metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(1,10-phenanthroline)bis­­(μ-pyridine-2,6-di­carboxyl­ato)(pyridine-2,6-di­carboxyl­ato)dicopper(II)terbium(III) nitrate tetra­hydrate

aNanyang Medical College, Nanyang 473061, People's Republic of China
*Correspondence e-mail: nyzhangwei@yahoo.com.cn

(Received 26 April 2012; accepted 11 July 2012; online 18 July 2012)

The asymmetric unit of the title compound, [Cu2Tb(C7H3NO4)3(C12H8N2)4]NO3·4H2O, consists of one-half of the C2-symmetric trinuclear coordination cation, one-half of the C2-symmetric nitrate anion and two water mol­ecules. In the coordination cation, the CuII atom is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from a bridging–chelating carboxyl­ate group of the pyridine-2,6-dicarboxyl­ate anion, completing a distorted N4O2 octa­hedral coordination environment. The TbIII atom, located on a twofold rotation axis, is nine-coordinated by three tridentate pyridine-2,6-dicarboxyl­ate anions forming an N3O6 donor set. The intra­molecular Cu⋯Tb distance of 5.0592 (11) Å indicates weak inter­actions between the CuII and TbIII atoms. The coordination cations, nitrate anions and water mol­ecules are connected via O—H⋯O hydrogen bonds into layers parallel to the (001) plane. Moreover, there are extensive ππ stacking inter­actions [centroid–centroid distances = 4.332 (7) and 3.878 (5) Å] between the phenanthroline ligands and between phenanthroline and pyridine-2,6-dicarboxyl­ate ligands.

Related literature

For the photophysical properties of lanthanide(III) coordination compounds, see: Jüstel et al. (1998[Jüstel, T., Nikol, H. & Ronda, C. (1998). Angew. Chem. Int. Ed. 37, 3084-3103.]). For the Cu—O, Cu—N, Tb—O and Tb—N bond lengths in previously reported dinuclear copper(II)–terbium(III) coordination compounds, see: Sun et al. (2010[Sun, Y. G., Gu, X. F., Ding, F., Smet, P. F., Gao, E. J., Poelman, D. & Verpoort, F. (2010). Cryst. Growth Des. 10, 1059-1067.]); Yang et al. (2006[Yang, X. P., Jones, R. A., Lai, R. T., Waheed, A., Oye, M. M. & Holmes, A. L. (2006). Polyhedron, 25, 881-887.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Tb(C7H3NO4)3(C12H8N2)4]NO3·4H2O

  • Mr = 1636.20

  • Monoclinic, C 2/c

  • a = 17.058 (4) Å

  • b = 19.574 (5) Å

  • c = 19.927 (5) Å

  • β = 97.289 (4)°

  • V = 6599 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 296 K

  • 0.19 × 0.17 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.728, Tmax = 0.776

  • 17945 measured reflections

  • 6454 independent reflections

  • 4952 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.134

  • S = 1.04

  • 6454 reflections

  • 479 parameters

  • 27 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Selected bond lengths (Å)

Tb1—O5 2.374 (3)
Tb1—O3 2.422 (4)
Tb1—N6 2.450 (5)
Tb1—O1 2.489 (3)
Tb1—N5 2.542 (4)
Cu1—N3 2.011 (4)
Cu1—N1 2.019 (4)
Cu1—N2 2.027 (4)
Cu1—O2 2.038 (4)
Cu1—N4 2.195 (4)
Cu1—O1 2.667 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2 0.85 (2) 2.16 (2) 2.979 (7) 162 (4)
O2W—H2WB⋯O4 0.84 (2) 1.87 (3) 2.705 (9) 174 (11)
O2W—H2WA⋯O7 0.86 (2) 1.84 (2) 2.675 (14) 164 (10)
O1W—H1WA⋯O2Wi 0.91 (2) 1.93 (2) 2.827 (12) 171 (10)
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The lanthanide(III) coordination compounds have received much attention in recent years owing to their interesting structures, photophysical properties (Jüstel et al., 1998) and potential applications. In this article, we report the structure of a novel copper(II)–terbium(III) coordination compound obtained by hydrothermal method using the pyridine-2,6-dicarboxylate and 1,10-phenanthroline ligands, {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}NO3.4H2O (Fig. 1). In the coordination cation {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}+, the CuII atom is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from one pyridine-2,6-dicarboxylate completing distorted CuN4O2 octahedral coordination environment. The TbIII atom located on a two-fold rotation axis is nine-coordinated by three tridentate 2,6-pyridinedicarboxylate anions forming N3O6 donor set. The shortest distance of Cu···Tb is 5.0592 (11) Å, which indicates there are weak interactions between CuII and TbIII ions. The details of bond lengths are given in Table 1. These bond lengths of Cu—O, Cu—N, Tb—O and Tb—N type fall in the typical range observed in previously reported copper(II)–terbium(III) coordination compounds (Sun et al., 2010; Yang et al., 2006). The coordination cations {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}+, nitrate anions and water molecules are connected via O—H···O hydrogen bonds into layered structure parallel to (001) (Fig. 2). In addition, there are extensive ππ stacking interactions between the phenanthroline ligands and between phenanthroline and pyridinedicarboxylate ligands. The hydrogen bonds and ππ stacking interactions play a crucial role in stability of the crystal structure.

Related literature top

For the photophysical properties of lanthanide(III) coordination compounds, see: Jüstel et al. (1998). For the Cu—O, Cu—N, Tb—O and Tb—N bond lengths in previously reported dinuclear copper(II)–terbium(III) coordination compounds, see: Sun et al. (2010); Yang et al. (2006).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. The compound was obtained by using hydrothermal method in a 50 ml Teflon-lined autoclave. The mixture of 0.17 g CuCl2.2H2O, 0.27 g Tb(NO3)3.6H2O, 0.17 g pyridine-2,6-dicarboxylic acid, 0.16 g 1,10-phenanthroline and 20 ml H2O was stirred for half an hour, and transferred into a Teflon-lined stainless steel autoclave (50 ml), then treated at 433 K for 6 d. After the mixture was slowly cooled to room temperature, blue block crystals suitable for X-ray structure determination were obtained. The chemical composition of the title compound was confirmed by elemental analysis. The C, H, and N elements analysis were performed on a PerkinElmer 2400II elemental analyzer. Anal. calcd for the title compound: C, 50.65; H, 3.02; N,10.27%. Found: C, 51.22; H, 3.65; N, 9.89%. The results well support the formula of the compound based on the single-crystal X-ray analysis.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2 times Ueq(C). The H atoms bonded to O1W and O2W were located in Fourier difference maps and refined with restraints [O—H = 0.83 (2) Å, H···H 1.37 (2) Å]. The H1WA, H1WB and H2WA atoms were refined with additional restraints (SHELXL97 instructions: DFIX 1.85 0.02 H1WA O2Wi, DFIX 3.60 0.02 H1WB Cu1 and DFIX 1.80 0.02 H2WA O7). In addition, restraints were imposed on the geometry of the nitrate anion and on the dispalcement parameters of its O and N atoms (SHELXL97 instructions: ISOR 0.001 O7 O8, DELU 0.01 N7 O7 N7 O8, DFIX 1.30 0.02 N7 O7 N7 O8). An attempt to refine a disordered model for the nitrate anion was unsuccessful.

Structure description top

The lanthanide(III) coordination compounds have received much attention in recent years owing to their interesting structures, photophysical properties (Jüstel et al., 1998) and potential applications. In this article, we report the structure of a novel copper(II)–terbium(III) coordination compound obtained by hydrothermal method using the pyridine-2,6-dicarboxylate and 1,10-phenanthroline ligands, {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}NO3.4H2O (Fig. 1). In the coordination cation {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}+, the CuII atom is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from one pyridine-2,6-dicarboxylate completing distorted CuN4O2 octahedral coordination environment. The TbIII atom located on a two-fold rotation axis is nine-coordinated by three tridentate 2,6-pyridinedicarboxylate anions forming N3O6 donor set. The shortest distance of Cu···Tb is 5.0592 (11) Å, which indicates there are weak interactions between CuII and TbIII ions. The details of bond lengths are given in Table 1. These bond lengths of Cu—O, Cu—N, Tb—O and Tb—N type fall in the typical range observed in previously reported copper(II)–terbium(III) coordination compounds (Sun et al., 2010; Yang et al., 2006). The coordination cations {[CuII(C12H8N2)2]2[TbIII(C7H3NO4)3]}+, nitrate anions and water molecules are connected via O—H···O hydrogen bonds into layered structure parallel to (001) (Fig. 2). In addition, there are extensive ππ stacking interactions between the phenanthroline ligands and between phenanthroline and pyridinedicarboxylate ligands. The hydrogen bonds and ππ stacking interactions play a crucial role in stability of the crystal structure.

For the photophysical properties of lanthanide(III) coordination compounds, see: Jüstel et al. (1998). For the Cu—O, Cu—N, Tb—O and Tb—N bond lengths in previously reported dinuclear copper(II)–terbium(III) coordination compounds, see: Sun et al. (2010); Yang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2008); software used to prepare material for publication: SHELXTL (Bruker, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule with displacement ellipsoids drawn at the 30% probability level. H atoms were omitted for clarity. Atoms with the A label are generated by the -x + 1, y, -z + 1/2 symmetry operation.
[Figure 2] Fig. 2. View of the crystal packing along the a axis. For the sake of clarity, H atoms have been omitted.
Tetrakis(1,10-phenanthroline)- 1κ4N,N';3κ4N,N'-bis(µ-pyridine-2,6- dicarboxylato)-1:2κ5O2,O2': O2,N,O6;2:3κ5O2,N,O6: O6,O6--(pyridine-2,6-dicarboxylato)- 2κ3O2,N,O6-1,3-dicopper(II)-2-terbium(III) nitrate tetrahydrate top
Crystal data top
[Cu2Tb(C7H3NO4)3(C12H8N2)4]NO3·4H2OF(000) = 3288
Mr = 1636.20Dx = 1.647 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5232 reflections
a = 17.058 (4) Åθ = 2.3–25.0°
b = 19.574 (5) ŵ = 1.78 mm1
c = 19.927 (5) ÅT = 296 K
β = 97.289 (4)°Block, blue
V = 6599 (3) Å30.19 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6454 independent reflections
Radiation source: fine-focus sealed tube4952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2111
Tmin = 0.728, Tmax = 0.776k = 2422
17945 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0792P)2 + 8.9094P]
where P = (Fo2 + 2Fc2)/3
6454 reflections(Δ/σ)max = 0.001
479 parametersΔρmax = 0.88 e Å3
27 restraintsΔρmin = 1.09 e Å3
Crystal data top
[Cu2Tb(C7H3NO4)3(C12H8N2)4]NO3·4H2OV = 6599 (3) Å3
Mr = 1636.20Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.058 (4) ŵ = 1.78 mm1
b = 19.574 (5) ÅT = 296 K
c = 19.927 (5) Å0.19 × 0.17 × 0.15 mm
β = 97.289 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
6454 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4952 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.776Rint = 0.029
17945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04127 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.88 e Å3
6454 reflectionsΔρmin = 1.09 e Å3
479 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.50000.828451 (16)0.25000.04016 (14)
C10.3780 (4)0.5559 (3)0.2339 (3)0.0657 (16)
H1A0.40570.55380.27720.079*
C20.4024 (4)0.5136 (3)0.1828 (4)0.0766 (19)
H2A0.44660.48580.19210.092*
C30.3608 (4)0.5140 (3)0.1199 (4)0.0725 (19)
H3A0.37620.48620.08600.087*
C40.2954 (4)0.5561 (3)0.1064 (3)0.0611 (16)
C50.2759 (3)0.5984 (2)0.1595 (3)0.0461 (12)
C60.2115 (3)0.6447 (3)0.1487 (3)0.0488 (12)
C70.1630 (4)0.6464 (3)0.0854 (3)0.0569 (14)
C80.1825 (5)0.6017 (4)0.0330 (3)0.0730 (19)
H8A0.15090.60130.00860.088*
C90.2464 (5)0.5600 (4)0.0431 (3)0.0733 (19)
H9A0.25860.53300.00750.088*
C100.0997 (4)0.6915 (4)0.0792 (3)0.0674 (18)
H10A0.06570.69390.03890.081*
C110.0872 (4)0.7326 (3)0.1327 (3)0.0668 (16)
H11A0.04440.76240.12900.080*
C120.1384 (3)0.7293 (3)0.1914 (3)0.0573 (14)
H12A0.12990.75870.22640.069*
C130.2621 (3)0.8081 (3)0.3376 (3)0.0542 (14)
H13A0.29240.82130.30410.065*
C140.2405 (4)0.8578 (3)0.3827 (3)0.0639 (16)
H14A0.25650.90300.37950.077*
C150.1954 (4)0.8384 (3)0.4313 (4)0.0676 (18)
H15A0.17990.87080.46120.081*
C160.1722 (3)0.7695 (3)0.4365 (3)0.0527 (13)
C170.1964 (3)0.7228 (3)0.3895 (3)0.0456 (12)
C180.1765 (3)0.6513 (3)0.3928 (3)0.0445 (11)
C190.1323 (3)0.6287 (3)0.4433 (3)0.0550 (14)
C200.1089 (4)0.6773 (4)0.4919 (3)0.0637 (17)
H20A0.08090.66240.52630.076*
C210.1273 (3)0.7437 (4)0.4877 (3)0.0645 (17)
H21A0.11050.77410.51880.077*
C220.1136 (4)0.5585 (3)0.4430 (3)0.0642 (16)
H22A0.08440.54090.47540.077*
C230.1379 (4)0.5171 (3)0.3959 (3)0.0634 (16)
H23A0.12450.47100.39500.076*
C240.1833 (3)0.5435 (3)0.3486 (3)0.0542 (13)
H24A0.20110.51400.31730.065*
C250.4261 (3)0.6997 (2)0.3338 (3)0.0398 (11)
C260.5055 (3)0.7063 (2)0.3749 (2)0.0413 (11)
C270.5311 (4)0.6663 (3)0.4298 (3)0.0519 (14)
H27A0.49870.63260.44440.062*
C280.6076 (4)0.6775 (3)0.4636 (3)0.0631 (17)
H28A0.62690.65170.50130.076*
C290.6531 (3)0.7277 (3)0.4394 (3)0.0608 (16)
H29A0.70410.73590.46050.073*
C300.6227 (3)0.7663 (3)0.3834 (3)0.0476 (12)
C310.6681 (3)0.8235 (3)0.3539 (3)0.0556 (15)
C320.4367 (3)0.9434 (3)0.3500 (3)0.0543 (14)
C330.4679 (3)0.9880 (2)0.2977 (2)0.0427 (11)
C340.4668 (3)1.0585 (3)0.2987 (3)0.0540 (14)
H34A0.44381.08170.33190.065*
Cu10.27722 (4)0.66689 (3)0.28488 (3)0.04248 (18)
N10.3180 (3)0.5977 (2)0.2226 (2)0.0490 (10)
N20.1994 (3)0.6868 (2)0.2016 (2)0.0475 (10)
N30.2413 (2)0.7437 (2)0.3407 (2)0.0454 (10)
N40.2020 (3)0.6093 (2)0.3464 (2)0.0478 (10)
N50.5497 (2)0.7559 (2)0.3524 (2)0.0411 (9)
N60.50000.9536 (3)0.25000.0408 (13)
N71.00000.8539 (5)0.25000.118 (4)
O10.41131 (19)0.73634 (17)0.28216 (17)0.0446 (8)
O1W0.3730 (5)0.5423 (4)0.4498 (4)0.142 (3)
H1WA0.371 (6)0.5065 (12)0.4206 (18)0.170*
O20.3767 (2)0.65755 (18)0.35262 (19)0.0489 (9)
O2W0.8497 (6)0.9270 (4)0.3641 (7)0.191 (4)
O30.6303 (2)0.8570 (2)0.3059 (2)0.0581 (10)
O40.7371 (3)0.8336 (2)0.3812 (3)0.0836 (15)
O50.4470 (2)0.87888 (18)0.34281 (19)0.0547 (10)
O60.4060 (4)0.9707 (2)0.3959 (3)0.105 (2)
C350.50001.0940 (4)0.25000.056 (2)
H350.50001.14150.25000.067*
O81.00000.7900 (9)0.25000.242 (6)
O70.9613 (7)0.8826 (5)0.2917 (6)0.208 (4)
H2WB0.814 (6)0.900 (5)0.372 (8)0.250*
H2WA0.882 (7)0.905 (5)0.343 (8)0.250*
H1WB0.385 (3)0.575 (2)0.425 (3)0.250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.0415 (2)0.0376 (2)0.0439 (2)0.0000.01540 (15)0.000
C10.069 (4)0.053 (3)0.077 (4)0.010 (3)0.014 (3)0.003 (3)
C20.078 (5)0.054 (4)0.101 (6)0.009 (3)0.027 (4)0.015 (4)
C30.085 (5)0.054 (4)0.085 (5)0.012 (3)0.036 (4)0.021 (3)
C40.080 (4)0.047 (3)0.061 (4)0.019 (3)0.027 (3)0.011 (3)
C50.060 (3)0.037 (3)0.044 (3)0.012 (2)0.016 (2)0.005 (2)
C60.059 (3)0.046 (3)0.044 (3)0.010 (2)0.018 (2)0.002 (2)
C70.064 (4)0.060 (3)0.046 (3)0.022 (3)0.005 (3)0.006 (3)
C80.093 (5)0.085 (5)0.042 (3)0.034 (4)0.010 (3)0.009 (3)
C90.096 (5)0.073 (4)0.053 (4)0.028 (4)0.021 (4)0.021 (3)
C100.062 (4)0.078 (4)0.059 (4)0.022 (3)0.005 (3)0.024 (3)
C110.054 (4)0.070 (4)0.074 (4)0.004 (3)0.000 (3)0.015 (3)
C120.060 (4)0.054 (3)0.058 (4)0.005 (3)0.009 (3)0.003 (3)
C130.052 (3)0.048 (3)0.066 (4)0.003 (2)0.022 (3)0.002 (3)
C140.062 (4)0.055 (3)0.077 (4)0.004 (3)0.015 (3)0.012 (3)
C150.065 (4)0.070 (4)0.068 (4)0.021 (3)0.010 (3)0.020 (3)
C160.047 (3)0.065 (4)0.047 (3)0.011 (3)0.007 (2)0.007 (3)
C170.038 (3)0.056 (3)0.044 (3)0.005 (2)0.007 (2)0.000 (2)
C180.040 (3)0.055 (3)0.037 (3)0.001 (2)0.003 (2)0.006 (2)
C190.041 (3)0.076 (4)0.048 (3)0.003 (3)0.007 (2)0.012 (3)
C200.050 (3)0.097 (5)0.047 (3)0.006 (3)0.018 (3)0.015 (3)
C210.060 (4)0.090 (5)0.047 (3)0.018 (3)0.020 (3)0.007 (3)
C220.060 (4)0.076 (4)0.056 (4)0.013 (3)0.008 (3)0.027 (3)
C230.068 (4)0.062 (4)0.059 (4)0.010 (3)0.002 (3)0.016 (3)
C240.060 (3)0.050 (3)0.050 (3)0.002 (3)0.001 (3)0.007 (3)
C250.044 (3)0.036 (2)0.042 (3)0.002 (2)0.016 (2)0.001 (2)
C260.045 (3)0.041 (3)0.040 (3)0.008 (2)0.009 (2)0.003 (2)
C270.061 (4)0.052 (3)0.045 (3)0.013 (2)0.010 (3)0.001 (2)
C280.067 (4)0.072 (4)0.048 (3)0.024 (3)0.001 (3)0.003 (3)
C290.048 (3)0.077 (4)0.054 (4)0.014 (3)0.007 (3)0.017 (3)
C300.042 (3)0.052 (3)0.049 (3)0.004 (2)0.007 (2)0.017 (2)
C310.043 (3)0.065 (4)0.060 (4)0.005 (3)0.009 (3)0.025 (3)
C320.064 (4)0.049 (3)0.056 (3)0.000 (3)0.029 (3)0.004 (3)
C330.045 (3)0.044 (3)0.042 (3)0.001 (2)0.016 (2)0.006 (2)
C340.056 (3)0.045 (3)0.066 (4)0.002 (2)0.024 (3)0.010 (3)
Cu10.0467 (4)0.0429 (4)0.0393 (4)0.0008 (2)0.0111 (3)0.0000 (2)
N10.055 (3)0.041 (2)0.053 (3)0.0006 (19)0.015 (2)0.0004 (19)
N20.054 (3)0.048 (2)0.041 (2)0.002 (2)0.008 (2)0.0044 (19)
N30.046 (2)0.046 (2)0.047 (2)0.0006 (18)0.0144 (19)0.0005 (19)
N40.048 (2)0.051 (3)0.045 (2)0.0033 (19)0.0078 (19)0.005 (2)
N50.039 (2)0.043 (2)0.042 (2)0.0025 (17)0.0087 (18)0.0064 (18)
N60.043 (3)0.039 (3)0.044 (3)0.0000.018 (3)0.000
N70.107 (8)0.069 (6)0.197 (13)0.0000.088 (8)0.000
O10.0407 (18)0.0471 (19)0.046 (2)0.0036 (14)0.0055 (15)0.0081 (16)
O1W0.189 (7)0.125 (6)0.113 (5)0.029 (5)0.026 (5)0.033 (4)
O20.052 (2)0.046 (2)0.049 (2)0.0056 (16)0.0104 (17)0.0090 (16)
O2W0.183 (9)0.088 (5)0.324 (14)0.044 (5)0.122 (9)0.032 (6)
O30.049 (2)0.054 (2)0.071 (3)0.0122 (18)0.011 (2)0.009 (2)
O40.044 (2)0.105 (4)0.099 (4)0.019 (2)0.003 (2)0.013 (3)
O50.070 (3)0.047 (2)0.054 (2)0.0024 (17)0.0351 (19)0.0037 (17)
O60.180 (6)0.062 (3)0.094 (4)0.001 (3)0.101 (4)0.005 (3)
C350.063 (5)0.040 (4)0.067 (5)0.0000.014 (4)0.000
O80.242 (6)0.241 (6)0.243 (6)0.0000.0316 (14)0.000
O70.208 (4)0.208 (4)0.209 (4)0.0001 (11)0.0291 (13)0.0002 (11)
Geometric parameters (Å, º) top
Tb1—O52.374 (3)C20—C211.342 (9)
Tb1—O5i2.374 (3)C20—H20A0.9300
Tb1—O32.422 (4)C21—H21A0.9300
Tb1—O3i2.422 (4)C22—C231.346 (9)
Tb1—N62.450 (5)C22—H22A0.9300
Tb1—O12.489 (3)C23—C241.393 (8)
Tb1—O1i2.489 (3)C23—H23A0.9300
Tb1—N5i2.542 (4)C24—N41.328 (7)
Tb1—N52.542 (4)C24—H24A0.9300
C1—N11.308 (7)C25—O11.254 (6)
C1—C21.415 (9)C25—O21.269 (6)
C1—H1A0.9300C25—C261.497 (7)
C2—C31.360 (10)C26—N51.340 (6)
C2—H2A0.9300C26—C271.373 (7)
C3—C41.386 (9)C27—C281.408 (9)
C3—H3A0.9300C27—H27A0.9300
C4—C51.416 (7)C28—C291.378 (9)
C4—C91.424 (9)C28—H28A0.9300
C5—N11.366 (7)C29—C301.392 (8)
C5—C61.419 (8)C29—H29A0.9300
C6—N21.374 (7)C30—N51.332 (6)
C6—C71.418 (8)C30—C311.522 (8)
C7—C101.389 (9)C31—O41.248 (7)
C7—C81.433 (9)C31—O31.265 (7)
C8—C91.356 (10)C32—O61.233 (7)
C8—H8A0.9300C32—O51.285 (6)
C9—H9A0.9300C32—C331.507 (7)
C10—C111.372 (9)C33—N61.338 (5)
C10—H10A0.9300C33—C341.380 (7)
C11—C121.371 (8)C34—C351.372 (7)
C11—H11A0.9300C34—H34A0.9300
C12—N21.328 (7)Cu1—N32.011 (4)
C12—H12A0.9300Cu1—N12.019 (4)
C13—N31.314 (7)Cu1—N22.027 (4)
C13—C141.407 (8)Cu1—O22.038 (4)
C13—H13A0.9300Cu1—N42.195 (4)
C14—C151.364 (9)Cu1—O12.667 (3)
C14—H14A0.9300N6—C33i1.338 (5)
C15—C161.414 (8)N7—O81.250 (15)
C15—H15A0.9300N7—O71.258 (10)
C16—C171.407 (7)N7—O7ii1.258 (10)
C16—C211.441 (8)O1W—H1WA0.908 (19)
C17—N31.374 (6)O1W—H1WB0.85 (2)
C17—C181.444 (7)O2W—H2WB0.84 (2)
C18—N41.351 (7)O2W—H2WA0.86 (2)
C18—C191.402 (7)C35—C34i1.372 (7)
C19—C221.410 (8)C35—H350.9300
C19—C201.450 (9)
O5—Tb1—O5i130.87 (17)C19—C18—C17119.3 (5)
O5—Tb1—O387.91 (14)C18—C19—C22116.6 (6)
O5i—Tb1—O381.06 (14)C18—C19—C20119.4 (5)
O5—Tb1—O3i81.06 (14)C22—C19—C20124.1 (5)
O5i—Tb1—O3i87.91 (14)C21—C20—C19120.4 (5)
O3—Tb1—O3i153.3 (2)C21—C20—H20A119.8
O5—Tb1—N665.43 (9)C19—C20—H20A119.8
O5i—Tb1—N665.43 (8)C20—C21—C16122.2 (6)
O3—Tb1—N676.67 (10)C20—C21—H21A118.9
O3i—Tb1—N676.67 (10)C16—C21—H21A118.9
O5—Tb1—O178.26 (12)C23—C22—C19120.0 (5)
O5i—Tb1—O1143.68 (12)C23—C22—H22A120.0
O3—Tb1—O1126.92 (13)C19—C22—H22A120.0
O3i—Tb1—O174.53 (13)C22—C23—C24119.6 (6)
N6—Tb1—O1136.41 (8)C22—C23—H23A120.2
O5—Tb1—O1i143.68 (12)C24—C23—H23A120.2
O5i—Tb1—O1i78.26 (12)N4—C24—C23122.7 (6)
O3—Tb1—O1i74.53 (13)N4—C24—H24A118.7
O3i—Tb1—O1i126.92 (13)C23—C24—H24A118.7
N6—Tb1—O1i136.41 (8)O1—C25—O2122.9 (5)
O1—Tb1—O1i87.18 (16)O1—C25—C26118.2 (4)
O5—Tb1—N5i137.42 (13)O2—C25—C26118.9 (4)
O5i—Tb1—N5i74.24 (12)N5—C26—C27123.0 (5)
O3—Tb1—N5i133.76 (13)N5—C26—C25112.9 (4)
O3i—Tb1—N5i64.29 (13)C27—C26—C25124.1 (5)
N6—Tb1—N5i123.98 (9)C26—C27—C28118.2 (6)
O1—Tb1—N5i69.51 (12)C26—C27—H27A120.9
O1i—Tb1—N5i62.63 (12)C28—C27—H27A120.9
O5—Tb1—N574.24 (12)C29—C28—C27118.3 (6)
O5i—Tb1—N5137.42 (13)C29—C28—H28A120.8
O3—Tb1—N564.29 (13)C27—C28—H28A120.8
O3i—Tb1—N5133.76 (13)C28—C29—C30119.9 (5)
N6—Tb1—N5123.98 (9)C28—C29—H29A120.1
O1—Tb1—N562.63 (12)C30—C29—H29A120.1
O1i—Tb1—N569.51 (12)N5—C30—C29121.3 (5)
N5i—Tb1—N5112.04 (17)N5—C30—C31115.1 (5)
N1—C1—C2122.5 (6)C29—C30—C31123.5 (5)
N1—C1—H1A118.7O4—C31—O3127.6 (6)
C2—C1—H1A118.7O4—C31—C30116.5 (6)
C3—C2—C1119.6 (6)O3—C31—C30115.9 (5)
C3—C2—H2A120.2O6—C32—O5125.9 (5)
C1—C2—H2A120.2O6—C32—C33118.8 (5)
C2—C3—C4119.7 (6)O5—C32—C33115.3 (4)
C2—C3—H3A120.2N6—C33—C34121.3 (5)
C4—C3—H3A120.2N6—C33—C32114.3 (4)
C3—C4—C5117.6 (6)C34—C33—C32124.3 (4)
C3—C4—C9124.8 (6)C35—C34—C33119.3 (5)
C5—C4—C9117.6 (6)C35—C34—H34A120.4
N1—C5—C4122.4 (5)C33—C34—H34A120.4
N1—C5—C6116.9 (4)N3—Cu1—N1173.77 (17)
C4—C5—C6120.7 (5)N3—Cu1—N295.52 (18)
N2—C6—C7122.8 (5)N1—Cu1—N282.30 (18)
N2—C6—C5117.0 (5)N3—Cu1—O289.25 (16)
C7—C6—C5120.2 (5)N1—Cu1—O291.39 (17)
C10—C7—C6116.9 (6)N2—Cu1—O2164.39 (16)
C10—C7—C8125.0 (6)N3—Cu1—N480.47 (17)
C6—C7—C8118.1 (6)N1—Cu1—N4105.65 (17)
C9—C8—C7121.0 (6)N2—Cu1—N4100.79 (17)
C9—C8—H8A119.5O2—Cu1—N494.65 (15)
C7—C8—H8A119.5C1—N1—C5118.2 (5)
C8—C9—C4122.3 (6)C1—N1—Cu1129.6 (4)
C8—C9—H9A118.9C5—N1—Cu1112.2 (3)
C4—C9—H9A118.9C12—N2—C6116.7 (5)
C11—C10—C7119.9 (6)C12—N2—Cu1131.6 (4)
C11—C10—H10A120.0C6—N2—Cu1111.6 (4)
C7—C10—H10A120.0C13—N3—C17119.8 (5)
C12—C11—C10119.4 (6)C13—N3—Cu1126.0 (4)
C12—C11—H11A120.3C17—N3—Cu1114.0 (3)
C10—C11—H11A120.3C24—N4—C18117.8 (5)
N2—C12—C11124.2 (6)C24—N4—Cu1132.6 (4)
N2—C12—H12A117.9C18—N4—Cu1109.4 (3)
C11—C12—H12A117.9C30—N5—C26119.2 (4)
N3—C13—C14122.6 (5)C30—N5—Tb1118.9 (3)
N3—C13—H13A118.7C26—N5—Tb1121.9 (3)
C14—C13—H13A118.7C33—N6—C33i119.6 (6)
C15—C14—C13118.6 (6)C33—N6—Tb1120.2 (3)
C15—C14—H14A120.7C33i—N6—Tb1120.2 (3)
C13—C14—H14A120.7O8—N7—O7116.6 (7)
C14—C15—C16120.4 (6)O8—N7—O7ii116.6 (7)
C14—C15—H15A119.8O7—N7—O7ii126.9 (14)
C16—C15—H15A119.8C25—O1—Tb1124.1 (3)
C17—C16—C15117.5 (5)H1WA—O1W—H1WB102 (3)
C17—C16—C21118.0 (5)C25—O2—Cu1105.9 (3)
C15—C16—C21124.4 (5)H2WB—O2W—H2WA108 (4)
N3—C17—C16121.0 (5)C31—O3—Tb1125.3 (4)
N3—C17—C18118.4 (4)C32—O5—Tb1124.5 (3)
C16—C17—C18120.5 (5)C34i—C35—C34119.2 (7)
N4—C18—C19123.2 (5)C34i—C35—H35120.4
N4—C18—C17117.4 (4)C34—C35—H35120.4
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.85 (2)2.15 (2)2.979 (7)162 (4)
O2W—H2WB···O40.84 (2)1.87 (3)2.705 (9)174 (11)
O2W—H2WA···O70.86 (2)1.84 (2)2.675 (14)164 (10)
O1W—H1WA···O2Wiii0.91 (2)1.93 (2)2.827 (12)171 (10)
Symmetry code: (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cu2Tb(C7H3NO4)3(C12H8N2)4]NO3·4H2O
Mr1636.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.058 (4), 19.574 (5), 19.927 (5)
β (°) 97.289 (4)
V3)6599 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.19 × 0.17 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.728, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
17945, 6454, 4952
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.134, 1.04
No. of reflections6454
No. of parameters479
No. of restraints27
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 1.09

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2008).

Selected bond lengths (Å) top
Tb1—O52.374 (3)Cu1—N12.019 (4)
Tb1—O32.422 (4)Cu1—N22.027 (4)
Tb1—N62.450 (5)Cu1—O22.038 (4)
Tb1—O12.489 (3)Cu1—N42.195 (4)
Tb1—N52.542 (4)Cu1—O12.667 (3)
Cu1—N32.011 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.85 (2)2.155 (18)2.979 (7)162 (4)
O2W—H2WB···O40.84 (2)1.87 (3)2.705 (9)174 (11)
O2W—H2WA···O70.86 (2)1.84 (2)2.675 (14)164 (10)
O1W—H1WA···O2Wi0.908 (19)1.927 (18)2.827 (12)171 (10)
Symmetry code: (i) x1/2, y1/2, z.
 

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJüstel, T., Nikol, H. & Ronda, C. (1998). Angew. Chem. Int. Ed. 37, 3084–3103.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. G., Gu, X. F., Ding, F., Smet, P. F., Gao, E. J., Poelman, D. & Verpoort, F. (2010). Cryst. Growth Des. 10, 1059–1067.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, X. P., Jones, R. A., Lai, R. T., Waheed, A., Oye, M. M. & Holmes, A. L. (2006). Polyhedron, 25, 881-887.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds