metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5-olato-κ2O,O′)bis­­(ethanol-κO)cobalt(II)

aUniversity of Fort Hare, Department of Chemistry, Private Bag X1314, Alice 5700, South Africa, and bNelson Mandela Metropolitan University, Department of Chemistry, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: idemudiaog@yahoo.com

(Received 27 June 2012; accepted 19 July 2012; online 25 July 2012)

The title compound, [Co(C17H13N2O2)2(C2H5OH)2], is a CoII complex with two 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5-olate (BMPP) ligands and two coordinating ethanol mol­ecules. In the asymmetric unit, there are two half mol­ecules, with the CoII atoms located on inversion centres. The two cobalt complexes have slightly different geometries and in one, the ethyl group of the ethanol is disordered over two sets of sites [occupancy ratio 0.757 (7):0.243 (7)]. Each BMPP ligand is deprotonated with the negative charge delocalized. The hy­droxy group of each ethanol mol­ecule forms hydrogen bonds with a pyrazole N atom in an adjacent BMPP ligand. Weaker C—H⋯O and C—H⋯N inter­actions link the mol­ecules into a three-dimensional structure.

Related literature

For related structures, see: Raman et al. (2001[Raman, N., Kulandaisamy, A., Shunmugasundaram, A. & Jeyasubramanian, K. (2001). Transition Met. Chem. 26, 131-135.]); Yang et al. (2007[Yang, Y., Zhang, L., Liu, L., Liu, G., Guo, J. & Jia, D. (2007). Struct. Chem. 18, 909-915.]). For general background and applications of acyl­pyrazolo­nes, see: Idemudia et al. (2012[Idemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1280-o1281.]); Marchetti et al. (2005[Marchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 2909-2945.]); Parihar et al. (2012[Parihar, S., Pathan, S., Jadeja, R. N., Patel, A. & Gupta, V. K. (2012). Inorg. Chem. 51, 1152-1161.]); Zhang et al. (2008[Zhang, L., Liu, L., Xu, G.-C. & Jia, D.-Z. (2008). J. Chem. Crystallogr. 38, 837-843.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C17H13N2O2)2(C2H6O)2]

  • Mr = 705.65

  • Triclinic, [P \overline 1]

  • a = 11.0484 (3) Å

  • b = 11.2282 (3) Å

  • c = 14.8425 (4) Å

  • α = 89.205 (1)°

  • β = 87.678 (1)°

  • γ = 76.997 (1)°

  • V = 1792.56 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 200 K

  • 0.49 × 0.36 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.84, Tmax = 0.94

  • 32307 measured reflections

  • 8869 independent reflections

  • 7482 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.02

  • 8869 reflections

  • 471 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯N22i 0.80 2.04 2.8314 (18) 175
O23—H23A⋯N12ii 0.89 1.90 2.7862 (16) 177
C16A—H16B⋯O12 0.99 2.56 3.192 (3) 122
C24—H24C⋯O11iii 0.98 2.46 3.361 (2) 154
C112—H112⋯O11 0.95 2.24 2.8478 (19) 121
C116—H116⋯O23iv 0.95 2.60 3.458 (2) 151
C116—H116⋯N12 0.95 2.50 2.827 (2) 100
C212—H212⋯O21 0.95 2.31 2.848 (2) 115
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z-1; (iii) x+1, y, z; (iv) x-1, y, z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Acylpyrazolones are excellent spectroscopic chelating agents for the determination of metals in trace amounts (Zhang et al., 2008); they also can be used as heterogeneous catalysts (Parihar et al., 2012). As important β-diketones they react with amino groups to form biologically significant Schiff bases (Idemudia et al., 2012). In our probe on transition metal complexes of Schiff bases, an acylpyrazolone Schiff base was treated with cobalt thiocyanate to obtain the title compound (I), instead of the proposed acylpyrazolone Schiff base cobalt complex. The molecular and crystal structure report is presented herein.

The title compound, C38H38CoN4O6, is the CoII complex of two 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5-olate (BMPP) and two ethanol ligands. There are two half molecules of the complex in the asymmetric unit (Figure 1) with Co located at an inversion centres. The ethanol ethyl groups exhibit disorder: in one complex in a ratio of 0.76:0.24 and to a much lesser extent in the other complex molecule (and hence not modelled).

Each BMPP is deprotonated with the negative charge delocalized over O21···C21···C22···C25···O22 and O11···C11···C12···C15···O12. The average Co—O bond length is 2.042 (39) Å and 2.135 (15) Å for the BMPP and ethanol oxygen atoms respectively. The least squares dihedral angles of the BMPP phenyl groups with the pyrazole ring are 16.61 (9) and 61.27 (9)° for one complex and 24.64 (9) and 62.86 (10)° for the other.

The hydrogen of the hydroxy group of each ethanol is hydrogen bonded to a pyrazole nitrogen in an adjacent BMPP (Figure 2). In this way each complex is hydrogen bonded to four adjacent complex molecules. In addition there are inter and intra molecular contacts and C—H···Cg π interactions.

Related literature top

For related structures, see: Raman et al. (2001); Yang et al. (2007). For general background and applications of acylpyrazolones, see: Idemudia et al. (2012); Marchetti et al. (2005); Parihar et al. (2012); Zhang et al. (2008).

Experimental top

A mixture of 4-benzoylphenylhydrazine-3-methyl-1-phenyl-2-pyrazolin-5-one and cobalt thiocyanate in methanol with a molar ratio of 2:1 respectively, was stirred under reflux for 4 h. The complex molecule of C38H38CoN4O6 as orange block-like single crystals and with a melting point 219–220°C suitable for X-ray diffraction analysis was obtained from slow evaporation of the final blue solution at room temperature.

Refinement top

C-bound H atoms were placed in calculated positions and refined as riding atoms, with C—H 0.95 (CH), 0.99 (CH2), 0.98 (CH3) Å and with Uiso(H)=1.2(1.5 for methyl)Ueq(C). Hydroxy H atoms were located on a Fourier map and allowed to refine freely.

Structure description top

Acylpyrazolones are excellent spectroscopic chelating agents for the determination of metals in trace amounts (Zhang et al., 2008); they also can be used as heterogeneous catalysts (Parihar et al., 2012). As important β-diketones they react with amino groups to form biologically significant Schiff bases (Idemudia et al., 2012). In our probe on transition metal complexes of Schiff bases, an acylpyrazolone Schiff base was treated with cobalt thiocyanate to obtain the title compound (I), instead of the proposed acylpyrazolone Schiff base cobalt complex. The molecular and crystal structure report is presented herein.

The title compound, C38H38CoN4O6, is the CoII complex of two 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5-olate (BMPP) and two ethanol ligands. There are two half molecules of the complex in the asymmetric unit (Figure 1) with Co located at an inversion centres. The ethanol ethyl groups exhibit disorder: in one complex in a ratio of 0.76:0.24 and to a much lesser extent in the other complex molecule (and hence not modelled).

Each BMPP is deprotonated with the negative charge delocalized over O21···C21···C22···C25···O22 and O11···C11···C12···C15···O12. The average Co—O bond length is 2.042 (39) Å and 2.135 (15) Å for the BMPP and ethanol oxygen atoms respectively. The least squares dihedral angles of the BMPP phenyl groups with the pyrazole ring are 16.61 (9) and 61.27 (9)° for one complex and 24.64 (9) and 62.86 (10)° for the other.

The hydrogen of the hydroxy group of each ethanol is hydrogen bonded to a pyrazole nitrogen in an adjacent BMPP (Figure 2). In this way each complex is hydrogen bonded to four adjacent complex molecules. In addition there are inter and intra molecular contacts and C—H···Cg π interactions.

For related structures, see: Raman et al. (2001); Yang et al. (2007). For general background and applications of acylpyrazolones, see: Idemudia et al. (2012); Marchetti et al. (2005); Parihar et al. (2012); Zhang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I), with anistropic displacement ellipsoids drawn at the 50% probability level (for clarity not all atom labels are shown. [Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 2, -y + 1,-z]
[Figure 2] Fig. 2. Hydrogen bonding in (I) (anistropic displacements ellipsoids drawn at 50% probability level). [Symmetry codes: (i) -x, -y, -z + 1; (iii) x - 1, y, z; (vii) -x + 1, -y, -z + 1]
[Figure 3] Fig. 3. Crystal packing of (I), viewed along [0 1 0] (anistropic displacements ellipsoids drawn at 50% probability level).
Bis(4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5-olato- κ2O,O')bis(ethanol-κO)cobalt(II) top
Crystal data top
[Co(C17H13N2O2)2(C2H6O)2]Z = 2
Mr = 705.65F(000) = 738
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Melting point: 219 K
a = 11.0484 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2282 (3) ÅCell parameters from 108 reflections
c = 14.8425 (4) Åθ = 3.8–31.5°
α = 89.205 (1)°µ = 0.53 mm1
β = 87.678 (1)°T = 200 K
γ = 76.997 (1)°Block, orange
V = 1792.56 (8) Å30.49 × 0.36 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
8869 independent reflections
Radiation source: sealed tube7482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.3°
φ and ω scansh = 1414
Absorption correction: numerical
(SADABS; Bruker, 2008)
k = 1414
Tmin = 0.84, Tmax = 0.94l = 1919
32307 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.9543P]
where P = (Fo2 + 2Fc2)/3
8869 reflections(Δ/σ)max < 0.001
471 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Co(C17H13N2O2)2(C2H6O)2]γ = 76.997 (1)°
Mr = 705.65V = 1792.56 (8) Å3
Triclinic, P1Z = 2
a = 11.0484 (3) ÅMo Kα radiation
b = 11.2282 (3) ŵ = 0.53 mm1
c = 14.8425 (4) ÅT = 200 K
α = 89.205 (1)°0.49 × 0.36 × 0.12 mm
β = 87.678 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8869 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2008)
7482 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.94Rint = 0.015
32307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
8869 reflectionsΔρmin = 0.47 e Å3
471 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co1000.50.02644 (7)
Co21.00.500.03026 (8)
O110.06104 (10)0.16165 (9)0.56233 (6)0.0315 (2)
O120.11939 (10)0.05987 (10)0.60361 (7)0.0336 (2)
O130.14538 (12)0.06673 (12)0.43001 (9)0.0466 (3)
H13A0.12590.10750.38640.060 (7)*
O211.07029 (12)0.34177 (11)0.06276 (7)0.0394 (3)
O220.87771 (11)0.54948 (10)0.11026 (7)0.0359 (2)
O230.87494 (12)0.41461 (12)0.06579 (8)0.0462 (3)
H23A0.89850.3690.11430.062 (7)*
N110.10305 (11)0.27443 (11)0.69400 (8)0.0280 (2)
N120.05984 (13)0.26925 (12)0.78148 (8)0.0341 (3)
N211.11456 (13)0.22367 (12)0.19080 (8)0.0336 (3)
N221.07617 (14)0.22544 (13)0.28176 (8)0.0375 (3)
C110.03970 (13)0.17640 (12)0.64384 (9)0.0252 (3)
C120.04931 (14)0.10603 (13)0.70179 (9)0.0279 (3)
C130.02963 (15)0.17038 (14)0.78577 (9)0.0335 (3)
C140.0899 (2)0.1371 (2)0.87390 (11)0.0562 (6)
H14A0.09530.05020.88660.084*
H14B0.04020.18630.92210.084*
H14C0.17360.15310.87080.084*
C150.13206 (13)0.00484 (13)0.67443 (9)0.0275 (3)
C211.05355 (15)0.32601 (14)0.14632 (9)0.0315 (3)
C220.97286 (15)0.39911 (14)0.21254 (9)0.0320 (3)
C230.99378 (16)0.32862 (15)0.29435 (10)0.0362 (3)
C240.9383 (2)0.35577 (17)0.38780 (11)0.0532 (5)
H24A0.84790.38440.3850.08*
H24B0.97320.41920.41470.08*
H24C0.95750.28140.42470.08*
C250.88599 (15)0.50747 (14)0.18943 (9)0.0318 (3)
C260.7822 (3)0.3650 (3)0.01816 (18)0.0825 (9)
H26A0.78710.28090.03950.099*
H26B0.79930.36040.04690.099*
C270.6610 (3)0.4357 (5)0.0300 (4)0.155 (2)
H27A0.65980.52220.02090.232*
H27B0.60320.40990.01390.232*
H27C0.63570.4240.09120.232*
C1110.19608 (13)0.37569 (13)0.66632 (10)0.0286 (3)
C1120.25930 (15)0.37105 (15)0.58784 (11)0.0371 (3)
H1120.24180.29890.55240.045*
C1130.34801 (17)0.47218 (18)0.56156 (13)0.0481 (4)
H1130.390.46930.50730.058*
C1140.37636 (19)0.57684 (18)0.61289 (15)0.0535 (5)
H1140.43890.64490.59520.064*
C1150.3129 (2)0.58125 (18)0.68994 (16)0.0578 (5)
H1150.33110.65350.72520.069*
C1160.22273 (18)0.48182 (16)0.71716 (13)0.0463 (4)
H1160.17930.48630.77050.056*
C1210.24248 (14)0.06123 (14)0.72766 (9)0.0309 (3)
C1220.2658 (2)0.18464 (17)0.74798 (15)0.0533 (5)
H1220.20960.23210.73070.064*
C1230.3715 (2)0.2392 (2)0.79362 (18)0.0699 (7)
H1230.38620.32350.80890.084*
C1240.45441 (19)0.1725 (2)0.81670 (14)0.0581 (5)
H1240.52630.21040.84810.07*
C1250.43434 (17)0.0511 (2)0.79472 (13)0.0521 (5)
H1250.49360.00550.80940.063*
C1260.32726 (17)0.00593 (17)0.75092 (12)0.0428 (4)
H12A0.31250.09070.7370.051*
C2111.19389 (14)0.11779 (14)0.15297 (10)0.0318 (3)
C2121.26245 (15)0.12585 (17)0.07298 (10)0.0382 (3)
H2121.25790.20260.0440.046*
C2131.33730 (16)0.02042 (19)0.03630 (12)0.0463 (4)
H2131.38260.02520.01890.056*
C2141.34711 (18)0.09108 (19)0.07852 (14)0.0516 (5)
H2141.39950.16240.0530.062*
C2151.28032 (19)0.09846 (17)0.15823 (15)0.0514 (5)
H2151.28750.17510.18790.062*
C2161.20287 (17)0.00521 (16)0.19519 (12)0.0418 (4)
H2161.15590.00080.24940.05*
C2210.79264 (16)0.57662 (15)0.25689 (10)0.0375 (3)
C2220.66813 (19)0.5958 (2)0.23946 (14)0.0560 (5)
H2220.64290.56480.18580.067*
C2230.5791 (2)0.6608 (3)0.30081 (18)0.0757 (8)
H2230.49310.67190.29010.091*
C2240.6170 (3)0.7090 (2)0.37703 (16)0.0757 (8)
H2240.55650.75350.41870.091*
C2250.7401 (3)0.69350 (19)0.39334 (14)0.0635 (6)
H2250.7650.72850.44550.076*
C2260.8290 (2)0.62677 (16)0.33398 (11)0.0459 (4)
H2260.91470.61510.34580.055*
C16A0.2742 (3)0.0041 (4)0.4279 (2)0.0533 (9)0.757 (7)
H16A0.28360.07050.38320.064*0.757 (7)
H16B0.29270.04240.48780.064*0.757 (7)
C17A0.3656 (3)0.0719 (3)0.4045 (2)0.0640 (10)0.757 (7)
H17A0.450.02060.40480.096*0.757 (7)
H17B0.35730.13740.44880.096*0.757 (7)
H17C0.34960.10780.34430.096*0.757 (7)
C16B0.2583 (12)0.0716 (13)0.4401 (8)0.070 (4)0.243 (7)
H16C0.26630.10270.50120.084*0.243 (7)
H16D0.28140.13020.39580.084*0.243 (7)
C17B0.3450 (12)0.0480 (17)0.4284 (10)0.106 (6)0.243 (7)
H17D0.36690.0620.36420.159*0.243 (7)
H17E0.30530.11250.45190.159*0.243 (7)
H17F0.42040.04930.46140.159*0.243 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03579 (15)0.02519 (13)0.01517 (12)0.00070 (10)0.00458 (10)0.00412 (9)
Co20.04097 (16)0.03298 (15)0.01484 (12)0.00448 (12)0.00239 (10)0.00391 (10)
O110.0441 (6)0.0282 (5)0.0180 (4)0.0022 (4)0.0068 (4)0.0049 (4)
O120.0445 (6)0.0306 (5)0.0216 (5)0.0021 (4)0.0091 (4)0.0060 (4)
O130.0443 (7)0.0425 (7)0.0467 (7)0.0012 (5)0.0090 (5)0.0110 (6)
O210.0552 (7)0.0384 (6)0.0188 (5)0.0007 (5)0.0073 (4)0.0016 (4)
O220.0456 (6)0.0379 (6)0.0209 (5)0.0031 (5)0.0045 (4)0.0029 (4)
O230.0487 (7)0.0593 (8)0.0324 (6)0.0162 (6)0.0078 (5)0.0235 (5)
N110.0322 (6)0.0298 (6)0.0199 (5)0.0019 (5)0.0034 (4)0.0068 (4)
N120.0400 (7)0.0393 (7)0.0200 (5)0.0013 (6)0.0062 (5)0.0098 (5)
N210.0415 (7)0.0373 (7)0.0195 (5)0.0049 (6)0.0052 (5)0.0018 (5)
N220.0508 (8)0.0387 (7)0.0205 (6)0.0065 (6)0.0079 (5)0.0001 (5)
C110.0298 (7)0.0255 (6)0.0196 (6)0.0045 (5)0.0013 (5)0.0041 (5)
C120.0329 (7)0.0309 (7)0.0186 (6)0.0038 (6)0.0047 (5)0.0045 (5)
C130.0380 (8)0.0381 (8)0.0218 (6)0.0018 (6)0.0063 (6)0.0079 (6)
C140.0680 (13)0.0625 (12)0.0253 (8)0.0159 (10)0.0182 (8)0.0149 (8)
C150.0324 (7)0.0293 (7)0.0199 (6)0.0046 (5)0.0042 (5)0.0005 (5)
C210.0389 (8)0.0337 (7)0.0217 (6)0.0081 (6)0.0035 (5)0.0028 (5)
C220.0426 (8)0.0335 (7)0.0200 (6)0.0094 (6)0.0062 (6)0.0035 (5)
C230.0493 (9)0.0364 (8)0.0220 (7)0.0093 (7)0.0072 (6)0.0013 (6)
C240.0847 (15)0.0415 (9)0.0252 (8)0.0007 (9)0.0183 (8)0.0016 (7)
C250.0412 (8)0.0339 (7)0.0211 (6)0.0108 (6)0.0052 (6)0.0051 (5)
C260.0781 (17)0.118 (2)0.0662 (15)0.0562 (17)0.0244 (13)0.0505 (15)
C270.066 (2)0.212 (6)0.173 (5)0.009 (3)0.028 (3)0.017 (4)
C1110.0271 (7)0.0295 (7)0.0274 (7)0.0031 (5)0.0015 (5)0.0030 (5)
C1120.0369 (8)0.0387 (8)0.0316 (7)0.0007 (7)0.0040 (6)0.0059 (6)
C1130.0428 (10)0.0523 (11)0.0417 (9)0.0066 (8)0.0103 (7)0.0007 (8)
C1140.0479 (11)0.0429 (10)0.0596 (12)0.0119 (8)0.0060 (9)0.0010 (8)
C1150.0609 (13)0.0366 (9)0.0669 (13)0.0100 (9)0.0095 (10)0.0157 (9)
C1160.0484 (10)0.0384 (9)0.0476 (10)0.0022 (7)0.0113 (8)0.0150 (7)
C1210.0332 (7)0.0337 (7)0.0232 (6)0.0008 (6)0.0048 (5)0.0050 (5)
C1220.0572 (12)0.0383 (9)0.0645 (12)0.0062 (8)0.0304 (10)0.0048 (8)
C1230.0739 (15)0.0438 (11)0.0865 (17)0.0045 (10)0.0421 (13)0.0066 (11)
C1240.0432 (10)0.0688 (14)0.0531 (11)0.0107 (9)0.0203 (9)0.0118 (10)
C1250.0369 (9)0.0748 (14)0.0462 (10)0.0138 (9)0.0103 (8)0.0100 (9)
C1260.0444 (9)0.0461 (10)0.0392 (9)0.0117 (8)0.0092 (7)0.0016 (7)
C2110.0302 (7)0.0381 (8)0.0268 (7)0.0072 (6)0.0002 (5)0.0065 (6)
C2120.0333 (8)0.0508 (10)0.0278 (7)0.0039 (7)0.0001 (6)0.0014 (6)
C2130.0337 (8)0.0670 (12)0.0339 (8)0.0023 (8)0.0031 (6)0.0119 (8)
C2140.0435 (10)0.0516 (11)0.0573 (11)0.0056 (8)0.0050 (8)0.0246 (9)
C2150.0536 (11)0.0357 (9)0.0656 (12)0.0125 (8)0.0071 (9)0.0110 (8)
C2160.0468 (10)0.0374 (9)0.0424 (9)0.0138 (7)0.0093 (7)0.0062 (7)
C2210.0493 (9)0.0329 (8)0.0263 (7)0.0035 (7)0.0128 (6)0.0001 (6)
C2220.0509 (11)0.0668 (13)0.0429 (10)0.0005 (10)0.0082 (8)0.0024 (9)
C2230.0549 (13)0.0874 (18)0.0668 (15)0.0166 (12)0.0210 (11)0.0144 (13)
C2240.095 (2)0.0621 (14)0.0505 (13)0.0167 (13)0.0379 (13)0.0018 (10)
C2250.0972 (18)0.0469 (11)0.0376 (10)0.0019 (11)0.0259 (11)0.0102 (8)
C2260.0682 (12)0.0375 (9)0.0301 (8)0.0107 (8)0.0154 (8)0.0065 (6)
C16A0.0383 (16)0.055 (2)0.0609 (17)0.0003 (14)0.0033 (12)0.0128 (14)
C17A0.0478 (17)0.072 (2)0.073 (2)0.0154 (14)0.0098 (14)0.0167 (16)
C16B0.083 (8)0.059 (7)0.083 (7)0.043 (6)0.025 (6)0.007 (6)
C17B0.047 (7)0.152 (15)0.098 (10)0.022 (8)0.013 (6)0.011 (9)
Geometric parameters (Å, º) top
Co1—O112.0125 (10)C112—H1120.95
Co1—O11i2.0125 (10)C113—C1141.378 (3)
Co1—O122.0721 (10)C113—H1130.95
Co1—O12i2.0721 (10)C114—C1151.372 (3)
Co1—O132.1460 (12)C114—H1140.95
Co1—O13i2.1461 (12)C115—C1161.387 (3)
Co2—O212.0047 (11)C115—H1150.95
Co2—O21ii2.0047 (11)C116—H1160.95
Co2—O222.0786 (10)C121—C1221.382 (2)
Co2—O22ii2.0786 (10)C121—C1261.384 (2)
Co2—O232.1245 (12)C122—C1231.389 (3)
Co2—O23ii2.1245 (12)C122—H1220.95
O11—C111.2622 (16)C123—C1241.363 (3)
O12—C151.2550 (16)C123—H1230.95
O13—C16B1.276 (11)C124—C1251.368 (3)
O13—C16A1.465 (3)C124—H1240.95
O13—H13A0.7956C125—C1261.394 (3)
O21—C211.2624 (17)C125—H1250.95
O22—C251.2593 (18)C126—H12A0.95
O23—C261.431 (3)C211—C2161.388 (2)
O23—H23A0.8858C211—C2121.395 (2)
N11—C111.3746 (17)C212—C2131.386 (2)
N11—N121.3974 (16)C212—H2120.95
N11—C1111.4189 (18)C213—C2141.376 (3)
N12—C131.313 (2)C213—H2130.95
N21—C211.370 (2)C214—C2151.380 (3)
N21—N221.3976 (16)C214—H2140.95
N21—C2111.4165 (19)C215—C2161.385 (2)
N22—C231.313 (2)C215—H2150.95
C11—C121.4252 (19)C216—H2160.95
C12—C151.422 (2)C221—C2221.378 (3)
C12—C131.4336 (18)C221—C2261.394 (2)
C13—C141.496 (2)C222—C2231.397 (3)
C14—H14A0.98C222—H2220.95
C14—H14B0.98C223—C2241.380 (4)
C14—H14C0.98C223—H2230.95
C15—C1211.4934 (19)C224—C2251.363 (4)
C21—C221.434 (2)C224—H2240.95
C22—C251.417 (2)C225—C2261.385 (3)
C22—C231.438 (2)C225—H2250.95
C23—C241.500 (2)C226—H2260.95
C24—H24A0.98C16A—C17A1.491 (5)
C24—H24B0.98C16A—H16A0.99
C24—H24C0.98C16A—H16B0.99
C25—C2211.499 (2)C17A—H17A0.98
C26—C271.411 (5)C17A—H17B0.98
C26—H26A0.99C17A—H17C0.98
C26—H26B0.99C16B—C17B1.47 (2)
C27—H27A0.98C16B—H16C0.99
C27—H27B0.98C16B—H16D0.99
C27—H27C0.98C17B—H17D0.98
C111—C1161.387 (2)C17B—H17E0.98
C111—C1121.390 (2)C17B—H17F0.98
C112—C1131.386 (2)
O11—Co1—O11i180.0H27A—C27—H27B109.5
O11—Co1—O1290.12 (4)C26—C27—H27C109.5
O11i—Co1—O1289.88 (4)H27A—C27—H27C109.5
O11—Co1—O12i89.88 (4)H27B—C27—H27C109.5
O11i—Co1—O12i90.12 (4)C116—C111—C112119.39 (15)
O12—Co1—O12i180.0C116—C111—N11119.69 (14)
O11—Co1—O1390.93 (5)C112—C111—N11120.91 (13)
O11i—Co1—O1389.07 (5)C113—C112—C111119.63 (15)
O12—Co1—O1389.14 (5)C113—C112—H112120.2
O12i—Co1—O1390.86 (5)C111—C112—H112120.2
O11—Co1—O13i89.07 (5)C114—C113—C112121.06 (17)
O11i—Co1—O13i90.93 (5)C114—C113—H113119.5
O12—Co1—O13i90.86 (5)C112—C113—H113119.5
O12i—Co1—O13i89.14 (5)C115—C114—C113119.04 (17)
O13—Co1—O13i180.0C115—C114—H114120.5
O21—Co2—O21ii180.0C113—C114—H114120.5
O21—Co2—O2288.73 (4)C114—C115—C116121.02 (18)
O21ii—Co2—O2291.27 (4)C114—C115—H115119.5
O21—Co2—O22ii91.27 (4)C116—C115—H115119.5
O21ii—Co2—O22ii88.73 (4)C115—C116—C111119.84 (17)
O22—Co2—O22ii179.9980 (10)C115—C116—H116120.1
O21—Co2—O2389.54 (5)C111—C116—H116120.1
O21ii—Co2—O2390.46 (5)C122—C121—C126119.27 (15)
O22—Co2—O2392.76 (4)C122—C121—C15119.56 (14)
O22ii—Co2—O2387.24 (4)C126—C121—C15120.97 (14)
O21—Co2—O23ii90.46 (5)C121—C122—C123120.02 (19)
O21ii—Co2—O23ii89.54 (5)C121—C122—H122120.0
O22—Co2—O23ii87.24 (4)C123—C122—H122120.0
O22ii—Co2—O23ii92.76 (4)C124—C123—C122120.4 (2)
O23—Co2—O23ii180.0C124—C123—H123119.8
C11—O11—Co1121.85 (9)C122—C123—H123119.8
C15—O12—Co1128.43 (9)C123—C124—C125120.19 (18)
C16B—O13—Co1139.3 (5)C123—C124—H124119.9
C16A—O13—Co1121.07 (15)C125—C124—H124119.9
C16B—O13—H13A104.2C124—C125—C126120.19 (18)
C16A—O13—H13A115.2C124—C125—H125119.9
Co1—O13—H13A116.1C126—C125—H125119.9
C21—O21—Co2122.73 (10)C121—C126—C125119.86 (18)
C25—O22—Co2128.58 (10)C121—C126—H12A120.1
C26—O23—Co2122.93 (12)C125—C126—H12A120.1
C26—O23—H23A106.9C216—C211—C212119.73 (15)
Co2—O23—H23A121.5C216—C211—N21119.95 (14)
C11—N11—N12111.13 (11)C212—C211—N21120.32 (14)
C11—N11—C111128.62 (11)C213—C212—C211119.18 (17)
N12—N11—C111120.16 (11)C213—C212—H212120.4
C13—N12—N11106.47 (11)C211—C212—H212120.4
C21—N21—N22111.42 (12)C214—C213—C212121.13 (17)
C21—N21—C211127.65 (12)C214—C213—H213119.4
N22—N21—C211120.37 (12)C212—C213—H213119.4
C23—N22—N21106.32 (12)C213—C214—C215119.52 (17)
O11—C11—N11122.94 (12)C213—C214—H214120.2
O11—C11—C12131.05 (13)C215—C214—H214120.2
N11—C11—C12105.98 (11)C214—C215—C216120.40 (19)
C15—C12—C11122.89 (12)C214—C215—H215119.8
C15—C12—C13132.25 (13)C216—C215—H215119.8
C11—C12—C13104.83 (12)C215—C216—C211120.02 (16)
N12—C13—C12111.57 (12)C215—C216—H216120.0
N12—C13—C14118.60 (13)C211—C216—H216120.0
C12—C13—C14129.73 (14)C222—C221—C226119.56 (17)
C13—C14—H14A109.5C222—C221—C25118.70 (16)
C13—C14—H14B109.5C226—C221—C25121.67 (16)
H14A—C14—H14B109.5C221—C222—C223119.9 (2)
C13—C14—H14C109.5C221—C222—H222120.0
H14A—C14—H14C109.5C223—C222—H222120.0
H14B—C14—H14C109.5C224—C223—C222119.5 (2)
O12—C15—C12122.74 (12)C224—C223—H223120.2
O12—C15—C121115.73 (13)C222—C223—H223120.2
C12—C15—C121121.50 (12)C225—C224—C223120.8 (2)
O21—C21—N21122.37 (13)C225—C224—H224119.6
O21—C21—C22131.49 (15)C223—C224—H224119.6
N21—C21—C22106.11 (12)C224—C225—C226120.0 (2)
C25—C22—C21122.18 (13)C224—C225—H225120.0
C25—C22—C23133.13 (14)C226—C225—H225120.0
C21—C22—C23104.25 (13)C225—C226—C221120.1 (2)
N22—C23—C22111.88 (13)C225—C226—H226120.0
N22—C23—C24117.70 (14)C221—C226—H226120.0
C22—C23—C24130.42 (15)O13—C16A—C17A112.7 (3)
C23—C24—H24A109.5O13—C16A—H16A109.1
C23—C24—H24B109.5C17A—C16A—H16A109.1
H24A—C24—H24B109.5O13—C16A—H16B109.1
C23—C24—H24C109.5C17A—C16A—H16B109.1
H24A—C24—H24C109.5H16A—C16A—H16B107.8
H24B—C24—H24C109.5O13—C16B—C17B112.6 (11)
O22—C25—C22122.65 (13)O13—C16B—H16C109.1
O22—C25—C221115.15 (14)C17B—C16B—H16C109.1
C22—C25—C221122.12 (13)O13—C16B—H16D109.1
C27—C26—O23112.4 (3)C17B—C16B—H16D109.1
C27—C26—H26A109.1H16C—C16B—H16D107.8
O23—C26—H26A109.1C16B—C17B—H17D109.5
C27—C26—H26B109.1C16B—C17B—H17E109.5
O23—C26—H26B109.1H17D—C17B—H17E109.5
H26A—C26—H26B107.9C16B—C17B—H17F109.5
C26—C27—H27A109.5H17D—C17B—H17F109.5
C26—C27—H27B109.5H17E—C17B—H17F109.5
O12—Co1—O11—C1114.75 (12)N21—N22—C23—C24178.81 (16)
O12i—Co1—O11—C11165.25 (12)C25—C22—C23—N22172.28 (17)
O13—Co1—O11—C11103.89 (12)C21—C22—C23—N220.03 (19)
O13i—Co1—O11—C1176.11 (12)C25—C22—C23—C248.4 (3)
O11—Co1—O12—C152.27 (13)C21—C22—C23—C24179.35 (19)
O11i—Co1—O12—C15177.73 (13)Co2—O22—C25—C2212.6 (2)
O13—Co1—O12—C1593.20 (13)Co2—O22—C25—C221170.58 (11)
O13i—Co1—O12—C1586.80 (13)C21—C22—C25—O223.2 (2)
O11—Co1—O13—C16B90.8 (10)C23—C22—C25—O22174.33 (17)
O11i—Co1—O13—C16B89.2 (10)C21—C22—C25—C221173.43 (15)
O12—Co1—O13—C16B0.7 (10)C23—C22—C25—C2212.3 (3)
O12i—Co1—O13—C16B179.3 (10)Co2—O23—C26—C27108.5 (3)
O11—Co1—O13—C16A131.2 (2)C11—N11—C111—C116160.85 (16)
O11i—Co1—O13—C16A48.8 (2)N12—N11—C111—C11615.4 (2)
O12—Co1—O13—C16A41.1 (2)C11—N11—C111—C11217.8 (2)
O12i—Co1—O13—C16A138.9 (2)N12—N11—C111—C112165.92 (14)
O22—Co2—O21—C2117.43 (13)C116—C111—C112—C1130.1 (3)
O22ii—Co2—O21—C21162.58 (13)N11—C111—C112—C113178.76 (16)
O23—Co2—O21—C21110.20 (13)C111—C112—C113—C1141.2 (3)
O23ii—Co2—O21—C2169.80 (13)C112—C113—C114—C1151.7 (3)
O21—Co2—O22—C2519.90 (13)C113—C114—C115—C1160.9 (4)
O21ii—Co2—O22—C25160.10 (13)C114—C115—C116—C1110.3 (3)
O23—Co2—O22—C25109.38 (13)C112—C111—C116—C1150.8 (3)
O23ii—Co2—O22—C2570.62 (13)N11—C111—C116—C115179.53 (18)
O21—Co2—O23—C2662.54 (19)O12—C15—C121—C12249.2 (2)
O21ii—Co2—O23—C26117.46 (19)C12—C15—C121—C122132.44 (18)
O22—Co2—O23—C2626.17 (19)O12—C15—C121—C126125.62 (16)
O22ii—Co2—O23—C26153.83 (19)C12—C15—C121—C12652.7 (2)
C11—N11—N12—C130.52 (17)C126—C121—C122—C1231.9 (3)
C111—N11—N12—C13176.35 (14)C15—C121—C122—C123176.9 (2)
C21—N21—N22—C231.08 (18)C121—C122—C123—C1241.6 (4)
C211—N21—N22—C23173.12 (14)C122—C123—C124—C1250.3 (4)
Co1—O11—C11—N11164.27 (10)C123—C124—C125—C1261.9 (3)
Co1—O11—C11—C1217.8 (2)C122—C121—C126—C1250.3 (3)
N12—N11—C11—O11179.12 (13)C15—C121—C126—C125175.20 (16)
C111—N11—C11—O112.6 (2)C124—C125—C126—C1211.6 (3)
N12—N11—C11—C120.73 (16)C21—N21—C211—C216150.36 (17)
C111—N11—C11—C12175.81 (14)N22—N21—C211—C21620.3 (2)
O11—C11—C12—C152.9 (3)C21—N21—C211—C21229.1 (2)
N11—C11—C12—C15178.94 (13)N22—N21—C211—C212160.23 (15)
O11—C11—C12—C13178.84 (16)C216—C211—C212—C2130.9 (2)
N11—C11—C12—C130.64 (16)N21—C211—C212—C213178.58 (15)
N11—N12—C13—C120.09 (18)C211—C212—C213—C2141.5 (3)
N11—N12—C13—C14176.89 (16)C212—C213—C214—C2150.7 (3)
C15—C12—C13—N12178.42 (16)C213—C214—C215—C2160.7 (3)
C11—C12—C13—N120.35 (18)C214—C215—C216—C2111.2 (3)
C15—C12—C13—C142.1 (3)C212—C211—C216—C2150.4 (3)
C11—C12—C13—C14176.00 (19)N21—C211—C216—C215179.93 (16)
Co1—O12—C15—C129.8 (2)O22—C25—C221—C22254.7 (2)
Co1—O12—C15—C121168.49 (10)C22—C25—C221—C222122.18 (19)
C11—C12—C15—O1212.5 (2)O22—C25—C221—C226122.06 (17)
C13—C12—C15—O12165.27 (16)C22—C25—C221—C22661.1 (2)
C11—C12—C15—C121165.69 (14)C226—C221—C222—C2232.6 (3)
C13—C12—C15—C12116.5 (3)C25—C221—C222—C223179.47 (19)
Co2—O21—C21—N21171.43 (11)C221—C222—C223—C2242.2 (4)
Co2—O21—C21—C2210.5 (3)C222—C223—C224—C2250.2 (4)
N22—N21—C21—O21177.42 (15)C223—C224—C225—C2261.3 (4)
C211—N21—C21—O216.1 (3)C224—C225—C226—C2210.8 (3)
N22—N21—C21—C221.09 (18)C222—C221—C226—C2251.2 (3)
C211—N21—C21—C22172.42 (15)C25—C221—C226—C225177.89 (17)
O21—C21—C22—C254.3 (3)C16B—O13—C16A—C17A27.7 (10)
N21—C21—C22—C25173.99 (14)Co1—O13—C16A—C17A160.64 (19)
O21—C21—C22—C23177.64 (17)C16A—O13—C16B—C17B1.5 (7)
N21—C21—C22—C230.67 (17)Co1—O13—C16B—C17B72.6 (14)
N21—N22—C23—C220.61 (19)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···N22iii0.802.042.8314 (18)175
O23—H23A···N12iv0.891.902.7862 (16)177
C16A—H16B···O120.992.563.192 (3)122
C24—H24C···O11v0.982.463.361 (2)154
C112—H112···O110.952.242.8478 (19)121
C116—H116···O23vi0.952.603.458 (2)151
C116—H116···N120.952.502.827 (2)100
C212—H212···O210.952.312.848 (2)115
Symmetry codes: (iii) x1, y, z; (iv) x+1, y, z1; (v) x+1, y, z; (vi) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C17H13N2O2)2(C2H6O)2]
Mr705.65
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)11.0484 (3), 11.2282 (3), 14.8425 (4)
α, β, γ (°)89.205 (1), 87.678 (1), 76.997 (1)
V3)1792.56 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.49 × 0.36 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionNumerical
(SADABS; Bruker, 2008)
Tmin, Tmax0.84, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
32307, 8869, 7482
Rint0.015
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.02
No. of reflections8869
No. of parameters471
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.47

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···N22i0.802.042.8314 (18)175
O23—H23A···N12ii0.891.902.7862 (16)177
C16A—H16B···O120.992.563.192 (3)122
C24—H24C···O11iii0.982.463.361 (2)154
C112—H112···O110.952.242.8478 (19)121
C116—H116···O23iv0.952.603.458 (2)151
C116—H116···N120.952.502.827 (2)100
C212—H212···O210.952.312.848 (2)115
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z1; (iii) x+1, y, z; (iv) x1, y, z+1.
 

Acknowledgements

The Department of Chemistry and the Govan Mbeki Research and Development Centre (GMRDC), both of the University of Fort Hare, are gratefully acknowledged.

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIdemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1280–o1281.  CSD CrossRef IUCr Journals Google Scholar
First citationMarchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 2909–2945.  Web of Science CrossRef CAS Google Scholar
First citationParihar, S., Pathan, S., Jadeja, R. N., Patel, A. & Gupta, V. K. (2012). Inorg. Chem. 51, 1152–1161.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRaman, N., Kulandaisamy, A., Shunmugasundaram, A. & Jeyasubramanian, K. (2001). Transition Met. Chem. 26, 131–135.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Zhang, L., Liu, L., Liu, G., Guo, J. & Jia, D. (2007). Struct. Chem. 18, 909–915.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Liu, L., Xu, G.-C. & Jia, D.-Z. (2008). J. Chem. Crystallogr. 38, 837–843.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds