organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R,E)-3-(4-Chloro­phen­yl)-1-phenyl­allyl 4-nitro­benzoate

aLudwig-Maximilians-Universität, Department, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: p.mayer@lmu.de

(Received 19 July 2012; accepted 19 July 2012; online 25 July 2012)

The title compound, C22H16ClNO4, adopts a conformation in which the phenyl ring plane forms similar dihedral angles with the nitro­benzoate C6 ring [76.97 (8)°] and the chloro­phenyl group [76.95 (8)°]; the dihedral angle between the chloro­phenyl and nitro­benzoate rings is 66.43 (8)°. In the crystal, ππ stacking is observed between the latter two planes, with a dihedral angle of 1.79 (8)° and a centroid–centroid distance of 3.735 (1) Å. In addition, mol­ecules are linked along [100] by weak C—H⋯O contacts.

Related literature

For background to the stereochemistry of allylic rearrangements, see: Hughes (1941[Hughes, E. D. (1941). Trans. Faraday Soc. 37, 603-631.]); Raber et al. (1974[Raber, D. J., Harris, J. M., Schleyer, P. & v, R. (1974). Ions and Ion Pairs in Organic Reactions, Vol. 2, edited by M. Szwarc. New York: Wiley.]); Goering et al. (1971[Goering, H. L., Koermer, G. S. & Linsay, E. C. (1971). J. Am. Chem. Soc. 93, 1230-1234.]). For details of the synthesis, see: Troshin et al. (2011[Troshin, K., Schindele, C. & Mayr, H. (2011). J. Org. Chem. 76, 9391-9608.]); Gao et al. (1987[Gao, Y., Hanson, R. M., Klunder, J. M., Ko, S. Y., Masamune, H. & Sharpless, K. B. (1987). J. Am. Chem. Soc. 109, 5765-5780.]); Roos & Donovan (1996[Roos, G. H. P. & Donovan, R. A. (1996). Synlett, pp. 1189-1190.]). For related structures, see: Cao et al. (2011[Cao, Z., Liu, Z., Liu, Y. & Du, H. (2011). J. Org. Chem. 76, 6401-6406.]); Wang et al. (2009[Wang, J., Huang, W., Zhang, Z., Xiang, X., Liu, R. & Zhou, X. (2009). J. Org. Chem. 74, 3299-3304.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16ClNO4

  • Mr = 393.82

  • Orthorhombic, P 21 21 21

  • a = 8.3817 (1) Å

  • b = 9.9238 (2) Å

  • c = 22.8090 (4) Å

  • V = 1897.21 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.28 × 0.15 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 12403 measured reflections

  • 4331 independent reflections

  • 3847 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.03

  • 4331 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 1854 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.95 2.59 3.529 (2) 168
C12—H12⋯Cgii 0.95 2.92 3.8072 (19) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Allylic substances have been used since 1940s to get an insight into the detailed mechanism of SN1 reactions due to the possibility of allylic rearrangement which gives additional analytical probe not available for other systems [Hughes (1941); Raber et al. (1974)]. Pioneering research of Goering et al. (1971) on the solvolyses of optically active allyl derivatives provided lots of information about ion-pairing in SN1 solvolyses (Goering et al., 1971), however, due to the lack of analytical methods available during Goering's time, many questions about ion pair dynamics and stereochemistry of allylic rearrangements remained open. As modern analytical techniques such as chiral HPLC and laser-flash photolysis give unprecedented insights in the reaction kinetics, we decided to reconsider the problem of stereochemistry of allylic rearrangements. The title compound (R,E)-3-(4-chlorophenyl)-1-phenylallyl 4-nitrobenzoate was chosen as a model compound for this research, as all eight compounds which can be present in the system during its solvolysis in aqueous solvents (i.e. (R) and (S) isomers of title compound, (<I>E)-1-(4-chlorophenyl)-3-phenylallyl 4-nitrobenzoate, 3-(4-chlorophenyl)-1-phenylprop-2-en-1-ol, and 1-(4-chlorophenyl)-3-phenylprop-2-en-1-ol)) can be resolved using chiral HPLC. X-ray diffraction analysis was used to confirm the absolute configuration of the title compound (I).

The asymmetric unit contains one molecule of the title compound (I) which is shown in Figure 1. The plane defined by C4, C7, C8 and C9 (contains the allyl group) is not exactly coplanar with the adjacent chlorophenyl moiety (dihedral angle 9.71 (17)°). A deviation of coplanarity of a similar magnitude (6.5 (3)°) is observed in a related structure with a phenyl group as adjacent moiety [Cao et al. 2011)], while a less deviation (dihedral angle 1.7 (6)°) is observed in a related structure with a p-toluyl group as adjacent moiety [Wang et al. (2009)]. A slight deviation from coplanarity is observed in the nitrobenzoate group as well. The plane of the nitro group is almost coplanar with the phenyl ring enclosing a dihedral angle of 0.9 (2)°. However, the plane of the CO2 group forms a dihedral angle of 10.16 (19)° with the phenyl ring.

The packing of (I) is shown in Figure 2. π-stacking is established between the chlorophenyl and nitrobenzoate moieties. These planes are arranged almost parallel to the viewing direction of Figure 2. A C-H···π contact is noted between C12-H12 and the nitrobenzoate moiety (distance C12···Cg 3.807 (2) Å). A weak C–H···O hydrogen bond is formed between C2 and O4 with a donor-acceptor distance of 3.529 (2) Å linking the molecules along [100] (see Fig. 3).

Related literature top

For background to the stereochemistry of allylic rearrangements, see: Hughes (1941); Raber et al. (1974); Goering et al. (1971). For details of the synthesis, see: Troshin et al. (2011); Gao et al. (1987); Roos & Donovan (1996). For related structures, see: Cao et al. (2011); Wang et al. (2009).

Experimental top

A four step synthesis was used to obtain the title compound (I).

1) (E)-3-(4-Chlorophenyl)-1-phenyl-prop-2-enone (18.1 g, 74.7 mmol, 87.2%) was synthesized from acetophenone (10.3 g, 85.7 mmol) and 4-chlorobenzaldehyde (12.0 g, 85.7 mmol) using an aldol condensation [Troshin et al. (2011)].

2) (E)-3-(4-Chlorophenyl)-1-phenyl-prop-2-enone (16.6 g, 68.4 mmol) was reduced with sodium borohydride (ca 5.0 g, ca 140 mmol) yielding the racemic (E)-3-(4-Chlorophenyl)-1-phenyl-prop-2-en-1-ol (15.7 g, 64.2 mmol, 94%) [Troshin et al. (2011)].

3) The (R) isomer of (E)-3-(4-Chlorophenyl)-1-phenyl-prop-2-en-1-ol was obtained by a Sharpless epoxidation of racemic (E)-3-(4-Chlorophenyl)-1-phenyl-prop-2-en-1-ol (15.5 g, 63.3 mmol) with D(-)-DIPT (1.78 g, 7.60 mmol), titanium(IV)isopropoxide (1.81 g, 6.33 mmol), and tBuOOH (8.4 ml of the 4.9 M CH2Cl2 solution [Gao et al. (1987)], 41.1 mmol) [Roos et al. (1996)]. The crude mixture was separated from the solvents and dissolved in ethanol followed by addition of piperidine (6.3 ml, 5.4 g, 64 mmol) and then refluxed for 10 h. The resulting solution was washed with 0.2 M aq HCl and water and then purified using column chromatography (silica gel, isohexane/diethyl ether) yielding R,E)-3-(4-Chlorophenyl)-1-phenyl-prop-2-en-1-ol (4.65 g, 19.0 mmol, 30%).

4) R,E)-3-(4-Chlorophenyl)-1-phenyl-prop-2-en-1-ol (3.00 g, 12.3 mmol) was dissolved in dichloromethane followed by addition of triethylamine (2.7 ml, 2.0 g, 19 mmol), DMAP (195 mg, 1.60 mmol), and 4-nitrobenzoyl chloride (2.96 g, 15.9 mmol) and the resulting solution was stirred for 30 min. The reaction mixture was washed with 0.2 M aq HCl and water, separated from the solvent, and the crude product was recrystallized twice from dichloromethane/pentane yielding (I) (1.90 g, 4.82 mmol, 39.4%) of > 99% ee (HPLC).

Refinement top

C-bound H atoms were positioned geometrically in ideal distances (0.95 Å for aromatic H and 1.00 Å for aliphatic H) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Structure description top

Allylic substances have been used since 1940s to get an insight into the detailed mechanism of SN1 reactions due to the possibility of allylic rearrangement which gives additional analytical probe not available for other systems [Hughes (1941); Raber et al. (1974)]. Pioneering research of Goering et al. (1971) on the solvolyses of optically active allyl derivatives provided lots of information about ion-pairing in SN1 solvolyses (Goering et al., 1971), however, due to the lack of analytical methods available during Goering's time, many questions about ion pair dynamics and stereochemistry of allylic rearrangements remained open. As modern analytical techniques such as chiral HPLC and laser-flash photolysis give unprecedented insights in the reaction kinetics, we decided to reconsider the problem of stereochemistry of allylic rearrangements. The title compound (R,E)-3-(4-chlorophenyl)-1-phenylallyl 4-nitrobenzoate was chosen as a model compound for this research, as all eight compounds which can be present in the system during its solvolysis in aqueous solvents (i.e. (R) and (S) isomers of title compound, (<I>E)-1-(4-chlorophenyl)-3-phenylallyl 4-nitrobenzoate, 3-(4-chlorophenyl)-1-phenylprop-2-en-1-ol, and 1-(4-chlorophenyl)-3-phenylprop-2-en-1-ol)) can be resolved using chiral HPLC. X-ray diffraction analysis was used to confirm the absolute configuration of the title compound (I).

The asymmetric unit contains one molecule of the title compound (I) which is shown in Figure 1. The plane defined by C4, C7, C8 and C9 (contains the allyl group) is not exactly coplanar with the adjacent chlorophenyl moiety (dihedral angle 9.71 (17)°). A deviation of coplanarity of a similar magnitude (6.5 (3)°) is observed in a related structure with a phenyl group as adjacent moiety [Cao et al. 2011)], while a less deviation (dihedral angle 1.7 (6)°) is observed in a related structure with a p-toluyl group as adjacent moiety [Wang et al. (2009)]. A slight deviation from coplanarity is observed in the nitrobenzoate group as well. The plane of the nitro group is almost coplanar with the phenyl ring enclosing a dihedral angle of 0.9 (2)°. However, the plane of the CO2 group forms a dihedral angle of 10.16 (19)° with the phenyl ring.

The packing of (I) is shown in Figure 2. π-stacking is established between the chlorophenyl and nitrobenzoate moieties. These planes are arranged almost parallel to the viewing direction of Figure 2. A C-H···π contact is noted between C12-H12 and the nitrobenzoate moiety (distance C12···Cg 3.807 (2) Å). A weak C–H···O hydrogen bond is formed between C2 and O4 with a donor-acceptor distance of 3.529 (2) Å linking the molecules along [100] (see Fig. 3).

For background to the stereochemistry of allylic rearrangements, see: Hughes (1941); Raber et al. (1974); Goering et al. (1971). For details of the synthesis, see: Troshin et al. (2011); Gao et al. (1987); Roos & Donovan (1996). For related structures, see: Cao et al. (2011); Wang et al. (2009).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed along [0 - 1 0].
[Figure 3] Fig. 3. Weak C–H···O contacts linking the molecules along [100].
(R,E)-3-(4-Chlorophenyl)-1-phenylallyl 4-nitrobenzoate top
Crystal data top
C22H16ClNO4F(000) = 816
Mr = 393.82Dx = 1.38 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6811 reflections
a = 8.3817 (1) Åθ = 3.1–27.5°
b = 9.9238 (2) ŵ = 0.23 mm1
c = 22.8090 (4) ÅT = 173 K
V = 1897.21 (6) Å3Block, colourless
Z = 40.28 × 0.15 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
3847 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.030
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 9 pixels mm-1h = 1010
CCD; rotation images; thick slices scansk = 1211
12403 measured reflectionsl = 2928
4331 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.039P)2 + 0.3359P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4331 reflectionsΔρmax = 0.17 e Å3
253 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1854 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C22H16ClNO4V = 1897.21 (6) Å3
Mr = 393.82Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3817 (1) ŵ = 0.23 mm1
b = 9.9238 (2) ÅT = 173 K
c = 22.8090 (4) Å0.28 × 0.15 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
3847 reflections with I > 2σ(I)
12403 measured reflectionsRint = 0.030
4331 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.17 e Å3
S = 1.03Δρmin = 0.19 e Å3
4331 reflectionsAbsolute structure: Flack (1983), 1854 Friedel pairs
253 parametersAbsolute structure parameter: 0.01 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.05905 (6)0.23586 (5)0.67154 (2)0.04970 (13)
O11.0670 (2)0.12603 (15)0.07501 (6)0.0654 (4)
O21.1347 (2)0.07816 (17)0.05567 (6)0.0674 (4)
O30.69865 (12)0.07772 (10)0.32577 (5)0.0306 (2)
O40.72705 (18)0.29656 (12)0.30153 (5)0.0476 (3)
N11.0677 (2)0.00643 (17)0.08602 (6)0.0456 (4)
C10.9715 (2)0.14740 (16)0.61393 (7)0.0348 (4)
C20.9926 (2)0.01089 (18)0.61008 (8)0.0433 (4)
H21.05510.03580.63830.052*
C30.9209 (2)0.05778 (18)0.56419 (7)0.0423 (4)
H30.93430.15260.56140.051*
C40.82999 (18)0.00806 (16)0.52214 (7)0.0308 (3)
C50.8104 (2)0.14624 (17)0.52765 (8)0.0403 (4)
H50.74800.19360.49960.048*
C60.8806 (2)0.21628 (17)0.57359 (8)0.0441 (4)
H60.86620.31090.57710.053*
C70.75987 (18)0.07074 (16)0.47422 (7)0.0317 (3)
H70.76670.16600.47760.038*
C80.68791 (18)0.02343 (16)0.42667 (7)0.0304 (3)
H80.67990.07140.42180.036*
C90.61891 (17)0.11246 (16)0.38042 (6)0.0289 (3)
H90.64210.20870.39030.035*
C100.43980 (17)0.09433 (14)0.37273 (6)0.0284 (3)
C110.36984 (18)0.08652 (17)0.31807 (7)0.0357 (4)
H110.43450.09100.28390.043*
C120.2058 (2)0.07210 (19)0.31259 (8)0.0441 (4)
H120.15870.06770.27480.053*
C130.11123 (19)0.06417 (19)0.36165 (9)0.0438 (4)
H130.00090.05340.35780.053*
C140.1797 (2)0.07192 (18)0.41646 (8)0.0409 (4)
H140.11450.06690.45050.049*
C150.34379 (19)0.08698 (16)0.42224 (7)0.0335 (3)
H150.39040.09230.46010.040*
C160.74556 (18)0.17917 (16)0.29088 (7)0.0308 (3)
C170.82662 (18)0.12685 (16)0.23721 (6)0.0294 (3)
C180.8264 (2)0.00856 (17)0.22281 (7)0.0377 (4)
H180.77250.07140.24720.045*
C190.9049 (2)0.05269 (17)0.17272 (8)0.0417 (4)
H190.90460.14530.16210.050*
C200.98271 (19)0.04050 (17)0.13903 (7)0.0354 (4)
C210.9847 (2)0.17555 (18)0.15197 (8)0.0440 (4)
H211.03910.23780.12750.053*
C220.9051 (2)0.21839 (17)0.20181 (7)0.0412 (4)
H220.90450.31140.21170.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0626 (3)0.0493 (2)0.0372 (2)0.0150 (2)0.0132 (2)0.00003 (18)
O10.0983 (12)0.0535 (8)0.0444 (8)0.0182 (9)0.0219 (8)0.0061 (6)
O20.0855 (11)0.0720 (10)0.0446 (8)0.0062 (9)0.0325 (7)0.0015 (7)
O30.0303 (5)0.0345 (6)0.0270 (5)0.0005 (5)0.0067 (4)0.0003 (5)
O40.0703 (9)0.0339 (6)0.0387 (7)0.0041 (6)0.0168 (6)0.0010 (5)
N10.0510 (9)0.0568 (10)0.0289 (7)0.0100 (8)0.0067 (7)0.0020 (7)
C10.0376 (9)0.0380 (8)0.0288 (8)0.0088 (7)0.0014 (6)0.0007 (6)
C20.0531 (11)0.0413 (9)0.0356 (9)0.0003 (8)0.0154 (8)0.0076 (7)
C30.0562 (11)0.0324 (8)0.0384 (9)0.0044 (8)0.0105 (8)0.0031 (7)
C40.0298 (7)0.0356 (8)0.0269 (7)0.0018 (7)0.0005 (6)0.0023 (6)
C50.0466 (10)0.0359 (9)0.0386 (9)0.0052 (8)0.0135 (8)0.0055 (7)
C60.0556 (11)0.0310 (8)0.0458 (10)0.0002 (8)0.0129 (8)0.0007 (7)
C70.0311 (7)0.0333 (8)0.0305 (7)0.0013 (7)0.0004 (6)0.0011 (6)
C80.0284 (7)0.0324 (8)0.0303 (8)0.0001 (6)0.0011 (6)0.0013 (6)
C90.0289 (7)0.0346 (8)0.0231 (7)0.0001 (6)0.0036 (5)0.0029 (6)
C100.0287 (7)0.0257 (7)0.0309 (7)0.0023 (6)0.0020 (6)0.0005 (5)
C110.0338 (8)0.0436 (9)0.0297 (8)0.0014 (7)0.0005 (6)0.0013 (7)
C120.0356 (9)0.0536 (11)0.0430 (10)0.0005 (9)0.0097 (7)0.0026 (8)
C130.0278 (8)0.0453 (10)0.0583 (12)0.0016 (7)0.0014 (8)0.0037 (9)
C140.0332 (8)0.0429 (9)0.0466 (10)0.0031 (8)0.0119 (7)0.0015 (8)
C150.0356 (8)0.0369 (8)0.0281 (8)0.0008 (7)0.0047 (6)0.0007 (6)
C160.0301 (8)0.0358 (8)0.0265 (7)0.0014 (6)0.0001 (6)0.0029 (6)
C170.0269 (7)0.0356 (8)0.0258 (7)0.0036 (6)0.0006 (6)0.0019 (6)
C180.0424 (9)0.0363 (8)0.0344 (9)0.0009 (8)0.0073 (7)0.0014 (7)
C190.0536 (10)0.0361 (8)0.0352 (9)0.0026 (8)0.0067 (8)0.0027 (7)
C200.0354 (8)0.0467 (9)0.0239 (7)0.0081 (7)0.0038 (6)0.0011 (6)
C210.0538 (11)0.0435 (9)0.0348 (9)0.0023 (8)0.0129 (8)0.0045 (7)
C220.0542 (10)0.0350 (9)0.0343 (9)0.0004 (8)0.0107 (8)0.0019 (7)
Geometric parameters (Å, º) top
Cl1—C11.7424 (16)C9—H91.0000
O1—N11.213 (2)C10—C111.380 (2)
O2—N11.224 (2)C10—C151.389 (2)
O3—C161.3422 (18)C11—C121.388 (2)
O3—C91.4557 (17)C11—H110.9500
O4—C161.200 (2)C12—C131.373 (3)
N1—C201.479 (2)C12—H120.9500
C1—C21.369 (2)C13—C141.378 (3)
C1—C61.376 (2)C13—H130.9500
C2—C31.386 (2)C14—C151.389 (2)
C2—H20.9500C14—H140.9500
C3—C41.388 (2)C15—H150.9500
C3—H30.9500C16—C171.493 (2)
C4—C51.387 (2)C17—C221.382 (2)
C4—C71.467 (2)C17—C181.383 (2)
C5—C61.389 (2)C18—C191.389 (2)
C5—H50.9500C18—H180.9500
C6—H60.9500C19—C201.368 (2)
C7—C81.327 (2)C19—H190.9500
C7—H70.9500C20—C211.372 (2)
C8—C91.493 (2)C21—C221.385 (2)
C8—H80.9500C21—H210.9500
C9—C101.522 (2)C22—H220.9500
C16—O3—C9117.68 (12)C10—C11—C12120.54 (15)
O1—N1—O2123.77 (16)C10—C11—H11119.7
O1—N1—C20118.37 (15)C12—C11—H11119.7
O2—N1—C20117.86 (16)C13—C12—C11120.26 (16)
C2—C1—C6121.35 (16)C13—C12—H12119.9
C2—C1—Cl1119.49 (13)C11—C12—H12119.9
C6—C1—Cl1119.15 (13)C12—C13—C14119.71 (15)
C1—C2—C3118.60 (16)C12—C13—H13120.1
C1—C2—H2120.7C14—C13—H13120.1
C3—C2—H2120.7C13—C14—C15120.30 (16)
C2—C3—C4121.90 (16)C13—C14—H14119.8
C2—C3—H3119.1C15—C14—H14119.8
C4—C3—H3119.1C10—C15—C14120.13 (15)
C5—C4—C3117.89 (15)C10—C15—H15119.9
C5—C4—C7123.18 (15)C14—C15—H15119.9
C3—C4—C7118.93 (14)O4—C16—O3124.77 (14)
C4—C5—C6120.87 (15)O4—C16—C17124.22 (14)
C4—C5—H5119.6O3—C16—C17111.01 (13)
C6—C5—H5119.6C22—C17—C18120.02 (15)
C1—C6—C5119.38 (16)C22—C17—C16117.84 (14)
C1—C6—H6120.3C18—C17—C16122.14 (14)
C5—C6—H6120.3C17—C18—C19120.07 (15)
C8—C7—C4127.06 (15)C17—C18—H18120.0
C8—C7—H7116.5C19—C18—H18120.0
C4—C7—H7116.5C20—C19—C18118.33 (15)
C7—C8—C9122.99 (15)C20—C19—H19120.8
C7—C8—H8118.5C18—C19—H19120.8
C9—C8—H8118.5C19—C20—C21123.05 (15)
O3—C9—C8106.69 (12)C19—C20—N1118.43 (15)
O3—C9—C10109.04 (12)C21—C20—N1118.53 (15)
C8—C9—C10113.18 (13)C20—C21—C22118.06 (16)
O3—C9—H9109.3C20—C21—H21121.0
C8—C9—H9109.3C22—C21—H21121.0
C10—C9—H9109.3C17—C22—C21120.47 (16)
C11—C10—C15119.05 (13)C17—C22—H22119.8
C11—C10—C9121.99 (13)C21—C22—H22119.8
C15—C10—C9118.96 (13)
C6—C1—C2—C30.3 (3)C12—C13—C14—C150.3 (3)
Cl1—C1—C2—C3179.48 (14)C11—C10—C15—C140.0 (2)
C1—C2—C3—C40.5 (3)C9—C10—C15—C14179.30 (15)
C2—C3—C4—C50.9 (3)C13—C14—C15—C100.0 (3)
C2—C3—C4—C7178.96 (17)C9—O3—C16—O40.3 (2)
C3—C4—C5—C60.5 (3)C9—O3—C16—C17179.34 (11)
C7—C4—C5—C6179.38 (16)O4—C16—C17—C229.7 (2)
C2—C1—C6—C50.7 (3)O3—C16—C17—C22169.42 (14)
Cl1—C1—C6—C5179.90 (14)O4—C16—C17—C18171.07 (18)
C4—C5—C6—C10.3 (3)O3—C16—C17—C189.8 (2)
C5—C4—C7—C89.2 (3)C22—C17—C18—C190.1 (3)
C3—C4—C7—C8170.68 (15)C16—C17—C18—C19179.32 (15)
C4—C7—C8—C9179.48 (14)C17—C18—C19—C200.7 (3)
C16—O3—C9—C8136.58 (13)C18—C19—C20—C211.0 (3)
C16—O3—C9—C10100.86 (15)C18—C19—C20—N1179.41 (15)
C7—C8—C9—O3121.40 (15)O1—N1—C20—C191.1 (3)
C7—C8—C9—C10118.67 (16)O2—N1—C20—C19178.82 (17)
O3—C9—C10—C1117.5 (2)O1—N1—C20—C21179.29 (18)
C8—C9—C10—C11136.06 (15)O2—N1—C20—C210.8 (3)
O3—C9—C10—C15163.25 (13)C19—C20—C21—C220.6 (3)
C8—C9—C10—C1544.68 (19)N1—C20—C21—C22179.82 (16)
C15—C10—C11—C120.3 (3)C18—C17—C22—C210.3 (3)
C9—C10—C11—C12178.98 (16)C16—C17—C22—C21178.93 (16)
C10—C11—C12—C130.6 (3)C20—C21—C22—C170.1 (3)
C11—C12—C13—C140.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.593.529 (2)168
C12—H12···Cgii0.952.923.8072 (19)157
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC22H16ClNO4
Mr393.82
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.3817 (1), 9.9238 (2), 22.8090 (4)
V3)1897.21 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.28 × 0.15 × 0.13
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12403, 4331, 3847
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.03
No. of reflections4331
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19
Absolute structureFlack (1983), 1854 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.593.529 (2)168
C12—H12···Cgii0.952.923.8072 (19)157
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCao, Z., Liu, Z., Liu, Y. & Du, H. (2011). J. Org. Chem. 76, 6401–6406.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, Y., Hanson, R. M., Klunder, J. M., Ko, S. Y., Masamune, H. & Sharpless, K. B. (1987). J. Am. Chem. Soc. 109, 5765–5780.  CrossRef CAS Web of Science Google Scholar
First citationGoering, H. L., Koermer, G. S. & Linsay, E. C. (1971). J. Am. Chem. Soc. 93, 1230–1234.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHughes, E. D. (1941). Trans. Faraday Soc. 37, 603–631.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRaber, D. J., Harris, J. M., Schleyer, P. & v, R. (1974). Ions and Ion Pairs in Organic Reactions, Vol. 2, edited by M. Szwarc. New York: Wiley.  Google Scholar
First citationRoos, G. H. P. & Donovan, R. A. (1996). Synlett, pp. 1189–1190.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTroshin, K., Schindele, C. & Mayr, H. (2011). J. Org. Chem. 76, 9391–9608.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, J., Huang, W., Zhang, Z., Xiang, X., Liu, R. & Zhou, X. (2009). J. Org. Chem. 74, 3299–3304.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds