organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,6,7-Tetra­meth­­oxy-9,10-anthra­quinone

aDepartment of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan, bDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan, and cDepartment of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp

(Received 13 July 2012; accepted 21 July 2012; online 28 July 2012)

Mol­ecules of the title compound, C18H16O6, are almost planar [maximum deviation = 0.096 (4) Å] and reside on crystallographic centres of inversion. They adopt a conformation in which the Cmeth­yl—O bonds are directed along the mol­ecular short axis [C—C—O—C torsion angles of −175.3 (3) and 178.2 (3)°]. In the crystal, mol­ecules adopt a slipped-parallel arrangement with ππ stacking inter­actions along the a axis with an inter­planar distance of 3.392 (4) Å. Weak C—H⋯O inter­actions link the mol­ecules into sheets parallel to (10[\overline{2}]).

Related literature

For a study of the effects of alk­oxy substituents on the structures and solid-state photophysics, see: Ohta et al. (2012[Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012). Chem. Lett. 41, 674-676.]). For the synthesis, see: Boldt (1967[Boldt, P. (1967). Chem. Ber. 100, 1270-1280.]). For a related structure, see: Kitamura et al. (2009[Kitamura, C., Akamatsu, N., Yoneda, A. & Kawase, T. (2009). Acta Cryst. E65, o324.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O6

  • Mr = 328.31

  • Triclinic, [P \overline 1]

  • a = 4.6607 (4) Å

  • b = 8.4769 (9) Å

  • c = 9.8110 (9) Å

  • α = 94.859 (3)°

  • β = 91.410 (2)°

  • γ = 97.278 (2)°

  • V = 382.87 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.50 × 0.06 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • 3738 measured reflections

  • 1725 independent reflections

  • 977 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.234

  • S = 1.16

  • 1725 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.58 3.391 (5) 142
C9—H9B⋯O2ii 0.97 2.54 3.494 (4) 168
Symmetry codes: (i) -x, -y, -z; (ii) -x+2, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1999[Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

9,10-Anthraquinone is an important molecule in the field of industrial dyes. We have recently been interested in the tuning of the solid-state optical properties by the introduction of substituents. As part of our program aimed at the elucidation of the effects of alkoxy substituents on the optical properties in the solid state (Ohta, et al., 2012), we are in need of the information on the crystal structures of a variety of 2,3,6,7-tetraalkoxy-9,10-anthraquinones in order to clarify the correlation between crystal structures and the solid-state photophysics. Although the title compound is already known (Boldt, 1967), the X-ray structure was not reported to date. We report herein the crystal structure of the title compound (I).

The molecular structure of the title compound (I) is shown in Fig. 1. The molecule possesses a center of inversion, and half of the formula unit is crystallographically independent. The molecule is almost planar with the maximum deviation of 0.096 (4) Å for C8. The displacements of atoms O1, O2, O3, C8 and C9 relative to the plane of the anthraquinone framework are 0.023 (2), -0.002 (2), 0.013 (2), 0.096 (4), and 0.060 (3), respectively. The molecule prefers the conformation in which the Cmethyl—O bonds are directed along the molecular short axis. The torsion angles of C3—C2—O2—C8 and C2—C3—O3—C9 are -175.3 (3) and 178.2 (3)°, respectively. This conformation is similar to the corresponding moiety in 2,3-dimethoxy-5,12-tetracenequinone (Kitamura, et al., 2009). The molecules adopt a slipped-parallel arrangement as shown in Fig. 2. Then molecules are π-stacked along the a axis with an interplanar distance 3.392 (4) Å.

To examine the influence of crystal packing on the solid-state fluorescences, the fluorescence spectrum and the absolute quantum yield of (I) were measured with a Hamamatsu Photonics PMA11 calibrated optical multichannel analyzer with a solid-state blue laser (λex = 377 nm) and a Labsphere IS IS-040-SF integrating sphere, respectively. The crystals showed negligible fluorescence (Φ = 0.002). The fluorescence quenching would be due to the π-stacked structure.

Related literature top

For a study of the effects of alkoxy substituents on the structures and solid-state photophysics, see: Ohta et al. (2012). For the synthesis, see: Boldt (1967). For a related structure, see: Kitamura et al. (2009).

Experimental top

The title compound was prepared according to the literature procedure (Boldt, 1967). Single crystals suitable for X-ray analysis were obtained by recrystallization from DMF.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, and C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for CH3. The positions of methyl H atoms were optimized rotationally.

Structure description top

9,10-Anthraquinone is an important molecule in the field of industrial dyes. We have recently been interested in the tuning of the solid-state optical properties by the introduction of substituents. As part of our program aimed at the elucidation of the effects of alkoxy substituents on the optical properties in the solid state (Ohta, et al., 2012), we are in need of the information on the crystal structures of a variety of 2,3,6,7-tetraalkoxy-9,10-anthraquinones in order to clarify the correlation between crystal structures and the solid-state photophysics. Although the title compound is already known (Boldt, 1967), the X-ray structure was not reported to date. We report herein the crystal structure of the title compound (I).

The molecular structure of the title compound (I) is shown in Fig. 1. The molecule possesses a center of inversion, and half of the formula unit is crystallographically independent. The molecule is almost planar with the maximum deviation of 0.096 (4) Å for C8. The displacements of atoms O1, O2, O3, C8 and C9 relative to the plane of the anthraquinone framework are 0.023 (2), -0.002 (2), 0.013 (2), 0.096 (4), and 0.060 (3), respectively. The molecule prefers the conformation in which the Cmethyl—O bonds are directed along the molecular short axis. The torsion angles of C3—C2—O2—C8 and C2—C3—O3—C9 are -175.3 (3) and 178.2 (3)°, respectively. This conformation is similar to the corresponding moiety in 2,3-dimethoxy-5,12-tetracenequinone (Kitamura, et al., 2009). The molecules adopt a slipped-parallel arrangement as shown in Fig. 2. Then molecules are π-stacked along the a axis with an interplanar distance 3.392 (4) Å.

To examine the influence of crystal packing on the solid-state fluorescences, the fluorescence spectrum and the absolute quantum yield of (I) were measured with a Hamamatsu Photonics PMA11 calibrated optical multichannel analyzer with a solid-state blue laser (λex = 377 nm) and a Labsphere IS IS-040-SF integrating sphere, respectively. The crystals showed negligible fluorescence (Φ = 0.002). The fluorescence quenching would be due to the π-stacked structure.

For a study of the effects of alkoxy substituents on the structures and solid-state photophysics, see: Ohta et al. (2012). For the synthesis, see: Boldt (1967). For a related structure, see: Kitamura et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I), showing the atomic numbering numbering and 30% probability displacement ellipsoids. Symmetry code: (i) -x, -y + 1, -z.
[Figure 2] Fig. 2. The packing diagram of (I). Hydrogen atoms are omitted for clarity.
2,3,6,7-Tetramethoxy-9,10-anthraquinone top
Crystal data top
C18H16O6Z = 1
Mr = 328.31F(000) = 172
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6607 (4) ÅCell parameters from 1977 reflections
b = 8.4769 (9) Åθ = 3.1–27.5°
c = 9.8110 (9) ŵ = 0.11 mm1
α = 94.859 (3)°T = 223 K
β = 91.410 (2)°Needle, yellow
γ = 97.278 (2)°0.50 × 0.06 × 0.05 mm
V = 382.87 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
977 reflections with I > 2σ(I)
Radiation source: fine-focus sealed x-ray tubeRint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 10 pixels mm-1h = 65
ω scansk = 1010
3738 measured reflectionsl = 1212
1725 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.1038P)2 + 0.301P]
where P = (Fo2 + 2Fc2)/3
1725 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C18H16O6γ = 97.278 (2)°
Mr = 328.31V = 382.87 (6) Å3
Triclinic, P1Z = 1
a = 4.6607 (4) ÅMo Kα radiation
b = 8.4769 (9) ŵ = 0.11 mm1
c = 9.8110 (9) ÅT = 223 K
α = 94.859 (3)°0.50 × 0.06 × 0.05 mm
β = 91.410 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
977 reflections with I > 2σ(I)
3738 measured reflectionsRint = 0.027
1725 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.234H-atom parameters constrained
S = 1.16Δρmax = 0.39 e Å3
1725 reflectionsΔρmin = 0.44 e Å3
111 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3162 (6)0.2759 (3)0.1180 (3)0.0304 (7)
H10.28820.16850.0820.036*
C20.5104 (6)0.3236 (3)0.2269 (3)0.0282 (7)
C30.5524 (6)0.4852 (3)0.2811 (3)0.0279 (6)
C40.3981 (6)0.5939 (3)0.2252 (3)0.0293 (7)
H40.4250.70120.26160.035*
C50.2021 (6)0.5460 (3)0.1150 (3)0.0264 (6)
C60.1606 (6)0.3872 (3)0.0611 (3)0.0274 (6)
C70.0418 (6)0.3343 (3)0.0564 (3)0.0286 (6)
O10.0753 (5)0.1938 (3)0.1056 (2)0.0421 (6)
C80.6538 (9)0.0647 (4)0.2327 (4)0.0529 (10)
H8A0.45790.01210.23890.079*
H8B0.78650.00950.28280.079*
H8C0.70520.06280.13740.079*
O20.6714 (5)0.2264 (2)0.2899 (2)0.0369 (6)
C90.8062 (7)0.6813 (4)0.4442 (3)0.0382 (8)
H9A0.88390.74760.37450.057*
H9B0.9460.68920.52020.057*
H9C0.62830.71730.47640.057*
O30.7479 (5)0.5185 (2)0.3876 (2)0.0345 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (15)0.0273 (15)0.0345 (15)0.0050 (11)0.0052 (12)0.0030 (12)
C20.0270 (14)0.0262 (14)0.0325 (14)0.0079 (11)0.0031 (12)0.0033 (11)
C30.0277 (14)0.0278 (15)0.0280 (14)0.0026 (11)0.0024 (11)0.0040 (11)
C40.0292 (14)0.0235 (14)0.0348 (15)0.0034 (11)0.0048 (12)0.0022 (11)
C50.0254 (14)0.0226 (14)0.0320 (14)0.0048 (11)0.0015 (12)0.0039 (11)
C60.0274 (14)0.0254 (15)0.0299 (14)0.0045 (11)0.0015 (12)0.0037 (11)
C70.0262 (14)0.0255 (14)0.0342 (15)0.0040 (11)0.0034 (12)0.0030 (11)
O10.0474 (14)0.0269 (12)0.0514 (14)0.0090 (9)0.0156 (11)0.0022 (9)
C80.062 (2)0.0276 (17)0.070 (2)0.0148 (15)0.025 (2)0.0001 (16)
O20.0405 (12)0.0287 (12)0.0423 (12)0.0116 (9)0.0126 (10)0.0013 (9)
C90.0418 (18)0.0317 (17)0.0392 (16)0.0025 (13)0.0133 (14)0.0007 (13)
O30.0377 (12)0.0289 (11)0.0356 (11)0.0049 (8)0.0145 (9)0.0002 (8)
Geometric parameters (Å, º) top
C1—C21.382 (4)C6—C71.474 (4)
C1—C61.404 (4)C7—O11.236 (3)
C1—H10.94C7—C5i1.479 (4)
C2—O21.359 (3)C8—O21.428 (4)
C2—C31.414 (4)C8—H8A0.97
C3—O31.356 (3)C8—H8B0.97
C3—C41.379 (4)C8—H8C0.97
C4—C51.397 (4)C9—O31.434 (3)
C4—H40.94C9—H9A0.97
C5—C61.392 (4)C9—H9B0.97
C5—C7i1.479 (4)C9—H9C0.97
C2—C1—C6120.2 (3)O1—C7—C6121.0 (2)
C2—C1—H1119.9O1—C7—C5i120.7 (2)
C6—C1—H1119.9C6—C7—C5i118.3 (2)
O2—C2—C1125.2 (3)O2—C8—H8A109.5
O2—C2—C3114.9 (2)O2—C8—H8B109.5
C1—C2—C3119.9 (2)H8A—C8—H8B109.5
O3—C3—C4125.5 (3)O2—C8—H8C109.5
O3—C3—C2114.8 (2)H8A—C8—H8C109.5
C4—C3—C2119.7 (2)H8B—C8—H8C109.5
C3—C4—C5120.5 (3)C2—O2—C8117.2 (2)
C3—C4—H4119.7O3—C9—H9A109.5
C5—C4—H4119.7O3—C9—H9B109.5
C6—C5—C4119.9 (3)H9A—C9—H9B109.5
C6—C5—C7i120.8 (2)O3—C9—H9C109.5
C4—C5—C7i119.3 (2)H9A—C9—H9C109.5
C5—C6—C1119.7 (3)H9B—C9—H9C109.5
C5—C6—C7120.9 (2)C3—O3—C9117.4 (2)
C1—C6—C7119.3 (3)
C6—C1—C2—O2179.8 (3)C4—C5—C6—C7179.1 (3)
C6—C1—C2—C30.0 (4)C7i—C5—C6—C70.6 (5)
O2—C2—C3—O30.2 (4)C2—C1—C6—C50.1 (4)
C1—C2—C3—O3180.0 (3)C2—C1—C6—C7179.0 (3)
O2—C2—C3—C4179.5 (3)C5—C6—C7—O1178.8 (3)
C1—C2—C3—C40.3 (4)C1—C6—C7—O10.3 (4)
O3—C3—C4—C5179.9 (3)C5—C6—C7—C5i0.6 (5)
C2—C3—C4—C50.4 (4)C1—C6—C7—C5i179.7 (3)
C3—C4—C5—C60.3 (4)C1—C2—O2—C84.9 (5)
C3—C4—C5—C7i179.4 (3)C3—C2—O2—C8175.3 (3)
C4—C5—C6—C10.0 (4)C4—C3—O3—C92.1 (4)
C7i—C5—C6—C1179.7 (3)C2—C3—O3—C9178.2 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1ii0.972.583.391 (5)142
C9—H9B···O2iii0.972.543.494 (4)168
Symmetry codes: (ii) x, y, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H16O6
Mr328.31
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)4.6607 (4), 8.4769 (9), 9.8110 (9)
α, β, γ (°)94.859 (3), 91.410 (2), 97.278 (2)
V3)382.87 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.06 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3738, 1725, 977
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.234, 1.16
No. of reflections1725
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.44

Computer programs: RAPID-AUTO (Rigaku, 1999), PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.583.391 (5)142
C9—H9B···O2ii0.972.543.494 (4)168
Symmetry codes: (i) x, y, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 23550161) from JSPS and a Grant-in-Aid for Scientific Research on Innovative Areas (No. 23108720, "pi-Space") from MEXT.

References

First citationBoldt, P. (1967). Chem. Ber. 100, 1270–1280.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKitamura, C., Akamatsu, N., Yoneda, A. & Kawase, T. (2009). Acta Cryst. E65, o324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOhta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012). Chem. Lett. 41, 674–676.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds