metal-organic compounds
Tetrakis(1,10-phenanthroline)bis(μ-pyridine-2,6-dicarboxylato)(pyridine-2,6-dicarboxylato)dicopper(II)terbium(III) nitrate tetrahydrate
aNanyang Medical College, Nanyang 473061, People's Republic of China
*Correspondence e-mail: nyzhangwei@yahoo.com.cn
The 2Tb(C7H3NO4)3(C12H8N2)4]NO3·4H2O, consists of one-half of the C2-symmetric trinuclear coordination cation, one-half of the C2-symmetric nitrate anion and two water molecules. In the coordination cation, the CuII atom is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from a bridging–chelating carboxylate group of the pyridine-2,6-dicarboxylate anion, completing a distorted N4O2 octahedral coordination environment. The TbIII atom, located on a twofold rotation axis, is nine-coordinated by three tridentate pyridine-2,6-dicarboxylate anions forming an N3O6 donor set. The intramolecular Cu⋯Tb distance of 5.0592 (11) Å indicates weak interactions between the CuII and TbIII atoms. The coordination cations, nitrate anions and water molecules are connected via O—H⋯O hydrogen bonds into layers parallel to the (001) plane. Moreover, there are extensive π–π stacking interactions [centroid–centroid distances = 4.332 (7) and 3.878 (5) Å] between the phenanthroline ligands and between phenanthroline and pyridine-2,6-dicarboxylate ligands.
of the title compound, [CuRelated literature
For the photophysical properties of lanthanide(III) coordination compounds, see: Jüstel et al. (1998). For the Cu—O, Cu—N, Tb—O and Tb—N bond lengths in previously reported dinuclear copper(II)–terbium(III) coordination compounds, see: Sun et al. (2010); Yang et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812031686/gk2483sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812031686/gk2483Isup2.hkl
All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. The compound was obtained by using hydrothermal method in a 50 ml Teflon-lined autoclave. The mixture of 0.17 g CuCl2.2H2O, 0.27 g Tb(NO3)3.6H2O, 0.17 g pyridine-2,6-dicarboxylic acid, 0.16 g 1,10-phenanthroline and 20 ml H2O was stirred for half an hour, and transferred into a Teflon-lined stainless steel autoclave (50 ml), then treated at 433 K for 6 d. After the mixture was slowly cooled to room temperature, blue block crystals suitable for X-ray
were obtained. The chemical composition of the title compound was confirmed by elemental analysis. The C, H, and N elements analysis were performed on a PerkinElmer 2400II elemental analyzer. Anal. calcd for the title compound: C, 50.65; H, 3.02; N,10.27%. Found: C, 51.22; H, 3.65; N, 9.89%. The results well support the formula of the compound based on the single-crystal X-ray analysis.The H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2 times Ueq(C). The H atoms bonded to O1W and O2W were located in Fourier difference maps and refined with restraints [O—H = 0.83 (2) Å, H···H 1.37 (2) Å]. The H1WA, H1WB and H2WA atoms were refined with additional restraints (SHELXL97 instructions: DFIX 1.85 0.02 H1WA O2Wi, DFIX 3.60 0.02 H1WB Cu1 and DFIX 1.80 0.02 H2WA O7). In addition, restraints were imposed on the geometry of the nitrate anion and on the dispalcement parameters of its O and N atoms (SHELXL97 instructions: ISOR 0.001 O7 O8, DELU 0.01 N7 O7 N7 O8, DFIX 1.30 0.02 N7 O7 N7 O8). An attempt to refine a disordered model for the nitrate anion was unsuccessful.
The lanthanide(III) coordination compounds have received much attention in recent years owing to their interesting structures, photophysical properties (Jüstel et al., 1998) and potential applications. In this article, we report the structure of a novel copper(II)–terbium(III) coordination compound obtained by hydrothermal method using the pyridine-2,6-dicarboxylate and 1,10-phenanthroline ligands, {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}NO3.4H2O (Fig. 1). In the coordination cation {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}+, the CuII atom is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from one pyridine-2,6-dicarboxylate completing distorted CuN4O2 octahedral coordination environment. The TbIII atom located on a two-fold rotation axis is nine-coordinated by three tridentate 2,6-pyridinedicarboxylate anions forming N3O6 donor set. The shortest distance of Cu···Tb is 5.0592 (11) Å, which indicates there are weak interactions between CuII and TbIII ions. The details of bond lengths are given in Table 1. These bond lengths of Cu—O, Cu—N, Tb—O and Tb—N type fall in the typical range observed in previously reported copper(II)–terbium(III) coordination compounds (Sun et al., 2010; Yang et al., 2006). The coordination cations {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}+, nitrate anions and water molecules are connected via O—H···O hydrogen bonds into layered structure parallel to (001) (Fig. 2). In addition, there are extensive π–π stacking interactions between the phenanthroline ligands and between phenanthroline and pyridinedicarboxylate ligands. The hydrogen bonds and π–π stacking interactions play a crucial role in stability of the crystal structure.
For the photophysical properties of lanthanide(III) coordination compounds, see: Jüstel et al. (1998). For the Cu—O, Cu—N, Tb—O and Tb—N bond lengths in previously reported dinuclear copper(II)–terbium(III) coordination compounds, see: Sun et al. (2010); Yang et al. (2006).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2008); software used to prepare material for publication: SHELXTL (Bruker, 2008).[Cu2Tb(C7H3NO4)3(C12H8N2)4]NO3·4H2O | F(000) = 3288 |
Mr = 1636.20 | Dx = 1.647 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5232 reflections |
a = 17.058 (4) Å | θ = 2.3–25.0° |
b = 19.574 (5) Å | µ = 1.78 mm−1 |
c = 19.927 (5) Å | T = 296 K |
β = 97.289 (4)° | Block, blue |
V = 6599 (3) Å3 | 0.19 × 0.17 × 0.15 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 6454 independent reflections |
Radiation source: fine-focus sealed tube | 4952 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
φ and ω scans | θmax = 26.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −21→11 |
Tmin = 0.728, Tmax = 0.776 | k = −24→22 |
17945 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0792P)2 + 8.9094P] where P = (Fo2 + 2Fc2)/3 |
6454 reflections | (Δ/σ)max = 0.001 |
479 parameters | Δρmax = 0.88 e Å−3 |
27 restraints | Δρmin = −1.09 e Å−3 |
[Cu2Tb(C7H3NO4)3(C12H8N2)4]NO3·4H2O | V = 6599 (3) Å3 |
Mr = 1636.20 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.058 (4) Å | µ = 1.78 mm−1 |
b = 19.574 (5) Å | T = 296 K |
c = 19.927 (5) Å | 0.19 × 0.17 × 0.15 mm |
β = 97.289 (4)° |
Bruker APEXII CCD diffractometer | 6454 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 4952 reflections with I > 2σ(I) |
Tmin = 0.728, Tmax = 0.776 | Rint = 0.029 |
17945 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 27 restraints |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.88 e Å−3 |
6454 reflections | Δρmin = −1.09 e Å−3 |
479 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.5000 | 0.828451 (16) | 0.2500 | 0.04016 (14) | |
C1 | 0.3780 (4) | 0.5559 (3) | 0.2339 (3) | 0.0657 (16) | |
H1A | 0.4057 | 0.5538 | 0.2772 | 0.079* | |
C2 | 0.4024 (4) | 0.5136 (3) | 0.1828 (4) | 0.0766 (19) | |
H2A | 0.4466 | 0.4858 | 0.1921 | 0.092* | |
C3 | 0.3608 (4) | 0.5140 (3) | 0.1199 (4) | 0.0725 (19) | |
H3A | 0.3762 | 0.4862 | 0.0860 | 0.087* | |
C4 | 0.2954 (4) | 0.5561 (3) | 0.1064 (3) | 0.0611 (16) | |
C5 | 0.2759 (3) | 0.5984 (2) | 0.1595 (3) | 0.0461 (12) | |
C6 | 0.2115 (3) | 0.6447 (3) | 0.1487 (3) | 0.0488 (12) | |
C7 | 0.1630 (4) | 0.6464 (3) | 0.0854 (3) | 0.0569 (14) | |
C8 | 0.1825 (5) | 0.6017 (4) | 0.0330 (3) | 0.0730 (19) | |
H8A | 0.1509 | 0.6013 | −0.0086 | 0.088* | |
C9 | 0.2464 (5) | 0.5600 (4) | 0.0431 (3) | 0.0733 (19) | |
H9A | 0.2586 | 0.5330 | 0.0075 | 0.088* | |
C10 | 0.0997 (4) | 0.6915 (4) | 0.0792 (3) | 0.0674 (18) | |
H10A | 0.0657 | 0.6939 | 0.0389 | 0.081* | |
C11 | 0.0872 (4) | 0.7326 (3) | 0.1327 (3) | 0.0668 (16) | |
H11A | 0.0444 | 0.7624 | 0.1290 | 0.080* | |
C12 | 0.1384 (3) | 0.7293 (3) | 0.1914 (3) | 0.0573 (14) | |
H12A | 0.1299 | 0.7587 | 0.2264 | 0.069* | |
C13 | 0.2621 (3) | 0.8081 (3) | 0.3376 (3) | 0.0542 (14) | |
H13A | 0.2924 | 0.8213 | 0.3041 | 0.065* | |
C14 | 0.2405 (4) | 0.8578 (3) | 0.3827 (3) | 0.0639 (16) | |
H14A | 0.2565 | 0.9030 | 0.3795 | 0.077* | |
C15 | 0.1954 (4) | 0.8384 (3) | 0.4313 (4) | 0.0676 (18) | |
H15A | 0.1799 | 0.8708 | 0.4612 | 0.081* | |
C16 | 0.1722 (3) | 0.7695 (3) | 0.4365 (3) | 0.0527 (13) | |
C17 | 0.1964 (3) | 0.7228 (3) | 0.3895 (3) | 0.0456 (12) | |
C18 | 0.1765 (3) | 0.6513 (3) | 0.3928 (3) | 0.0445 (11) | |
C19 | 0.1323 (3) | 0.6287 (3) | 0.4433 (3) | 0.0550 (14) | |
C20 | 0.1089 (4) | 0.6773 (4) | 0.4919 (3) | 0.0637 (17) | |
H20A | 0.0809 | 0.6624 | 0.5263 | 0.076* | |
C21 | 0.1273 (3) | 0.7437 (4) | 0.4877 (3) | 0.0645 (17) | |
H21A | 0.1105 | 0.7741 | 0.5188 | 0.077* | |
C22 | 0.1136 (4) | 0.5585 (3) | 0.4430 (3) | 0.0642 (16) | |
H22A | 0.0844 | 0.5409 | 0.4754 | 0.077* | |
C23 | 0.1379 (4) | 0.5171 (3) | 0.3959 (3) | 0.0634 (16) | |
H23A | 0.1245 | 0.4710 | 0.3950 | 0.076* | |
C24 | 0.1833 (3) | 0.5435 (3) | 0.3486 (3) | 0.0542 (13) | |
H24A | 0.2011 | 0.5140 | 0.3173 | 0.065* | |
C25 | 0.4261 (3) | 0.6997 (2) | 0.3338 (3) | 0.0398 (11) | |
C26 | 0.5055 (3) | 0.7063 (2) | 0.3749 (2) | 0.0413 (11) | |
C27 | 0.5311 (4) | 0.6663 (3) | 0.4298 (3) | 0.0519 (14) | |
H27A | 0.4987 | 0.6326 | 0.4444 | 0.062* | |
C28 | 0.6076 (4) | 0.6775 (3) | 0.4636 (3) | 0.0631 (17) | |
H28A | 0.6269 | 0.6517 | 0.5013 | 0.076* | |
C29 | 0.6531 (3) | 0.7277 (3) | 0.4394 (3) | 0.0608 (16) | |
H29A | 0.7041 | 0.7359 | 0.4605 | 0.073* | |
C30 | 0.6227 (3) | 0.7663 (3) | 0.3834 (3) | 0.0476 (12) | |
C31 | 0.6681 (3) | 0.8235 (3) | 0.3539 (3) | 0.0556 (15) | |
C32 | 0.4367 (3) | 0.9434 (3) | 0.3500 (3) | 0.0543 (14) | |
C33 | 0.4679 (3) | 0.9880 (2) | 0.2977 (2) | 0.0427 (11) | |
C34 | 0.4668 (3) | 1.0585 (3) | 0.2987 (3) | 0.0540 (14) | |
H34A | 0.4438 | 1.0817 | 0.3319 | 0.065* | |
Cu1 | 0.27722 (4) | 0.66689 (3) | 0.28488 (3) | 0.04248 (18) | |
N1 | 0.3180 (3) | 0.5977 (2) | 0.2226 (2) | 0.0490 (10) | |
N2 | 0.1994 (3) | 0.6868 (2) | 0.2016 (2) | 0.0475 (10) | |
N3 | 0.2413 (2) | 0.7437 (2) | 0.3407 (2) | 0.0454 (10) | |
N4 | 0.2020 (3) | 0.6093 (2) | 0.3464 (2) | 0.0478 (10) | |
N5 | 0.5497 (2) | 0.7559 (2) | 0.3524 (2) | 0.0411 (9) | |
N6 | 0.5000 | 0.9536 (3) | 0.2500 | 0.0408 (13) | |
N7 | 1.0000 | 0.8539 (5) | 0.2500 | 0.118 (4) | |
O1 | 0.41131 (19) | 0.73634 (17) | 0.28216 (17) | 0.0446 (8) | |
O1W | 0.3730 (5) | 0.5423 (4) | 0.4498 (4) | 0.142 (3) | |
H1WA | 0.371 (6) | 0.5065 (12) | 0.4206 (18) | 0.170* | |
O2 | 0.3767 (2) | 0.65755 (18) | 0.35262 (19) | 0.0489 (9) | |
O2W | 0.8497 (6) | 0.9270 (4) | 0.3641 (7) | 0.191 (4) | |
O3 | 0.6303 (2) | 0.8570 (2) | 0.3059 (2) | 0.0581 (10) | |
O4 | 0.7371 (3) | 0.8336 (2) | 0.3812 (3) | 0.0836 (15) | |
O5 | 0.4470 (2) | 0.87888 (18) | 0.34281 (19) | 0.0547 (10) | |
O6 | 0.4060 (4) | 0.9707 (2) | 0.3959 (3) | 0.105 (2) | |
C35 | 0.5000 | 1.0940 (4) | 0.2500 | 0.056 (2) | |
H35 | 0.5000 | 1.1415 | 0.2500 | 0.067* | |
O8 | 1.0000 | 0.7900 (9) | 0.2500 | 0.242 (6) | |
O7 | 0.9613 (7) | 0.8826 (5) | 0.2917 (6) | 0.208 (4) | |
H2WB | 0.814 (6) | 0.900 (5) | 0.372 (8) | 0.250* | |
H2WA | 0.882 (7) | 0.905 (5) | 0.343 (8) | 0.250* | |
H1WB | 0.385 (3) | 0.575 (2) | 0.425 (3) | 0.250* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.0415 (2) | 0.0376 (2) | 0.0439 (2) | 0.000 | 0.01540 (15) | 0.000 |
C1 | 0.069 (4) | 0.053 (3) | 0.077 (4) | 0.010 (3) | 0.014 (3) | −0.003 (3) |
C2 | 0.078 (5) | 0.054 (4) | 0.101 (6) | 0.009 (3) | 0.027 (4) | −0.015 (4) |
C3 | 0.085 (5) | 0.054 (4) | 0.085 (5) | −0.012 (3) | 0.036 (4) | −0.021 (3) |
C4 | 0.080 (4) | 0.047 (3) | 0.061 (4) | −0.019 (3) | 0.027 (3) | −0.011 (3) |
C5 | 0.060 (3) | 0.037 (3) | 0.044 (3) | −0.012 (2) | 0.016 (2) | −0.005 (2) |
C6 | 0.059 (3) | 0.046 (3) | 0.044 (3) | −0.010 (2) | 0.018 (2) | 0.002 (2) |
C7 | 0.064 (4) | 0.060 (3) | 0.046 (3) | −0.022 (3) | 0.005 (3) | 0.006 (3) |
C8 | 0.093 (5) | 0.085 (5) | 0.042 (3) | −0.034 (4) | 0.010 (3) | −0.009 (3) |
C9 | 0.096 (5) | 0.073 (4) | 0.053 (4) | −0.028 (4) | 0.021 (4) | −0.021 (3) |
C10 | 0.062 (4) | 0.078 (4) | 0.059 (4) | −0.022 (3) | −0.005 (3) | 0.024 (3) |
C11 | 0.054 (4) | 0.070 (4) | 0.074 (4) | 0.004 (3) | 0.000 (3) | 0.015 (3) |
C12 | 0.060 (4) | 0.054 (3) | 0.058 (4) | 0.005 (3) | 0.009 (3) | 0.003 (3) |
C13 | 0.052 (3) | 0.048 (3) | 0.066 (4) | 0.003 (2) | 0.022 (3) | 0.002 (3) |
C14 | 0.062 (4) | 0.055 (3) | 0.077 (4) | 0.004 (3) | 0.015 (3) | −0.012 (3) |
C15 | 0.065 (4) | 0.070 (4) | 0.068 (4) | 0.021 (3) | 0.010 (3) | −0.020 (3) |
C16 | 0.047 (3) | 0.065 (4) | 0.047 (3) | 0.011 (3) | 0.007 (2) | −0.007 (3) |
C17 | 0.038 (3) | 0.056 (3) | 0.044 (3) | 0.005 (2) | 0.007 (2) | 0.000 (2) |
C18 | 0.040 (3) | 0.055 (3) | 0.037 (3) | −0.001 (2) | 0.003 (2) | 0.006 (2) |
C19 | 0.041 (3) | 0.076 (4) | 0.048 (3) | 0.003 (3) | 0.007 (2) | 0.012 (3) |
C20 | 0.050 (3) | 0.097 (5) | 0.047 (3) | 0.006 (3) | 0.018 (3) | 0.015 (3) |
C21 | 0.060 (4) | 0.090 (5) | 0.047 (3) | 0.018 (3) | 0.020 (3) | −0.007 (3) |
C22 | 0.060 (4) | 0.076 (4) | 0.056 (4) | −0.013 (3) | 0.008 (3) | 0.027 (3) |
C23 | 0.068 (4) | 0.062 (4) | 0.059 (4) | −0.010 (3) | 0.002 (3) | 0.016 (3) |
C24 | 0.060 (3) | 0.050 (3) | 0.050 (3) | −0.002 (3) | −0.001 (3) | 0.007 (3) |
C25 | 0.044 (3) | 0.036 (2) | 0.042 (3) | 0.002 (2) | 0.016 (2) | −0.001 (2) |
C26 | 0.045 (3) | 0.041 (3) | 0.040 (3) | 0.008 (2) | 0.009 (2) | −0.003 (2) |
C27 | 0.061 (4) | 0.052 (3) | 0.045 (3) | 0.013 (2) | 0.010 (3) | 0.001 (2) |
C28 | 0.067 (4) | 0.072 (4) | 0.048 (3) | 0.024 (3) | −0.001 (3) | −0.003 (3) |
C29 | 0.048 (3) | 0.077 (4) | 0.054 (4) | 0.014 (3) | −0.007 (3) | −0.017 (3) |
C30 | 0.042 (3) | 0.052 (3) | 0.049 (3) | 0.004 (2) | 0.007 (2) | −0.017 (2) |
C31 | 0.043 (3) | 0.065 (4) | 0.060 (4) | −0.005 (3) | 0.009 (3) | −0.025 (3) |
C32 | 0.064 (4) | 0.049 (3) | 0.056 (3) | 0.000 (3) | 0.029 (3) | −0.004 (3) |
C33 | 0.045 (3) | 0.044 (3) | 0.042 (3) | 0.001 (2) | 0.016 (2) | −0.006 (2) |
C34 | 0.056 (3) | 0.045 (3) | 0.066 (4) | 0.002 (2) | 0.024 (3) | −0.010 (3) |
Cu1 | 0.0467 (4) | 0.0429 (4) | 0.0393 (4) | 0.0008 (2) | 0.0111 (3) | 0.0000 (2) |
N1 | 0.055 (3) | 0.041 (2) | 0.053 (3) | 0.0006 (19) | 0.015 (2) | −0.0004 (19) |
N2 | 0.054 (3) | 0.048 (2) | 0.041 (2) | −0.002 (2) | 0.008 (2) | 0.0044 (19) |
N3 | 0.046 (2) | 0.046 (2) | 0.047 (2) | −0.0006 (18) | 0.0144 (19) | −0.0005 (19) |
N4 | 0.048 (2) | 0.051 (3) | 0.045 (2) | −0.0033 (19) | 0.0078 (19) | 0.005 (2) |
N5 | 0.039 (2) | 0.043 (2) | 0.042 (2) | 0.0025 (17) | 0.0087 (18) | −0.0064 (18) |
N6 | 0.043 (3) | 0.039 (3) | 0.044 (3) | 0.000 | 0.018 (3) | 0.000 |
N7 | 0.107 (8) | 0.069 (6) | 0.197 (13) | 0.000 | 0.088 (8) | 0.000 |
O1 | 0.0407 (18) | 0.0471 (19) | 0.046 (2) | −0.0036 (14) | 0.0055 (15) | 0.0081 (16) |
O1W | 0.189 (7) | 0.125 (6) | 0.113 (5) | −0.029 (5) | 0.026 (5) | 0.033 (4) |
O2 | 0.052 (2) | 0.046 (2) | 0.049 (2) | −0.0056 (16) | 0.0104 (17) | 0.0090 (16) |
O2W | 0.183 (9) | 0.088 (5) | 0.324 (14) | −0.044 (5) | 0.122 (9) | −0.032 (6) |
O3 | 0.049 (2) | 0.054 (2) | 0.071 (3) | −0.0122 (18) | 0.011 (2) | −0.009 (2) |
O4 | 0.044 (2) | 0.105 (4) | 0.099 (4) | −0.019 (2) | −0.003 (2) | −0.013 (3) |
O5 | 0.070 (3) | 0.047 (2) | 0.054 (2) | 0.0024 (17) | 0.0351 (19) | 0.0037 (17) |
O6 | 0.180 (6) | 0.062 (3) | 0.094 (4) | 0.001 (3) | 0.101 (4) | −0.005 (3) |
C35 | 0.063 (5) | 0.040 (4) | 0.067 (5) | 0.000 | 0.014 (4) | 0.000 |
O8 | 0.242 (6) | 0.241 (6) | 0.243 (6) | 0.000 | 0.0316 (14) | 0.000 |
O7 | 0.208 (4) | 0.208 (4) | 0.209 (4) | 0.0001 (11) | 0.0291 (13) | −0.0002 (11) |
Tb1—O5 | 2.374 (3) | C20—C21 | 1.342 (9) |
Tb1—O5i | 2.374 (3) | C20—H20A | 0.9300 |
Tb1—O3 | 2.422 (4) | C21—H21A | 0.9300 |
Tb1—O3i | 2.422 (4) | C22—C23 | 1.346 (9) |
Tb1—N6 | 2.450 (5) | C22—H22A | 0.9300 |
Tb1—O1 | 2.489 (3) | C23—C24 | 1.393 (8) |
Tb1—O1i | 2.489 (3) | C23—H23A | 0.9300 |
Tb1—N5i | 2.542 (4) | C24—N4 | 1.328 (7) |
Tb1—N5 | 2.542 (4) | C24—H24A | 0.9300 |
C1—N1 | 1.308 (7) | C25—O1 | 1.254 (6) |
C1—C2 | 1.415 (9) | C25—O2 | 1.269 (6) |
C1—H1A | 0.9300 | C25—C26 | 1.497 (7) |
C2—C3 | 1.360 (10) | C26—N5 | 1.340 (6) |
C2—H2A | 0.9300 | C26—C27 | 1.373 (7) |
C3—C4 | 1.386 (9) | C27—C28 | 1.408 (9) |
C3—H3A | 0.9300 | C27—H27A | 0.9300 |
C4—C5 | 1.416 (7) | C28—C29 | 1.378 (9) |
C4—C9 | 1.424 (9) | C28—H28A | 0.9300 |
C5—N1 | 1.366 (7) | C29—C30 | 1.392 (8) |
C5—C6 | 1.419 (8) | C29—H29A | 0.9300 |
C6—N2 | 1.374 (7) | C30—N5 | 1.332 (6) |
C6—C7 | 1.418 (8) | C30—C31 | 1.522 (8) |
C7—C10 | 1.389 (9) | C31—O4 | 1.248 (7) |
C7—C8 | 1.433 (9) | C31—O3 | 1.265 (7) |
C8—C9 | 1.356 (10) | C32—O6 | 1.233 (7) |
C8—H8A | 0.9300 | C32—O5 | 1.285 (6) |
C9—H9A | 0.9300 | C32—C33 | 1.507 (7) |
C10—C11 | 1.372 (9) | C33—N6 | 1.338 (5) |
C10—H10A | 0.9300 | C33—C34 | 1.380 (7) |
C11—C12 | 1.371 (8) | C34—C35 | 1.372 (7) |
C11—H11A | 0.9300 | C34—H34A | 0.9300 |
C12—N2 | 1.328 (7) | Cu1—N3 | 2.011 (4) |
C12—H12A | 0.9300 | Cu1—N1 | 2.019 (4) |
C13—N3 | 1.314 (7) | Cu1—N2 | 2.027 (4) |
C13—C14 | 1.407 (8) | Cu1—O2 | 2.038 (4) |
C13—H13A | 0.9300 | Cu1—N4 | 2.195 (4) |
C14—C15 | 1.364 (9) | Cu1—O1 | 2.667 (3) |
C14—H14A | 0.9300 | N6—C33i | 1.338 (5) |
C15—C16 | 1.414 (8) | N7—O8 | 1.250 (15) |
C15—H15A | 0.9300 | N7—O7 | 1.258 (10) |
C16—C17 | 1.407 (7) | N7—O7ii | 1.258 (10) |
C16—C21 | 1.441 (8) | O1W—H1WA | 0.908 (19) |
C17—N3 | 1.374 (6) | O1W—H1WB | 0.85 (2) |
C17—C18 | 1.444 (7) | O2W—H2WB | 0.84 (2) |
C18—N4 | 1.351 (7) | O2W—H2WA | 0.86 (2) |
C18—C19 | 1.402 (7) | C35—C34i | 1.372 (7) |
C19—C22 | 1.410 (8) | C35—H35 | 0.9300 |
C19—C20 | 1.450 (9) | ||
O5—Tb1—O5i | 130.87 (17) | C19—C18—C17 | 119.3 (5) |
O5—Tb1—O3 | 87.91 (14) | C18—C19—C22 | 116.6 (6) |
O5i—Tb1—O3 | 81.06 (14) | C18—C19—C20 | 119.4 (5) |
O5—Tb1—O3i | 81.06 (14) | C22—C19—C20 | 124.1 (5) |
O5i—Tb1—O3i | 87.91 (14) | C21—C20—C19 | 120.4 (5) |
O3—Tb1—O3i | 153.3 (2) | C21—C20—H20A | 119.8 |
O5—Tb1—N6 | 65.43 (9) | C19—C20—H20A | 119.8 |
O5i—Tb1—N6 | 65.43 (8) | C20—C21—C16 | 122.2 (6) |
O3—Tb1—N6 | 76.67 (10) | C20—C21—H21A | 118.9 |
O3i—Tb1—N6 | 76.67 (10) | C16—C21—H21A | 118.9 |
O5—Tb1—O1 | 78.26 (12) | C23—C22—C19 | 120.0 (5) |
O5i—Tb1—O1 | 143.68 (12) | C23—C22—H22A | 120.0 |
O3—Tb1—O1 | 126.92 (13) | C19—C22—H22A | 120.0 |
O3i—Tb1—O1 | 74.53 (13) | C22—C23—C24 | 119.6 (6) |
N6—Tb1—O1 | 136.41 (8) | C22—C23—H23A | 120.2 |
O5—Tb1—O1i | 143.68 (12) | C24—C23—H23A | 120.2 |
O5i—Tb1—O1i | 78.26 (12) | N4—C24—C23 | 122.7 (6) |
O3—Tb1—O1i | 74.53 (13) | N4—C24—H24A | 118.7 |
O3i—Tb1—O1i | 126.92 (13) | C23—C24—H24A | 118.7 |
N6—Tb1—O1i | 136.41 (8) | O1—C25—O2 | 122.9 (5) |
O1—Tb1—O1i | 87.18 (16) | O1—C25—C26 | 118.2 (4) |
O5—Tb1—N5i | 137.42 (13) | O2—C25—C26 | 118.9 (4) |
O5i—Tb1—N5i | 74.24 (12) | N5—C26—C27 | 123.0 (5) |
O3—Tb1—N5i | 133.76 (13) | N5—C26—C25 | 112.9 (4) |
O3i—Tb1—N5i | 64.29 (13) | C27—C26—C25 | 124.1 (5) |
N6—Tb1—N5i | 123.98 (9) | C26—C27—C28 | 118.2 (6) |
O1—Tb1—N5i | 69.51 (12) | C26—C27—H27A | 120.9 |
O1i—Tb1—N5i | 62.63 (12) | C28—C27—H27A | 120.9 |
O5—Tb1—N5 | 74.24 (12) | C29—C28—C27 | 118.3 (6) |
O5i—Tb1—N5 | 137.42 (13) | C29—C28—H28A | 120.8 |
O3—Tb1—N5 | 64.29 (13) | C27—C28—H28A | 120.8 |
O3i—Tb1—N5 | 133.76 (13) | C28—C29—C30 | 119.9 (5) |
N6—Tb1—N5 | 123.98 (9) | C28—C29—H29A | 120.1 |
O1—Tb1—N5 | 62.63 (12) | C30—C29—H29A | 120.1 |
O1i—Tb1—N5 | 69.51 (12) | N5—C30—C29 | 121.3 (5) |
N5i—Tb1—N5 | 112.04 (17) | N5—C30—C31 | 115.1 (5) |
N1—C1—C2 | 122.5 (6) | C29—C30—C31 | 123.5 (5) |
N1—C1—H1A | 118.7 | O4—C31—O3 | 127.6 (6) |
C2—C1—H1A | 118.7 | O4—C31—C30 | 116.5 (6) |
C3—C2—C1 | 119.6 (6) | O3—C31—C30 | 115.9 (5) |
C3—C2—H2A | 120.2 | O6—C32—O5 | 125.9 (5) |
C1—C2—H2A | 120.2 | O6—C32—C33 | 118.8 (5) |
C2—C3—C4 | 119.7 (6) | O5—C32—C33 | 115.3 (4) |
C2—C3—H3A | 120.2 | N6—C33—C34 | 121.3 (5) |
C4—C3—H3A | 120.2 | N6—C33—C32 | 114.3 (4) |
C3—C4—C5 | 117.6 (6) | C34—C33—C32 | 124.3 (4) |
C3—C4—C9 | 124.8 (6) | C35—C34—C33 | 119.3 (5) |
C5—C4—C9 | 117.6 (6) | C35—C34—H34A | 120.4 |
N1—C5—C4 | 122.4 (5) | C33—C34—H34A | 120.4 |
N1—C5—C6 | 116.9 (4) | N3—Cu1—N1 | 173.77 (17) |
C4—C5—C6 | 120.7 (5) | N3—Cu1—N2 | 95.52 (18) |
N2—C6—C7 | 122.8 (5) | N1—Cu1—N2 | 82.30 (18) |
N2—C6—C5 | 117.0 (5) | N3—Cu1—O2 | 89.25 (16) |
C7—C6—C5 | 120.2 (5) | N1—Cu1—O2 | 91.39 (17) |
C10—C7—C6 | 116.9 (6) | N2—Cu1—O2 | 164.39 (16) |
C10—C7—C8 | 125.0 (6) | N3—Cu1—N4 | 80.47 (17) |
C6—C7—C8 | 118.1 (6) | N1—Cu1—N4 | 105.65 (17) |
C9—C8—C7 | 121.0 (6) | N2—Cu1—N4 | 100.79 (17) |
C9—C8—H8A | 119.5 | O2—Cu1—N4 | 94.65 (15) |
C7—C8—H8A | 119.5 | C1—N1—C5 | 118.2 (5) |
C8—C9—C4 | 122.3 (6) | C1—N1—Cu1 | 129.6 (4) |
C8—C9—H9A | 118.9 | C5—N1—Cu1 | 112.2 (3) |
C4—C9—H9A | 118.9 | C12—N2—C6 | 116.7 (5) |
C11—C10—C7 | 119.9 (6) | C12—N2—Cu1 | 131.6 (4) |
C11—C10—H10A | 120.0 | C6—N2—Cu1 | 111.6 (4) |
C7—C10—H10A | 120.0 | C13—N3—C17 | 119.8 (5) |
C12—C11—C10 | 119.4 (6) | C13—N3—Cu1 | 126.0 (4) |
C12—C11—H11A | 120.3 | C17—N3—Cu1 | 114.0 (3) |
C10—C11—H11A | 120.3 | C24—N4—C18 | 117.8 (5) |
N2—C12—C11 | 124.2 (6) | C24—N4—Cu1 | 132.6 (4) |
N2—C12—H12A | 117.9 | C18—N4—Cu1 | 109.4 (3) |
C11—C12—H12A | 117.9 | C30—N5—C26 | 119.2 (4) |
N3—C13—C14 | 122.6 (5) | C30—N5—Tb1 | 118.9 (3) |
N3—C13—H13A | 118.7 | C26—N5—Tb1 | 121.9 (3) |
C14—C13—H13A | 118.7 | C33—N6—C33i | 119.6 (6) |
C15—C14—C13 | 118.6 (6) | C33—N6—Tb1 | 120.2 (3) |
C15—C14—H14A | 120.7 | C33i—N6—Tb1 | 120.2 (3) |
C13—C14—H14A | 120.7 | O8—N7—O7 | 116.6 (7) |
C14—C15—C16 | 120.4 (6) | O8—N7—O7ii | 116.6 (7) |
C14—C15—H15A | 119.8 | O7—N7—O7ii | 126.9 (14) |
C16—C15—H15A | 119.8 | C25—O1—Tb1 | 124.1 (3) |
C17—C16—C15 | 117.5 (5) | H1WA—O1W—H1WB | 102 (3) |
C17—C16—C21 | 118.0 (5) | C25—O2—Cu1 | 105.9 (3) |
C15—C16—C21 | 124.4 (5) | H2WB—O2W—H2WA | 108 (4) |
N3—C17—C16 | 121.0 (5) | C31—O3—Tb1 | 125.3 (4) |
N3—C17—C18 | 118.4 (4) | C32—O5—Tb1 | 124.5 (3) |
C16—C17—C18 | 120.5 (5) | C34i—C35—C34 | 119.2 (7) |
N4—C18—C19 | 123.2 (5) | C34i—C35—H35 | 120.4 |
N4—C18—C17 | 117.4 (4) | C34—C35—H35 | 120.4 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+2, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O2 | 0.85 (2) | 2.15 (2) | 2.979 (7) | 162 (4) |
O2W—H2WB···O4 | 0.84 (2) | 1.87 (3) | 2.705 (9) | 174 (11) |
O2W—H2WA···O7 | 0.86 (2) | 1.84 (2) | 2.675 (14) | 164 (10) |
O1W—H1WA···O2Wiii | 0.91 (2) | 1.93 (2) | 2.827 (12) | 171 (10) |
Symmetry code: (iii) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Tb(C7H3NO4)3(C12H8N2)4]NO3·4H2O |
Mr | 1636.20 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 17.058 (4), 19.574 (5), 19.927 (5) |
β (°) | 97.289 (4) |
V (Å3) | 6599 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.78 |
Crystal size (mm) | 0.19 × 0.17 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.728, 0.776 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17945, 6454, 4952 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.134, 1.04 |
No. of reflections | 6454 |
No. of parameters | 479 |
No. of restraints | 27 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.88, −1.09 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2008).
Tb1—O5 | 2.374 (3) | Cu1—N1 | 2.019 (4) |
Tb1—O3 | 2.422 (4) | Cu1—N2 | 2.027 (4) |
Tb1—N6 | 2.450 (5) | Cu1—O2 | 2.038 (4) |
Tb1—O1 | 2.489 (3) | Cu1—N4 | 2.195 (4) |
Tb1—N5 | 2.542 (4) | Cu1—O1 | 2.667 (3) |
Cu1—N3 | 2.011 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O2 | 0.85 (2) | 2.155 (18) | 2.979 (7) | 162 (4) |
O2W—H2WB···O4 | 0.84 (2) | 1.87 (3) | 2.705 (9) | 174 (11) |
O2W—H2WA···O7 | 0.86 (2) | 1.84 (2) | 2.675 (14) | 164 (10) |
O1W—H1WA···O2Wi | 0.908 (19) | 1.927 (18) | 2.827 (12) | 171 (10) |
Symmetry code: (i) x−1/2, y−1/2, z. |
References
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jüstel, T., Nikol, H. & Ronda, C. (1998). Angew. Chem. Int. Ed. 37, 3084–3103. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y. G., Gu, X. F., Ding, F., Smet, P. F., Gao, E. J., Poelman, D. & Verpoort, F. (2010). Cryst. Growth Des. 10, 1059–1067. Web of Science CSD CrossRef CAS Google Scholar
Yang, X. P., Jones, R. A., Lai, R. T., Waheed, A., Oye, M. M. & Holmes, A. L. (2006). Polyhedron, 25, 881-887. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The lanthanide(III) coordination compounds have received much attention in recent years owing to their interesting structures, photophysical properties (Jüstel et al., 1998) and potential applications. In this article, we report the structure of a novel copper(II)–terbium(III) coordination compound obtained by hydrothermal method using the pyridine-2,6-dicarboxylate and 1,10-phenanthroline ligands, {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}NO3.4H2O (Fig. 1). In the coordination cation {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}+, the CuII atom is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from one pyridine-2,6-dicarboxylate completing distorted CuN4O2 octahedral coordination environment. The TbIII atom located on a two-fold rotation axis is nine-coordinated by three tridentate 2,6-pyridinedicarboxylate anions forming N3O6 donor set. The shortest distance of Cu···Tb is 5.0592 (11) Å, which indicates there are weak interactions between CuII and TbIII ions. The details of bond lengths are given in Table 1. These bond lengths of Cu—O, Cu—N, Tb—O and Tb—N type fall in the typical range observed in previously reported copper(II)–terbium(III) coordination compounds (Sun et al., 2010; Yang et al., 2006). The coordination cations {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}+, nitrate anions and water molecules are connected via O—H···O hydrogen bonds into layered structure parallel to (001) (Fig. 2). In addition, there are extensive π–π stacking interactions between the phenanthroline ligands and between phenanthroline and pyridinedicarboxylate ligands. The hydrogen bonds and π–π stacking interactions play a crucial role in stability of the crystal structure.