C62—C61—C59113.2 (3)
C12—C11—H11A109.1C62—C61—H61A108.9
C9—C11—H11A109.1C59—C61—H61A108.9
C12—C11—H11B109.1C62—C61—H61B108.9
C9—C11—H11B109.1C59—C61—H61B108.9
H11A—C11—H11B107.9H61A—C61—H61B107.7
C13—C12—C11111.1 (2)C63—C62—C61111.4 (3)
C13—C12—H12A109.4C63—C62—H62A109.3
C11—C12—H12A109.4C61—C62—H62A109.3
C13—C12—H12B109.4C63—C62—H62B109.3
C11—C12—H12B109.4C61—C62—H62B109.3
H12A—C12—H12B108.0H62A—C62—H62B108.0
C12—C13—C18110.3 (2)C62—C63—C68109.8 (3)
C12—C13—C14108.2 (2)C62—C63—C64107.8 (3)
C18—C13—C14111.4 (2)C68—C63—C64111.7 (3)
C12—C13—C17114.8 (2)C62—C63—C67115.9 (3)
C18—C13—C17111.8 (2)C68—C63—C67110.6 (3)
C14—C13—C1799.9 (2)C64—C63—C67100.6 (2)
C8—C14—C15120.9 (2)C58—C64—C65119.7 (3)
C8—C14—C13115.0 (2)C58—C64—C63114.0 (2)
C15—C14—C13102.6 (2)C65—C64—C63103.5 (2)
C8—C14—H14A105.7C58—C64—H64A106.2
C15—C14—H14A105.7C65—C64—H64A106.2
C13—C14—H14A105.7C63—C64—H64A106.2
C16—C15—C14102.2 (2)C66—C65—C64102.2 (3)
C16—C15—H15A111.3C66—C65—H65A111.3
C14—C15—H15A111.3C64—C65—H65A111.3
C16—C15—H15B111.3C66—C65—H65B111.3
C14—C15—H15B111.3C64—C65—H65B111.3
H15A—C15—H15B109.2H65A—C65—H65B109.2
O22—C16—C15113.7 (2)O72—C66—C65113.3 (3)
O22—C16—C17104.8 (2)O72—C66—C67105.0 (3)
C15—C16—C17107.4 (2)C65—C66—C67107.8 (3)
O22—C16—H16A110.2O72—C66—H66A110.2
C15—C16—H16A110.2C65—C66—H66A110.2
C17—C16—H16A110.2C67—C66—H66A110.2
C20—C17—C16104.9 (2)C70—C67—C66104.7 (3)
C20—C17—C13120.0 (2)C70—C67—C63120.3 (3)
C16—C17—C13104.5 (2)C66—C67—C63104.6 (3)
C20—C17—H17A109.0C70—C67—H67A108.9
C16—C17—H17A109.0C66—C67—H67A108.9
C13—C17—H17A109.0C63—C67—H67A108.9
C13—C18—H18A109.5C63—C68—H68A109.5
C13—C18—H18B109.5C63—C68—H68B109.5
H18A—C18—H18B109.5H68A—C68—H68B109.5
C13—C18—H18C109.5C63—C68—H68C109.5
H18A—C18—H18C109.5H68A—C68—H68C109.5
H18B—C18—H18C109.5H68B—C68—H68C109.5
C10—C19—H19A109.5C60—C69—H69A109.5
C10—C19—H19B109.5C60—C69—H69B109.5
H19A—C19—H19B109.5H69A—C69—H69B109.5
C10—C19—H19C109.5C60—C69—H69C109.5
H19A—C19—H19C109.5H69A—C69—H69C109.5
H19B—C19—H19C109.5H69B—C69—H69C109.5
C21—C20—C22115.0 (3)C71—C70—C67115.0 (3)
C21—C20—C17113.9 (3)C71—C70—C72115.5 (3)
C22—C20—C17103.5 (2)C67—C70—C72103.8 (2)
C21—C20—H20A108.1C71—C70—H70A107.3
C22—C20—H20A108.1C67—C70—H70A107.3
C17—C20—H20A108.1C72—C70—H70A107.3
C20—C21—H21A109.5C70—C71—H71A109.5
C20—C21—H21B109.5C70—C71—H71B109.5
H21A—C21—H21B109.5H71A—C71—H71B109.5
C20—C21—H21C109.5C70—C71—H71C109.5
H21A—C21—H21C109.5H71A—C71—H71C109.5
H21B—C21—H21C109.5H71B—C71—H71C109.5
O22—C22—O26110.3 (2)O72—C72—O76110.2 (2)
O22—C22—C23108.8 (2)O72—C72—C73108.7 (2)
O26—C22—C23111.2 (2)O76—C72—C73111.3 (3)
O22—C22—C20105.0 (2)O72—C72—C70104.8 (2)
O26—C22—C20106.7 (2)O76—C72—C70106.9 (2)
C23—C22—C20114.8 (3)C73—C72—C70114.7 (3)
C22—O22—C16106.3 (2)C72—O72—C66106.6 (2)
C22—C23—C24112.9 (3)C72—C73—C74113.7 (3)
C22—C23—H23A109.0C72—C73—H73A108.8
C24—C23—H23A109.0C74—C73—H73A108.8
C22—C23—H23B109.0C72—C73—H73B108.8
C24—C23—H23B109.0C74—C73—H73B108.8
H23A—C23—H23B107.8H73A—C73—H73B107.7
C23—C24—C25109.9 (3)C75—C74—C73110.2 (3)
C23—C24—H24A109.7C75—C74—H74A109.6
C25—C24—H24A109.7C73—C74—H74A109.6
C23—C24—H24B109.7C75—C74—H74B109.6
C25—C24—H24B109.7C73—C74—H74B109.6
H24A—C24—H24B108.2H74A—C74—H74B108.1
C26—C25—C27111.4 (3)C74—C75—C77113.6 (3)
C26—C25—C24108.2 (2)C74—C75—C76108.0 (3)
C27—C25—C24113.0 (3)C77—C75—C76111.0 (3)
C26—C25—H25A108.1C74—C75—H75A108.0
C27—C25—H25A108.1C77—C75—H75A108.0
C24—C25—H25A108.1C76—C75—H75A108.0
O26—C26—C25112.4 (3)O76—C76—C75112.0 (3)
O26—C26—H26A109.1O76—C76—H76A109.2
C25—C26—H26A109.1C75—C76—H76A109.2
O26—C26—H26B109.1O76—C76—H76B109.2
C25—C26—H26B109.1C75—C76—H76B109.2
H26A—C26—H26B107.8H76A—C76—H76B107.9
C22—O26—C26113.6 (2)C72—O76—C76114.0 (2)
C25—C27—H27A109.5C75—C77—H77A109.5
C25—C27—H27B109.5C75—C77—H77B109.5
H27A—C27—H27B109.5H77A—C77—H77B109.5
C25—C27—H27C109.5C75—C77—H77C109.5
H27A—C27—H27C109.5H77A—C77—H77C109.5
H27B—C27—H27C109.5H77B—C77—H77C109.5
C10—C1—C2—C356.6 (4)C60—C51—C52—C5355.0 (4)
C1—C2—C3—O3146.1 (3)C51—C52—C53—O53150.9 (3)
C1—C2—C3—C436.8 (4)C51—C52—C53—C5432.2 (4)
O3—C3—C4—C5176.5 (3)O53—C53—C54—C55177.9 (3)
C2—C3—C4—C56.5 (5)C52—C53—C54—C551.0 (5)
C3—C4—C5—C6172.2 (3)C53—C54—C55—C56169.0 (3)
C3—C4—C5—C106.2 (5)C53—C54—C55—C608.3 (5)
C4—C5—C6—C7131.3 (3)C54—C55—C56—C57133.2 (3)
C10—C5—C6—C750.2 (3)C60—C55—C56—C5749.2 (4)
C5—C6—C7—C850.3 (3)C55—C56—C57—C5851.8 (4)
C6—C7—C8—C14173.3 (2)C56—C57—C58—C64178.0 (3)
C6—C7—C8—C952.5 (3)C56—C57—C58—C5956.1 (4)
C14—C8—C9—C1152.9 (3)C64—C58—C59—C6148.2 (3)
C7—C8—C9—C11175.5 (2)C57—C58—C59—C61171.8 (3)
C14—C8—C9—C10177.5 (2)C64—C58—C59—C60178.0 (3)
C7—C8—C9—C1054.9 (3)C57—C58—C59—C6058.4 (3)
C4—C5—C10—C112.7 (4)C54—C55—C60—C5114.3 (4)
C6—C5—C10—C1168.9 (2)C56—C55—C60—C51168.3 (3)
C4—C5—C10—C19107.1 (3)C54—C55—C60—C69105.1 (4)
C6—C5—C10—C1971.4 (3)C56—C55—C60—C6972.3 (4)
C4—C5—C10—C9131.3 (3)C54—C55—C60—C59133.2 (3)
C6—C5—C10—C950.3 (3)C56—C55—C60—C5949.3 (4)
C2—C1—C10—C543.5 (4)C52—C51—C60—C5545.0 (4)
C2—C1—C10—C1974.9 (3)C52—C51—C60—C6973.8 (4)
C2—C1—C10—C9162.3 (3)C52—C51—C60—C59163.9 (3)
C11—C9—C10—C5178.6 (2)C61—C59—C60—C55175.9 (3)
C8—C9—C10—C552.5 (3)C58—C59—C60—C5554.2 (3)
C11—C9—C10—C159.2 (3)C61—C59—C60—C5156.2 (4)
C8—C9—C10—C1171.9 (2)C58—C59—C60—C51174.0 (3)
C11—C9—C10—C1962.3 (3)C61—C59—C60—C6964.6 (3)
C8—C9—C10—C1966.5 (3)C58—C59—C60—C6965.2 (3)
C8—C9—C11—C1254.9 (3)C58—C59—C61—C6249.0 (4)
C10—C9—C11—C12175.2 (2)C60—C59—C61—C62178.5 (3)
C9—C11—C12—C1356.5 (3)C59—C61—C62—C6354.2 (4)
C11—C12—C13—C1866.5 (3)C61—C62—C63—C6864.2 (3)
C11—C12—C13—C1455.5 (3)C61—C62—C63—C6457.7 (3)
C11—C12—C13—C17166.1 (2)C61—C62—C63—C67169.5 (3)
C7—C8—C14—C1557.8 (3)C57—C58—C64—C6560.1 (4)
C9—C8—C14—C15179.6 (2)C59—C58—C64—C65178.6 (3)
C7—C8—C14—C13178.2 (2)C57—C58—C64—C63176.7 (3)
C9—C8—C14—C1356.4 (3)C59—C58—C64—C6355.4 (3)
C12—C13—C14—C858.0 (3)C62—C63—C64—C5860.4 (3)
C18—C13—C14—C863.4 (3)C68—C63—C64—C5860.4 (4)
C17—C13—C14—C8178.4 (2)C67—C63—C64—C58177.8 (2)
C12—C13—C14—C15168.7 (2)C62—C63—C64—C65168.0 (3)
C18—C13—C14—C1569.9 (3)C68—C63—C64—C6571.2 (3)
C17—C13—C14—C1548.3 (3)C67—C63—C64—C6546.2 (3)
C8—C14—C15—C16171.8 (3)C58—C64—C65—C66169.1 (3)
C13—C14—C15—C1642.0 (3)C63—C64—C65—C6640.9 (3)
C14—C15—C16—O22134.7 (2)C64—C65—C66—O72135.2 (3)
C14—C15—C16—C1719.3 (3)C64—C65—C66—C6719.6 (3)
O22—C16—C17—C2016.4 (3)O72—C66—C67—C7015.0 (3)
C15—C16—C17—C20137.6 (2)C65—C66—C67—C70136.0 (3)
O22—C16—C17—C13110.8 (2)O72—C66—C67—C63112.4 (3)
C15—C16—C17—C1310.5 (3)C65—C66—C67—C638.6 (3)
C12—C13—C17—C2091.8 (3)C62—C63—C67—C7094.0 (3)
C18—C13—C17—C2034.7 (3)C68—C63—C67—C7031.9 (4)
C14—C13—C17—C20152.7 (2)C64—C63—C67—C70150.1 (3)
C12—C13—C17—C16151.0 (2)C62—C63—C67—C66148.9 (3)
C18—C13—C17—C1682.4 (3)C68—C63—C67—C6685.2 (3)
C14—C13—C17—C1635.6 (3)C64—C63—C67—C6633.0 (3)
C16—C17—C20—C21132.5 (3)C66—C67—C70—C71135.3 (3)
C13—C17—C20—C21110.5 (3)C63—C67—C70—C71107.7 (3)
C16—C17—C20—C227.0 (3)C66—C67—C70—C728.1 (3)
C13—C17—C20—C22123.9 (3)C63—C67—C70—C72125.1 (3)
C21—C20—C22—O22153.4 (3)C71—C70—C72—O72156.0 (3)
C17—C20—C22—O2228.6 (3)C67—C70—C72—O7229.1 (3)
C21—C20—C22—O2636.4 (3)C71—C70—C72—O7639.0 (4)
C17—C20—C22—O2688.4 (3)C67—C70—C72—O7687.9 (3)
C21—C20—C22—C2387.3 (3)C71—C70—C72—C7384.9 (4)
C17—C20—C22—C23147.9 (2)C67—C70—C72—C73148.2 (3)
O26—C22—O22—C1673.8 (3)O76—C72—O72—C6674.4 (3)
C23—C22—O22—C16164.0 (2)C73—C72—O72—C66163.4 (2)
C20—C22—O22—C1640.7 (3)C70—C72—O72—C6640.4 (3)
C15—C16—O22—C22152.6 (2)C65—C66—O72—C72152.0 (2)
C17—C16—O22—C2235.7 (3)C67—C66—O72—C7234.7 (3)
O22—C22—C23—C2470.5 (3)O72—C72—C73—C7473.0 (3)
O26—C22—C23—C2451.1 (3)O76—C72—C73—C7448.6 (4)
C20—C22—C23—C24172.3 (3)C70—C72—C73—C74170.2 (3)
C22—C23—C24—C2552.3 (3)C72—C73—C74—C7551.0 (4)
C23—C24—C25—C2654.1 (3)C73—C74—C75—C77177.8 (3)
C23—C24—C25—C27177.9 (3)C73—C74—C75—C7654.2 (4)
C27—C25—C26—O26176.9 (3)C74—C75—C76—O7659.4 (4)
C24—C25—C26—O2658.3 (3)C77—C75—C76—O76175.6 (3)
O22—C22—O26—C2666.5 (3)O72—C72—O76—C7667.9 (3)
C23—C22—O26—C2654.2 (3)C73—C72—O76—C7652.8 (3)
C20—C22—O26—C26180.0 (2)C70—C72—O76—C76178.8 (2)
C25—C26—O26—C2259.6 (3)C75—C76—O76—C7259.8 (3)

Experimental details

Crystal data
Chemical formulaC27H40O3
Mr412.59
Crystal system, space groupMonoclinic, P21
Temperature (K)136
a, b, c (Å)10.3396 (6), 7.6466 (4), 29.9511 (17)
β (°) 97.207 (5)
V3)2349.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.44 × 0.19 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur (Atlas, Gemini)
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.984, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
11305, 5346, 3908
Rint0.042
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.099, 1.03
No. of reflections5346
No. of parameters549
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by CONACyT (grant 83049).

References

First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEcheverri, M., Blair, S., Carmona, J. & Pérez, P. (2001). Am. J. Chin. Med. 29, 477–484.  PubMed CAS Google Scholar
First citationHunter, A. C. & Priest, S.-M. (2006). Steroids, 71, 30–33.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPiro, O. E., Castellano, E. E., Tobón Zapata, G. E., Blair Trujillo, S. & Baran, E. J. (2002). Z. Naturforsch. Teil C, 57, 947–950.  CAS Google Scholar
First citationSaez, J., Cardona, W., Espinal, D., Blair, S., Mesa, J., Bocar, M. & Jossang, A. (1998). Tetrahedron, 54, 10771–10778.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-Q., Li, B., Wang, W., Zhang, C.-G. & Wei, D.-Z. (2007). Appl. Microbiol. Biotechnol. 77, 771–777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, W., Wang, F.-Q. & Wei, D.-Z. (2009). Appl. Environ. Microbiol. 75, 4202–4205.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds