metal-organic compounds
Bis[3,3′-(piperazine-1,4-diyl)dipropanaminium] di-μ2-sulfido-bis[disulfidogermanate(IV)]
aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn
In the title compound, (C10H26N4)2[Ge2S6], the dimeric [Ge2S6]4− anion formed by two edge-sharing GeS4 tetrahedral units lies around an inversion centre. The average terminal and bridging Ge—S bond lengths are 2.162 (7) and 2.267 (15) Å, respectively. The inorganic anions and organic cations are organized into a three-dimensional network by numerous N—H⋯S hydrogen bonds.
Related literature
For background to main group metal–chalcogenide compounds, see: Bedard et al. (1999); Nellis et al. (1995); Blachnik & Fehlker (2001); Zheng et al. (2002, 2005). For related structures, see: Jia et al. (2005); Xu et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812030334/gk2485sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812030334/gk2485Isup2.hkl
GeO2 (104.6 mg, 1.0 mmol) and S powder (128.0 mg, 4.0 mmol) in the distilled water (4.8550 g) were mixed with 1,4-bis(3-aminopropyl)piperazine (2.5640 g) in a 23 mL Teflon-lined stainless steel autoclave to and stirred for 20 min. The vessel was sealed and heated to 190°C for 6 d and then cooled to room temperature. Colorless flake crystals were obtained and air dried. The yield based on GeO2 is about 45%. Analysis, calculated for C20H52N8S6Ge2: C 32.4, H 7.06, N 15.1%; found C 32.2, H 6.98, N 14.8 %.
All C-bound H atoms were positioned geometrically and refined as riding atoms with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C)]. N-bound H atoms were located from a difference Fourier map but for final
they were were positioned geometrically with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N)].Since Bedard reported the first porous metal chalcogenide open framework in 1999 (Bedard et al., 1999), a series of binary and ternary metal chalcogenide open-frameworks have been synthesized (Nellis et al., 1995; Zheng et al., 2005). Among the various synthetic methods, hydrothermal technique is the best choice for preparing related compounds due to gentle reaction conditions. Moreover, organic
are often used as templates in the hydrothermal reactions. Therefore, with different structures play an important role for templating effect in the construction of open-frameworks (Zheng et al., 2002). In this paper, we report the hydrothermal synthesis and of an amine-templated thiogermanate, [bappH2]2[Ge2S6] (bapp = 1,4-bis(3-aminopropyl)piperazine).The title compound crystallizes in the monoclinic
P21/c with a dimeric anion of [Ge2S6]4- located around inversion centre and with diprotonated 1,4-bis(3-aminopropyl)- piperazine in general position (Fig. 1). The dimeric [Ge2S6]4- anion is constructed by two edge-sharing tetrahedral GeS4 units forming a planar Ge2S2 quadrilateral with the four terminal sulfur atoms lying on a perpendicular plane. The S—Ge—S angles in tetrahedral GeS4 unit are in the ranges from 93.82 (3) to 114.12 (4)°. The average bond length of Ge—St (terminal bond) of 2.162 (7) Å is obviously shorter than that of Ge—Sb (bridging bond) [2.267 (15) Å]. The bond length values are similar to those found in the other thiogermanates (Jia et al. 2005; Xu et al., 2012). The two terminal amine groups of 4-bis(3-aminopropyl)piperazine are protonated to balance negative charges of the dimeric anion. The [Ge2S6]4- anions and [bappH2]2+ cations are organized into an extended three-dimensional network by N—H···S hydrogen bonds (Fig. 2 and Table 1).For background to main group metal–chalcogenide compounds, see: Bedard et al. (1999); Nellis et al. (1995); Blachnik & Fehlker (2001); Zheng et al. (2002, 2005). For related structures, see: Jia et al. (2005); Xu et al. (2012).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the title compound, showing displacement ellipsoids at the 50% probability level. Atoms with the A label were generated by the symmetry operation -x+1, -y+1, -z. | |
Fig. 2. Packing diagram of the title compound. Dashed lines donote hydrogen bonds. |
(C10H26N4)2[Ge2S6] | F(000) = 776 |
Mr = 742.24 | Dx = 1.431 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6783 reflections |
a = 12.0111 (4) Å | θ = 2.5–27.0° |
b = 7.7759 (3) Å | µ = 2.13 mm−1 |
c = 18.9777 (7) Å | T = 296 K |
β = 103.569 (1)° | Block, colourless |
V = 1722.99 (11) Å3 | 0.38 × 0.29 × 0.16 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 3950 independent reflections |
Radiation source: fine-focus sealed tube | 3194 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
phi and ω scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −15→15 |
Tmin = 0.498, Tmax = 0.727 | k = −10→6 |
16480 measured reflections | l = −22→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0586P)2 + 1.3201P] where P = (Fo2 + 2Fc2)/3 |
3950 reflections | (Δ/σ)max = 0.001 |
165 parameters | Δρmax = 1.15 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
(C10H26N4)2[Ge2S6] | V = 1722.99 (11) Å3 |
Mr = 742.24 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.0111 (4) Å | µ = 2.13 mm−1 |
b = 7.7759 (3) Å | T = 296 K |
c = 18.9777 (7) Å | 0.38 × 0.29 × 0.16 mm |
β = 103.569 (1)° |
Bruker APEXII CCD area-detector diffractometer | 3950 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 3194 reflections with I > 2σ(I) |
Tmin = 0.498, Tmax = 0.727 | Rint = 0.021 |
16480 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.15 e Å−3 |
3950 reflections | Δρmin = −0.36 e Å−3 |
165 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ge1 | 0.53261 (3) | 0.44178 (4) | 0.080248 (14) | 0.04128 (12) | |
S1 | 0.38171 (8) | 0.59109 (12) | 0.01275 (4) | 0.0541 (2) | |
S2 | 0.47606 (9) | 0.19876 (11) | 0.11556 (4) | 0.0606 (3) | |
S3 | 0.63552 (8) | 0.59389 (11) | 0.16645 (4) | 0.0565 (2) | |
N1 | 0.1088 (3) | 0.4905 (5) | 0.1532 (2) | 0.0769 (10) | |
N2 | −0.0300 (3) | 0.1852 (5) | 0.1210 (3) | 0.1023 (15) | |
N3 | 0.4526 (3) | 0.8528 (4) | 0.20970 (15) | 0.0630 (8) | |
H3A | 0.4580 | 0.8401 | 0.2570 | 0.094* | |
H3B | 0.4769 | 0.9572 | 0.2013 | 0.094* | |
H3C | 0.4956 | 0.7738 | 0.1948 | 0.094* | |
N4 | −0.3627 (4) | −0.0949 (5) | 0.0505 (2) | 0.0782 (10) | |
H4A | −0.3673 | −0.1851 | 0.0785 | 0.117* | |
H4B | −0.3923 | −0.1222 | 0.0043 | 0.117* | |
H4C | −0.4016 | −0.0072 | 0.0630 | 0.117* | |
C6 | 0.1475 (5) | 0.3408 (7) | 0.1201 (5) | 0.121 (2) | |
H6A | 0.2301 | 0.3319 | 0.1362 | 0.145* | |
H6B | 0.1284 | 0.3547 | 0.0679 | 0.145* | |
C7 | 0.0954 (5) | 0.1827 (7) | 0.1388 (5) | 0.146 (3) | |
H7A | 0.1227 | 0.1621 | 0.1903 | 0.175* | |
H7B | 0.1207 | 0.0875 | 0.1134 | 0.175* | |
C8 | −0.0710 (4) | 0.3401 (7) | 0.1474 (4) | 0.0981 (16) | |
H8A | −0.0559 | 0.3348 | 0.1999 | 0.118* | |
H8B | −0.1532 | 0.3475 | 0.1288 | 0.118* | |
C9 | −0.0168 (4) | 0.4974 (6) | 0.1262 (4) | 0.0932 (15) | |
H9A | −0.0357 | 0.5077 | 0.0738 | 0.112* | |
H9B | −0.0466 | 0.5979 | 0.1459 | 0.112* | |
C10 | 0.1646 (4) | 0.6473 (6) | 0.1389 (3) | 0.0880 (13) | |
H10A | 0.1219 | 0.7451 | 0.1504 | 0.106* | |
H10B | 0.1631 | 0.6528 | 0.0876 | 0.106* | |
C11 | 0.2881 (4) | 0.6607 (6) | 0.1822 (2) | 0.0713 (10) | |
H11A | 0.2915 | 0.6441 | 0.2334 | 0.086* | |
H4N | 0.3338 | 0.5716 | 0.1669 | 0.086* | |
C12 | 0.3349 (4) | 0.8321 (5) | 0.1708 (2) | 0.0725 (11) | |
H12A | 0.3294 | 0.8485 | 0.1195 | 0.087* | |
H12B | 0.2888 | 0.9201 | 0.1865 | 0.087* | |
C13 | −0.0732 (7) | 0.0324 (9) | 0.1558 (5) | 0.151 (3) | |
H13A | −0.0359 | −0.0697 | 0.1430 | 0.182* | |
H13B | −0.0489 | 0.0458 | 0.2079 | 0.182* | |
C14 | −0.1959 (7) | 0.0022 (10) | 0.1373 (3) | 0.129 (3) | |
H14A | −0.2341 | 0.1056 | 0.1479 | 0.155* | |
H14B | −0.2130 | −0.0889 | 0.1680 | 0.155* | |
C15 | −0.2442 (5) | −0.0463 (8) | 0.0594 (3) | 0.1042 (18) | |
H15A | −0.2385 | 0.0503 | 0.0281 | 0.125* | |
H15B | −0.2012 | −0.1416 | 0.0461 | 0.125* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ge1 | 0.0602 (2) | 0.03395 (18) | 0.02960 (17) | 0.00094 (13) | 0.01036 (13) | 0.00344 (11) |
S1 | 0.0626 (5) | 0.0634 (5) | 0.0388 (4) | 0.0157 (4) | 0.0166 (3) | 0.0086 (3) |
S2 | 0.0973 (7) | 0.0428 (4) | 0.0406 (4) | −0.0147 (4) | 0.0140 (4) | 0.0072 (3) |
S3 | 0.0768 (6) | 0.0487 (5) | 0.0396 (4) | −0.0091 (4) | 0.0046 (4) | −0.0021 (3) |
N1 | 0.066 (2) | 0.0546 (18) | 0.111 (3) | 0.0014 (16) | 0.0225 (19) | −0.0006 (19) |
N2 | 0.076 (2) | 0.062 (2) | 0.152 (4) | −0.0009 (19) | −0.008 (3) | −0.010 (3) |
N3 | 0.099 (2) | 0.0472 (16) | 0.0448 (15) | −0.0004 (16) | 0.0211 (15) | −0.0012 (12) |
N4 | 0.102 (3) | 0.068 (2) | 0.066 (2) | −0.0073 (19) | 0.0226 (19) | −0.0058 (17) |
C6 | 0.077 (3) | 0.074 (3) | 0.216 (7) | 0.006 (3) | 0.040 (4) | −0.035 (4) |
C7 | 0.078 (3) | 0.062 (3) | 0.271 (10) | 0.010 (3) | −0.014 (5) | −0.027 (4) |
C8 | 0.068 (3) | 0.083 (3) | 0.138 (5) | −0.008 (2) | 0.012 (3) | −0.011 (3) |
C9 | 0.073 (3) | 0.066 (3) | 0.136 (5) | 0.013 (2) | 0.014 (3) | 0.002 (3) |
C10 | 0.088 (3) | 0.068 (3) | 0.109 (4) | 0.005 (2) | 0.026 (3) | 0.013 (3) |
C11 | 0.074 (2) | 0.075 (3) | 0.066 (2) | 0.000 (2) | 0.0193 (19) | −0.001 (2) |
C12 | 0.101 (3) | 0.058 (2) | 0.056 (2) | 0.014 (2) | 0.014 (2) | −0.0031 (18) |
C13 | 0.147 (6) | 0.091 (4) | 0.185 (8) | −0.047 (4) | −0.022 (6) | 0.026 (5) |
C14 | 0.157 (6) | 0.136 (5) | 0.086 (4) | −0.068 (5) | 0.012 (4) | 0.015 (4) |
C15 | 0.107 (4) | 0.128 (5) | 0.079 (3) | −0.018 (3) | 0.025 (3) | 0.004 (3) |
Ge1—S3 | 2.1573 (9) | C7—H7B | 0.9700 |
Ge1—S2 | 2.1669 (9) | C8—C9 | 1.485 (7) |
Ge1—S1 | 2.2770 (9) | C8—H8A | 0.9700 |
S1—Ge1i | 2.2564 (8) | C8—H8B | 0.9700 |
N1—C10 | 1.448 (6) | C9—H9A | 0.9700 |
N1—C6 | 1.450 (6) | C9—H9B | 0.9700 |
N1—C9 | 1.476 (6) | C10—C11 | 1.522 (6) |
N2—C8 | 1.435 (7) | C10—H10A | 0.9700 |
N2—C7 | 1.465 (7) | C10—H10B | 0.9700 |
N2—C13 | 1.509 (8) | C11—C12 | 1.482 (6) |
N3—C12 | 1.442 (5) | C11—H11A | 0.9700 |
N3—H3A | 0.8900 | C11—H4N | 0.9700 |
N3—H3B | 0.8900 | C12—H12A | 0.9700 |
N3—H3C | 0.8900 | C12—H12B | 0.9700 |
N4—C15 | 1.443 (7) | C13—C14 | 1.451 (10) |
N4—H4A | 0.8900 | C13—H13A | 0.9700 |
N4—H4B | 0.8900 | C13—H13B | 0.9700 |
N4—H4C | 0.8900 | C14—C15 | 1.504 (8) |
C6—C7 | 1.460 (8) | C14—H14A | 0.9700 |
C6—H6A | 0.9700 | C14—H14B | 0.9700 |
C6—H6B | 0.9700 | C15—H15A | 0.9700 |
C7—H7A | 0.9700 | C15—H15B | 0.9700 |
S3—Ge1—S2 | 114.15 (3) | N1—C9—C8 | 110.6 (4) |
S3—Ge1—S1i | 111.71 (4) | N1—C9—H9A | 109.5 |
S2—Ge1—S1i | 112.13 (4) | C8—C9—H9A | 109.5 |
S3—Ge1—S1 | 112.70 (4) | N1—C9—H9B | 109.5 |
S2—Ge1—S1 | 110.66 (4) | C8—C9—H9B | 109.5 |
S1i—Ge1—S1 | 93.82 (3) | H9A—C9—H9B | 108.1 |
Ge1i—S1—Ge1 | 86.18 (3) | N1—C10—C11 | 113.1 (4) |
C10—N1—C6 | 112.7 (4) | N1—C10—H10A | 109.0 |
C10—N1—C9 | 112.6 (4) | C11—C10—H10A | 109.0 |
C6—N1—C9 | 106.5 (4) | N1—C10—H10B | 109.0 |
C8—N2—C7 | 110.4 (4) | C11—C10—H10B | 109.0 |
C8—N2—C13 | 109.1 (6) | H10A—C10—H10B | 107.8 |
C7—N2—C13 | 109.2 (5) | C12—C11—C10 | 109.7 (4) |
C12—N3—H3A | 109.5 | C12—C11—H11A | 109.7 |
C12—N3—H3B | 109.5 | C10—C11—H11A | 109.7 |
H3A—N3—H3B | 109.5 | C12—C11—H4N | 109.7 |
C12—N3—H3C | 109.5 | C10—C11—H4N | 109.7 |
H3A—N3—H3C | 109.5 | H11A—C11—H4N | 108.2 |
H3B—N3—H3C | 109.5 | N3—C12—C11 | 112.7 (3) |
C15—N4—H4A | 109.5 | N3—C12—H12A | 109.1 |
C15—N4—H4B | 109.5 | C11—C12—H12A | 109.1 |
H4A—N4—H4B | 109.5 | N3—C12—H12B | 109.1 |
C15—N4—H4C | 109.5 | C11—C12—H12B | 109.1 |
H4A—N4—H4C | 109.5 | H12A—C12—H12B | 107.8 |
H4B—N4—H4C | 109.5 | C14—C13—N2 | 117.1 (6) |
N1—C6—C7 | 111.8 (5) | C14—C13—H13A | 108.0 |
N1—C6—H6A | 109.3 | N2—C13—H13A | 108.0 |
C7—C6—H6A | 109.3 | C14—C13—H13B | 108.0 |
N1—C6—H6B | 109.3 | N2—C13—H13B | 108.0 |
C7—C6—H6B | 109.3 | H13A—C13—H13B | 107.3 |
H6A—C6—H6B | 107.9 | C13—C14—C15 | 114.5 (7) |
C6—C7—N2 | 114.2 (5) | C13—C14—H14A | 108.6 |
C6—C7—H7A | 108.7 | C15—C14—H14A | 108.6 |
N2—C7—H7A | 108.7 | C13—C14—H14B | 108.6 |
C6—C7—H7B | 108.7 | C15—C14—H14B | 108.6 |
N2—C7—H7B | 108.7 | H14A—C14—H14B | 107.6 |
H7A—C7—H7B | 107.6 | N4—C15—C14 | 108.9 (5) |
N2—C8—C9 | 112.9 (5) | N4—C15—H15A | 109.9 |
N2—C8—H8A | 109.0 | C14—C15—H15A | 109.9 |
C9—C8—H8A | 109.0 | N4—C15—H15B | 109.9 |
N2—C8—H8B | 109.0 | C14—C15—H15B | 109.9 |
C9—C8—H8B | 109.0 | H15A—C15—H15B | 108.3 |
H8A—C8—H8B | 107.8 |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···S2ii | 0.89 | 2.48 | 3.278 (3) | 149 |
N3—H3C···S3 | 0.89 | 2.34 | 3.225 (3) | 170 |
N3—H3A···S2iii | 0.89 | 2.61 | 3.440 (3) | 157 |
N3—H3A···S3iii | 0.89 | 2.83 | 3.366 (3) | 120 |
N4—H4C···S2iv | 0.89 | 2.53 | 3.408 (4) | 169 |
N4—H4B···S2v | 0.89 | 2.34 | 3.228 (4) | 178 |
N4—H4A···S3vi | 0.89 | 2.39 | 3.275 (4) | 173 |
Symmetry codes: (ii) x, y+1, z; (iii) −x+1, y+1/2, −z+1/2; (iv) x−1, y, z; (v) −x, −y, −z; (vi) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | (C10H26N4)2[Ge2S6] |
Mr | 742.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 12.0111 (4), 7.7759 (3), 18.9777 (7) |
β (°) | 103.569 (1) |
V (Å3) | 1722.99 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.13 |
Crystal size (mm) | 0.38 × 0.29 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.498, 0.727 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16480, 3950, 3194 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.113, 1.07 |
No. of reflections | 3950 |
No. of parameters | 165 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.15, −0.36 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···S2i | 0.89 | 2.48 | 3.278 (3) | 149 |
N3—H3C···S3 | 0.89 | 2.34 | 3.225 (3) | 170 |
N3—H3A···S2ii | 0.89 | 2.61 | 3.440 (3) | 157 |
N3—H3A···S3ii | 0.89 | 2.83 | 3.366 (3) | 120 |
N4—H4C···S2iii | 0.89 | 2.53 | 3.408 (4) | 169 |
N4—H4B···S2iv | 0.89 | 2.34 | 3.228 (4) | 178 |
N4—H4A···S3v | 0.89 | 2.39 | 3.275 (4) | 173 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) −x, −y, −z; (v) x−1, y−1, z. |
Acknowledgements
This project was supported by the Program for New Century Excellent Talents in Universities of China (grant No. NCET-08–0618).
References
Bedard, R. L., Wilson, S. T., Vail, L. D., Bennettand, J. M. & Flanigen, E. M. (1999). Zeolites: Facts, Figures, Future. Proceedings of the 8th International Zeolite Conference, edited by P. A. Jacobs & R. A. van Santen, p. 375. Amsterdam: Elsevier. Google Scholar
Blachnik, R. & Fehlker, A. (2001). Z. Kristallogr. 216, 215-221. CAS Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874-881. Web of Science CSD CrossRef CAS Google Scholar
Nellis, D. M., Ko, Y., Tan, K., Koch, S. & Parise, J. (1995). J. Chem. Soc. Chem. Commun. pp. 541-542. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, C., Zhang, J.-J., Duan, T., Chen, Q. & Zhang, Q.-F. (2012). Acta Cryst. E68, m154. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, N., Bu, X. & Feng, P. (2005). Chem. Commun. pp. 2805–2806. Web of Science CSD CrossRef Google Scholar
Zheng, N., Bu, X., Wang, B. & Feng, P. (2002). Science, 298, 2366-2369. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since Bedard reported the first porous metal chalcogenide open framework in 1999 (Bedard et al., 1999), a series of binary and ternary metal chalcogenide open-frameworks have been synthesized (Nellis et al., 1995; Zheng et al., 2005). Among the various synthetic methods, hydrothermal technique is the best choice for preparing related compounds due to gentle reaction conditions. Moreover, organic amines are often used as templates in the hydrothermal reactions. Therefore, amines with different structures play an important role for templating effect in the construction of open-frameworks (Zheng et al., 2002). In this paper, we report the hydrothermal synthesis and crystal structure of an amine-templated thiogermanate, [bappH2]2[Ge2S6] (bapp = 1,4-bis(3-aminopropyl)piperazine).
The title compound crystallizes in the monoclinic space group P21/c with a dimeric anion of [Ge2S6]4- located around inversion centre and with diprotonated 1,4-bis(3-aminopropyl)- piperazine in general position (Fig. 1). The dimeric [Ge2S6]4- anion is constructed by two edge-sharing tetrahedral GeS4 units forming a planar Ge2S2 quadrilateral with the four terminal sulfur atoms lying on a perpendicular plane. The S—Ge—S angles in tetrahedral GeS4 unit are in the ranges from 93.82 (3) to 114.12 (4)°. The average bond length of Ge—St (terminal bond) of 2.162 (7) Å is obviously shorter than that of Ge—Sb (bridging bond) [2.267 (15) Å]. The bond length values are similar to those found in the other thiogermanates (Jia et al. 2005; Xu et al., 2012). The two terminal amine groups of 4-bis(3-aminopropyl)piperazine are protonated to balance negative charges of the dimeric anion. The [Ge2S6]4- anions and [bappH2]2+ cations are organized into an extended three-dimensional network by N—H···S hydrogen bonds (Fig. 2 and Table 1).