metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3,3′-(piperazine-1,4-di­yl)­dipropan­aminium] di-μ2-sulfido-bis­­[di­sulfido­german­ate(IV)]

aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 5 May 2012; accepted 3 July 2012; online 10 July 2012)

In the title compound, (C10H26N4)2[Ge2S6], the dimeric [Ge2S6]4− anion formed by two edge-sharing GeS4 tetra­hedral units lies around an inversion centre. The average terminal and bridging Ge—S bond lengths are 2.162 (7) and 2.267 (15) Å, respectively. The inorganic anions and organic cations are organized into a three-dimensional network by numerous N—H⋯S hydrogen bonds.

Related literature

For background to main group metal–chalcogenide compounds, see: Bedard et al. (1999[Bedard, R. L., Wilson, S. T., Vail, L. D., Bennettand, J. M. & Flanigen, E. M. (1999). Zeolites: Facts, Figures, Future. Proceedings of the 8th International Zeolite Conference, edited by P. A. Jacobs & R. A. van Santen, p. 375. Amsterdam: Elsevier.]); Nellis et al. (1995[Nellis, D. M., Ko, Y., Tan, K., Koch, S. & Parise, J. (1995). J. Chem. Soc. Chem. Commun. pp. 541-542.]); Blachnik & Fehlker (2001[Blachnik, R. & Fehlker, A. (2001). Z. Kristallogr. 216, 215-221.]); Zheng et al. (2002[Zheng, N., Bu, X., Wang, B. & Feng, P. (2002). Science, 298, 2366-2369.], 2005[Zheng, N., Bu, X. & Feng, P. (2005). Chem. Commun. pp. 2805-2806.]). For related structures, see: Jia et al. (2005[Jia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874-881.]); Xu et al. (2012[Xu, C., Zhang, J.-J., Duan, T., Chen, Q. & Zhang, Q.-F. (2012). Acta Cryst. E68, m154.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H26N4)2[Ge2S6]

  • Mr = 742.24

  • Monoclinic, P 21 /c

  • a = 12.0111 (4) Å

  • b = 7.7759 (3) Å

  • c = 18.9777 (7) Å

  • β = 103.569 (1)°

  • V = 1722.99 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 296 K

  • 0.38 × 0.29 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.498, Tmax = 0.727

  • 16480 measured reflections

  • 3950 independent reflections

  • 3194 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.07

  • 3950 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯S2i 0.89 2.48 3.278 (3) 149
N3—H3C⋯S3 0.89 2.34 3.225 (3) 170
N3—H3A⋯S2ii 0.89 2.61 3.440 (3) 157
N3—H3A⋯S3ii 0.89 2.83 3.366 (3) 120
N4—H4C⋯S2iii 0.89 2.53 3.408 (4) 169
N4—H4B⋯S2iv 0.89 2.34 3.228 (4) 178
N4—H4A⋯S3v 0.89 2.39 3.275 (4) 173
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) -x, -y, -z; (v) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since Bedard reported the first porous metal chalcogenide open framework in 1999 (Bedard et al., 1999), a series of binary and ternary metal chalcogenide open-frameworks have been synthesized (Nellis et al., 1995; Zheng et al., 2005). Among the various synthetic methods, hydrothermal technique is the best choice for preparing related compounds due to gentle reaction conditions. Moreover, organic amines are often used as templates in the hydrothermal reactions. Therefore, amines with different structures play an important role for templating effect in the construction of open-frameworks (Zheng et al., 2002). In this paper, we report the hydrothermal synthesis and crystal structure of an amine-templated thiogermanate, [bappH2]2[Ge2S6] (bapp = 1,4-bis(3-aminopropyl)piperazine).

The title compound crystallizes in the monoclinic space group P21/c with a dimeric anion of [Ge2S6]4- located around inversion centre and with diprotonated 1,4-bis(3-aminopropyl)- piperazine in general position (Fig. 1). The dimeric [Ge2S6]4- anion is constructed by two edge-sharing tetrahedral GeS4 units forming a planar Ge2S2 quadrilateral with the four terminal sulfur atoms lying on a perpendicular plane. The S—Ge—S angles in tetrahedral GeS4 unit are in the ranges from 93.82 (3) to 114.12 (4)°. The average bond length of Ge—St (terminal bond) of 2.162 (7) Å is obviously shorter than that of Ge—Sb (bridging bond) [2.267 (15) Å]. The bond length values are similar to those found in the other thiogermanates (Jia et al. 2005; Xu et al., 2012). The two terminal amine groups of 4-bis(3-aminopropyl)piperazine are protonated to balance negative charges of the dimeric anion. The [Ge2S6]4- anions and [bappH2]2+ cations are organized into an extended three-dimensional network by N—H···S hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For background to main group metal–chalcogenide compounds, see: Bedard et al. (1999); Nellis et al. (1995); Blachnik & Fehlker (2001); Zheng et al. (2002, 2005). For related structures, see: Jia et al. (2005); Xu et al. (2012).

Experimental top

GeO2 (104.6 mg, 1.0 mmol) and S powder (128.0 mg, 4.0 mmol) in the distilled water (4.8550 g) were mixed with 1,4-bis(3-aminopropyl)piperazine (2.5640 g) in a 23 mL Teflon-lined stainless steel autoclave to and stirred for 20 min. The vessel was sealed and heated to 190°C for 6 d and then cooled to room temperature. Colorless flake crystals were obtained and air dried. The yield based on GeO2 is about 45%. Analysis, calculated for C20H52N8S6Ge2: C 32.4, H 7.06, N 15.1%; found C 32.2, H 6.98, N 14.8 %.

Refinement top

All C-bound H atoms were positioned geometrically and refined as riding atoms with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C)]. N-bound H atoms were located from a difference Fourier map but for final refinement they were were positioned geometrically with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N)].

Structure description top

Since Bedard reported the first porous metal chalcogenide open framework in 1999 (Bedard et al., 1999), a series of binary and ternary metal chalcogenide open-frameworks have been synthesized (Nellis et al., 1995; Zheng et al., 2005). Among the various synthetic methods, hydrothermal technique is the best choice for preparing related compounds due to gentle reaction conditions. Moreover, organic amines are often used as templates in the hydrothermal reactions. Therefore, amines with different structures play an important role for templating effect in the construction of open-frameworks (Zheng et al., 2002). In this paper, we report the hydrothermal synthesis and crystal structure of an amine-templated thiogermanate, [bappH2]2[Ge2S6] (bapp = 1,4-bis(3-aminopropyl)piperazine).

The title compound crystallizes in the monoclinic space group P21/c with a dimeric anion of [Ge2S6]4- located around inversion centre and with diprotonated 1,4-bis(3-aminopropyl)- piperazine in general position (Fig. 1). The dimeric [Ge2S6]4- anion is constructed by two edge-sharing tetrahedral GeS4 units forming a planar Ge2S2 quadrilateral with the four terminal sulfur atoms lying on a perpendicular plane. The S—Ge—S angles in tetrahedral GeS4 unit are in the ranges from 93.82 (3) to 114.12 (4)°. The average bond length of Ge—St (terminal bond) of 2.162 (7) Å is obviously shorter than that of Ge—Sb (bridging bond) [2.267 (15) Å]. The bond length values are similar to those found in the other thiogermanates (Jia et al. 2005; Xu et al., 2012). The two terminal amine groups of 4-bis(3-aminopropyl)piperazine are protonated to balance negative charges of the dimeric anion. The [Ge2S6]4- anions and [bappH2]2+ cations are organized into an extended three-dimensional network by N—H···S hydrogen bonds (Fig. 2 and Table 1).

For background to main group metal–chalcogenide compounds, see: Bedard et al. (1999); Nellis et al. (1995); Blachnik & Fehlker (2001); Zheng et al. (2002, 2005). For related structures, see: Jia et al. (2005); Xu et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing displacement ellipsoids at the 50% probability level. Atoms with the A label were generated by the symmetry operation -x+1, -y+1, -z.
[Figure 2] Fig. 2. Packing diagram of the title compound. Dashed lines donote hydrogen bonds.
Bis[3,3'-(piperazine-1,4-diyl)dipropanaminium] di-µ2-sulfido-bis[disulfidogermanate(IV)] top
Crystal data top
(C10H26N4)2[Ge2S6]F(000) = 776
Mr = 742.24Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6783 reflections
a = 12.0111 (4) Åθ = 2.5–27.0°
b = 7.7759 (3) ŵ = 2.13 mm1
c = 18.9777 (7) ÅT = 296 K
β = 103.569 (1)°Block, colourless
V = 1722.99 (11) Å30.38 × 0.29 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3950 independent reflections
Radiation source: fine-focus sealed tube3194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1515
Tmin = 0.498, Tmax = 0.727k = 106
16480 measured reflectionsl = 2224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0586P)2 + 1.3201P]
where P = (Fo2 + 2Fc2)/3
3950 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
(C10H26N4)2[Ge2S6]V = 1722.99 (11) Å3
Mr = 742.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.0111 (4) ŵ = 2.13 mm1
b = 7.7759 (3) ÅT = 296 K
c = 18.9777 (7) Å0.38 × 0.29 × 0.16 mm
β = 103.569 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3950 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3194 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.727Rint = 0.021
16480 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 1.15 e Å3
3950 reflectionsΔρmin = 0.36 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.53261 (3)0.44178 (4)0.080248 (14)0.04128 (12)
S10.38171 (8)0.59109 (12)0.01275 (4)0.0541 (2)
S20.47606 (9)0.19876 (11)0.11556 (4)0.0606 (3)
S30.63552 (8)0.59389 (11)0.16645 (4)0.0565 (2)
N10.1088 (3)0.4905 (5)0.1532 (2)0.0769 (10)
N20.0300 (3)0.1852 (5)0.1210 (3)0.1023 (15)
N30.4526 (3)0.8528 (4)0.20970 (15)0.0630 (8)
H3A0.45800.84010.25700.094*
H3B0.47690.95720.20130.094*
H3C0.49560.77380.19480.094*
N40.3627 (4)0.0949 (5)0.0505 (2)0.0782 (10)
H4A0.36730.18510.07850.117*
H4B0.39230.12220.00430.117*
H4C0.40160.00720.06300.117*
C60.1475 (5)0.3408 (7)0.1201 (5)0.121 (2)
H6A0.23010.33190.13620.145*
H6B0.12840.35470.06790.145*
C70.0954 (5)0.1827 (7)0.1388 (5)0.146 (3)
H7A0.12270.16210.19030.175*
H7B0.12070.08750.11340.175*
C80.0710 (4)0.3401 (7)0.1474 (4)0.0981 (16)
H8A0.05590.33480.19990.118*
H8B0.15320.34750.12880.118*
C90.0168 (4)0.4974 (6)0.1262 (4)0.0932 (15)
H9A0.03570.50770.07380.112*
H9B0.04660.59790.14590.112*
C100.1646 (4)0.6473 (6)0.1389 (3)0.0880 (13)
H10A0.12190.74510.15040.106*
H10B0.16310.65280.08760.106*
C110.2881 (4)0.6607 (6)0.1822 (2)0.0713 (10)
H11A0.29150.64410.23340.086*
H4N0.33380.57160.16690.086*
C120.3349 (4)0.8321 (5)0.1708 (2)0.0725 (11)
H12A0.32940.84850.11950.087*
H12B0.28880.92010.18650.087*
C130.0732 (7)0.0324 (9)0.1558 (5)0.151 (3)
H13A0.03590.06970.14300.182*
H13B0.04890.04580.20790.182*
C140.1959 (7)0.0022 (10)0.1373 (3)0.129 (3)
H14A0.23410.10560.14790.155*
H14B0.21300.08890.16800.155*
C150.2442 (5)0.0463 (8)0.0594 (3)0.1042 (18)
H15A0.23850.05030.02810.125*
H15B0.20120.14160.04610.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0602 (2)0.03395 (18)0.02960 (17)0.00094 (13)0.01036 (13)0.00344 (11)
S10.0626 (5)0.0634 (5)0.0388 (4)0.0157 (4)0.0166 (3)0.0086 (3)
S20.0973 (7)0.0428 (4)0.0406 (4)0.0147 (4)0.0140 (4)0.0072 (3)
S30.0768 (6)0.0487 (5)0.0396 (4)0.0091 (4)0.0046 (4)0.0021 (3)
N10.066 (2)0.0546 (18)0.111 (3)0.0014 (16)0.0225 (19)0.0006 (19)
N20.076 (2)0.062 (2)0.152 (4)0.0009 (19)0.008 (3)0.010 (3)
N30.099 (2)0.0472 (16)0.0448 (15)0.0004 (16)0.0211 (15)0.0012 (12)
N40.102 (3)0.068 (2)0.066 (2)0.0073 (19)0.0226 (19)0.0058 (17)
C60.077 (3)0.074 (3)0.216 (7)0.006 (3)0.040 (4)0.035 (4)
C70.078 (3)0.062 (3)0.271 (10)0.010 (3)0.014 (5)0.027 (4)
C80.068 (3)0.083 (3)0.138 (5)0.008 (2)0.012 (3)0.011 (3)
C90.073 (3)0.066 (3)0.136 (5)0.013 (2)0.014 (3)0.002 (3)
C100.088 (3)0.068 (3)0.109 (4)0.005 (2)0.026 (3)0.013 (3)
C110.074 (2)0.075 (3)0.066 (2)0.000 (2)0.0193 (19)0.001 (2)
C120.101 (3)0.058 (2)0.056 (2)0.014 (2)0.014 (2)0.0031 (18)
C130.147 (6)0.091 (4)0.185 (8)0.047 (4)0.022 (6)0.026 (5)
C140.157 (6)0.136 (5)0.086 (4)0.068 (5)0.012 (4)0.015 (4)
C150.107 (4)0.128 (5)0.079 (3)0.018 (3)0.025 (3)0.004 (3)
Geometric parameters (Å, º) top
Ge1—S32.1573 (9)C7—H7B0.9700
Ge1—S22.1669 (9)C8—C91.485 (7)
Ge1—S12.2770 (9)C8—H8A0.9700
S1—Ge1i2.2564 (8)C8—H8B0.9700
N1—C101.448 (6)C9—H9A0.9700
N1—C61.450 (6)C9—H9B0.9700
N1—C91.476 (6)C10—C111.522 (6)
N2—C81.435 (7)C10—H10A0.9700
N2—C71.465 (7)C10—H10B0.9700
N2—C131.509 (8)C11—C121.482 (6)
N3—C121.442 (5)C11—H11A0.9700
N3—H3A0.8900C11—H4N0.9700
N3—H3B0.8900C12—H12A0.9700
N3—H3C0.8900C12—H12B0.9700
N4—C151.443 (7)C13—C141.451 (10)
N4—H4A0.8900C13—H13A0.9700
N4—H4B0.8900C13—H13B0.9700
N4—H4C0.8900C14—C151.504 (8)
C6—C71.460 (8)C14—H14A0.9700
C6—H6A0.9700C14—H14B0.9700
C6—H6B0.9700C15—H15A0.9700
C7—H7A0.9700C15—H15B0.9700
S3—Ge1—S2114.15 (3)N1—C9—C8110.6 (4)
S3—Ge1—S1i111.71 (4)N1—C9—H9A109.5
S2—Ge1—S1i112.13 (4)C8—C9—H9A109.5
S3—Ge1—S1112.70 (4)N1—C9—H9B109.5
S2—Ge1—S1110.66 (4)C8—C9—H9B109.5
S1i—Ge1—S193.82 (3)H9A—C9—H9B108.1
Ge1i—S1—Ge186.18 (3)N1—C10—C11113.1 (4)
C10—N1—C6112.7 (4)N1—C10—H10A109.0
C10—N1—C9112.6 (4)C11—C10—H10A109.0
C6—N1—C9106.5 (4)N1—C10—H10B109.0
C8—N2—C7110.4 (4)C11—C10—H10B109.0
C8—N2—C13109.1 (6)H10A—C10—H10B107.8
C7—N2—C13109.2 (5)C12—C11—C10109.7 (4)
C12—N3—H3A109.5C12—C11—H11A109.7
C12—N3—H3B109.5C10—C11—H11A109.7
H3A—N3—H3B109.5C12—C11—H4N109.7
C12—N3—H3C109.5C10—C11—H4N109.7
H3A—N3—H3C109.5H11A—C11—H4N108.2
H3B—N3—H3C109.5N3—C12—C11112.7 (3)
C15—N4—H4A109.5N3—C12—H12A109.1
C15—N4—H4B109.5C11—C12—H12A109.1
H4A—N4—H4B109.5N3—C12—H12B109.1
C15—N4—H4C109.5C11—C12—H12B109.1
H4A—N4—H4C109.5H12A—C12—H12B107.8
H4B—N4—H4C109.5C14—C13—N2117.1 (6)
N1—C6—C7111.8 (5)C14—C13—H13A108.0
N1—C6—H6A109.3N2—C13—H13A108.0
C7—C6—H6A109.3C14—C13—H13B108.0
N1—C6—H6B109.3N2—C13—H13B108.0
C7—C6—H6B109.3H13A—C13—H13B107.3
H6A—C6—H6B107.9C13—C14—C15114.5 (7)
C6—C7—N2114.2 (5)C13—C14—H14A108.6
C6—C7—H7A108.7C15—C14—H14A108.6
N2—C7—H7A108.7C13—C14—H14B108.6
C6—C7—H7B108.7C15—C14—H14B108.6
N2—C7—H7B108.7H14A—C14—H14B107.6
H7A—C7—H7B107.6N4—C15—C14108.9 (5)
N2—C8—C9112.9 (5)N4—C15—H15A109.9
N2—C8—H8A109.0C14—C15—H15A109.9
C9—C8—H8A109.0N4—C15—H15B109.9
N2—C8—H8B109.0C14—C15—H15B109.9
C9—C8—H8B109.0H15A—C15—H15B108.3
H8A—C8—H8B107.8
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···S2ii0.892.483.278 (3)149
N3—H3C···S30.892.343.225 (3)170
N3—H3A···S2iii0.892.613.440 (3)157
N3—H3A···S3iii0.892.833.366 (3)120
N4—H4C···S2iv0.892.533.408 (4)169
N4—H4B···S2v0.892.343.228 (4)178
N4—H4A···S3vi0.892.393.275 (4)173
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z; (v) x, y, z; (vi) x1, y1, z.

Experimental details

Crystal data
Chemical formula(C10H26N4)2[Ge2S6]
Mr742.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.0111 (4), 7.7759 (3), 18.9777 (7)
β (°) 103.569 (1)
V3)1722.99 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.38 × 0.29 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.498, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
16480, 3950, 3194
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.07
No. of reflections3950
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···S2i0.892.483.278 (3)149
N3—H3C···S30.892.343.225 (3)170
N3—H3A···S2ii0.892.613.440 (3)157
N3—H3A···S3ii0.892.833.366 (3)120
N4—H4C···S2iii0.892.533.408 (4)169
N4—H4B···S2iv0.892.343.228 (4)178
N4—H4A···S3v0.892.393.275 (4)173
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y, z; (v) x1, y1, z.
 

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in Universities of China (grant No. NCET-08–0618).

References

First citationBedard, R. L., Wilson, S. T., Vail, L. D., Bennettand, J. M. & Flanigen, E. M. (1999). Zeolites: Facts, Figures, Future. Proceedings of the 8th International Zeolite Conference, edited by P. A. Jacobs & R. A. van Santen, p. 375. Amsterdam: Elsevier.  Google Scholar
First citationBlachnik, R. & Fehlker, A. (2001). Z. Kristallogr. 216, 215-221.  CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874-881.  Web of Science CSD CrossRef CAS Google Scholar
First citationNellis, D. M., Ko, Y., Tan, K., Koch, S. & Parise, J. (1995). J. Chem. Soc. Chem. Commun. pp. 541-542.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C., Zhang, J.-J., Duan, T., Chen, Q. & Zhang, Q.-F. (2012). Acta Cryst. E68, m154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, N., Bu, X. & Feng, P. (2005). Chem. Commun. pp. 2805–2806.  Web of Science CSD CrossRef Google Scholar
First citationZheng, N., Bu, X., Wang, B. & Feng, P. (2002). Science, 298, 2366-2369.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds