metal-organic compounds
Diaqua[μ-11,23-di-tert-butyl-3,7,15,19-tetraazatricyclo[19.3.1.19,13]tetracosa-1(25),2,6,9,11,13(26),14,19,21,23-dodecaene-25,26-diolato-κ4N3,N7,O25,O26:κ4N15,N19,O25,O26]dicopper(II) bis(perchlorate)
aSchool of Materials and Chemical Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, People's Republic of China
*Correspondence e-mail: xuq18@sina.com
In the dinuclear title complex, [Cu2(C30H38N4O2)(H2O)2](ClO4)2, the coordination cation has crystallographically imposed twofold rotational symmetry. The CuII ion is five-coordinated by two N and two O atoms from the macrocylic ligand and one O atom from a water molecule, forming a square-pyramidal N2O3 geometry with the water molecule in the apical position. The distance between the two CuII atoms is 3.0930 (5) Å. Hydrogen bonds between water molecules and between water molecules and perchlorate anions assemble two cations and four anions into discrete supermolecules of S4 symmetry. Intramolecular O—H⋯N hydrogen bonds are also observed. The perchlorate anion and the tert-butyl group are disordered over two positions, with occupancies of the major positions of 0.527 (11) and 0.592 (9), respectively.
Related literature
For the synthesis of the magnesium precursor, see: Mohanta et al. (1997). For the synthesis of 4-tert-butyl-2,6-diformylphenol, see: Lindoy et al. (1998). For similar copper(II) and nickel(II) complexes, see: Bai et al. (2007); Chen et al. (2005); Nanda et al. (1994). For the preparation of similar macrocyclic ligands, see: Thompson et al. (1996); Pilkington & Robson (1970); Zhou et al. (2005).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812031248/gk2504sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812031248/gk2504Isup2.hkl
4-tert-Butyl-2,6-diformylphenol was synthesized according to the reported literature (Lindoy et al.,1998). The magnesium precursor was prepared according to the reported method by Mohanta (Mohanta et al.,1997). The title complex was obtained by the following procedures: Cu(ClO4)26H2O (0.185 g, 0.5 mmol) and magnesium precursor (0.136 g, 0.1 mmol) were dissolved in CH3OH (15 ml) and the solution was filtered and left to stand at room temperature. Blue block single crystals suitable for X-ray analysis were obtained by slow evaporation over a period of two weeks.
The H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C–H = 0.93-0.96 Å, and with Uiso(H) = 1.2 or 1.5 times Ueq(C). The H atoms bonded to O1W were located in Fourier difference maps and refined with restraints imposed on O-H and H···H distances [O-H= 0.83 (1) Å, H···H. 1.35 (1) Å]. Restraints were also imposed on Cl-O, O···O, C-C and C···C distances of disordered perchlorate and tert-butyl groups [Cl-O 1.44 (1) Å, O···O 2.35 (1) Å, C-C 1. 50 (1) Å, C···C 2.35 (1) Å]. The crystal was refined as an
with the ratio of the two twin domains of 0.31 (3):0.69 (3).Dinuclear heterometallic and homometallic transition metal complexes have been well studied with a series of macrocyclic liagnds based on the first reported condensation reaction between 2,6-diformyl-4-R-phenol (R= CH3, Cl, F, n-butyl) and alkylenediamine by stepwise template reaction (Thompson et al., 1996; Pilkington & Robson, 1970; Zhou et al., 2005). Several tetranuclear as well as trinuclear nickel(II) and copper(II) complexes have been structurally characterized (Mohanta et al.,1997; Nanda et al.,1994). In addition, Mohanta et al. (1997) reported a protonated macrocyclic magnesium compound of composition [Mg2(L1H4)2(NO3)2](NO3)26H2O by a template reaction. The transmetalation reaction of the magnesium precursor with copper(II) perchlorate in the presence of triethylamine resulted in the formation of a dinuclear copper(II) complex (Mohanta et al.,1997). Herein, we synthesized a similar magnesium precursor by a template reaction involving 4-tert-butyl-2,6-diformylphenol, 1,3-diaminopropane, magnesium acetate, and magnesium nitrate.The transmetalation reaction of the new magnesium precursor with copper(II) perchlorate leads to a new dinuclear copper(II) complex.
The structure of the cation the title compound is shown in Fig.1. In the cation, each copper(II) is coordinated by two O atoms and two N atoms from the macrocylic ligand and one O from water molecule, forming a square pyramidal {N2O3} geometry. In {N2O3}, the N2O2 donor sets from the macrocyclic ligand occupy the basal plane of the pyramid and the O atom from the water molecule locates in the apical position. The distance of the apical O atom and the copper atom [Cu1–O2: 2.707 (5) Å] is longer than the basal donors [ranging from 1.938 (4) to 1.964 (3) Å] due to the Jahn-Teller effect. Fig. 2 shows the crystal packing of the title compound along the b axis.
For the synthesis of the magnesium precursor, see: Mohanta et al.(1997). For the synthesis of 4-tert-butyl-2,6-diformylphenol, see: Lindoy et al. (1998). For similar copper(II) and nickel(II) complexes, see: Bai et al. (2007); Chen et al. (2005); Nanda et al. (1994). For the preparation of similar macrocyclic ligands, see: Thompson et al. (1996); Pilkington & Robson (1970); Zhou et al. (2005).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C30H38N4O2)(H2O)2](ClO4)2 | Dx = 1.591 Mg m−3 |
Mr = 848.66 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P421c | Cell parameters from 7958 reflections |
Hall symbol: P-42 n | θ = 2.3–29.4° |
a = 18.9013 (4) Å | µ = 1.42 mm−1 |
c = 9.9174 (4) Å | T = 296 K |
V = 3543.08 (18) Å3 | Block, blue |
Z = 4 | 0.38 × 0.36 × 0.32 mm |
F(000) = 1752 |
Bruker APEXII CCD diffractometer | 3489 independent reflections |
Radiation source: fine-focus sealed tube | 2942 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
phi and ω scans | θmax = 26.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −18→23 |
Tmin = 0.615, Tmax = 0.660 | k = −22→23 |
19006 measured reflections | l = −12→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0615P)2 + 4.6836P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3489 reflections | Δρmax = 0.47 e Å−3 |
298 parameters | Δρmin = −0.33 e Å−3 |
125 restraints | Absolute structure: Flack (1983), 1527 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.31 (3) |
[Cu2(C30H38N4O2)(H2O)2](ClO4)2 | Z = 4 |
Mr = 848.66 | Mo Kα radiation |
Tetragonal, P421c | µ = 1.42 mm−1 |
a = 18.9013 (4) Å | T = 296 K |
c = 9.9174 (4) Å | 0.38 × 0.36 × 0.32 mm |
V = 3543.08 (18) Å3 |
Bruker APEXII CCD diffractometer | 3489 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2942 reflections with I > 2σ(I) |
Tmin = 0.615, Tmax = 0.660 | Rint = 0.021 |
19006 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | Δρmax = 0.47 e Å−3 |
S = 1.02 | Δρmin = −0.33 e Å−3 |
3489 reflections | Absolute structure: Flack (1983), 1527 Friedel pairs |
298 parameters | Absolute structure parameter: 0.31 (3) |
125 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.08182 (2) | 0.99986 (3) | 0.18030 (5) | 0.03063 (16) | |
O1 | −0.00045 (19) | 0.93667 (12) | 0.1690 (3) | 0.0329 (6) | |
O2 | 0.0833 (2) | 0.9539 (2) | 0.4388 (5) | 0.0614 (10) | |
N1 | 0.14955 (18) | 0.92478 (19) | 0.1474 (4) | 0.0314 (9) | |
N2 | 0.14970 (19) | 1.0758 (2) | 0.2082 (4) | 0.0389 (10) | |
C1 | 0.1312 (2) | 1.1411 (2) | 0.2233 (5) | 0.0361 (10) | |
H1 | 0.1678 | 1.1728 | 0.2406 | 0.043* | |
C2 | 0.2279 (3) | 1.0650 (3) | 0.2171 (8) | 0.0657 (19) | |
H2A' | 0.2493 | 1.0819 | 0.1343 | 0.079* | |
H2B' | 0.2461 | 1.0936 | 0.2904 | 0.079* | |
C3 | 0.2500 (2) | 0.9908 (3) | 0.2390 (6) | 0.0504 (13) | |
H3A | 0.2311 | 0.9744 | 0.3244 | 0.061* | |
H3B | 0.3012 | 0.9889 | 0.2446 | 0.061* | |
C4 | 0.2254 (2) | 0.9415 (3) | 0.1278 (5) | 0.0431 (11) | |
H4A | 0.2322 | 0.9639 | 0.0408 | 0.052* | |
H4B | 0.2530 | 0.8983 | 0.1296 | 0.052* | |
C5 | 0.1332 (2) | 0.8591 (2) | 0.1536 (5) | 0.0347 (10) | |
H5 | 0.1698 | 0.8272 | 0.1384 | 0.042* | |
C6 | 0.0651 (2) | 0.8288 (2) | 0.1813 (5) | 0.0318 (9) | |
C7 | 0.0649 (2) | 0.7551 (2) | 0.2042 (5) | 0.0398 (11) | |
H7 | 0.1073 | 0.7305 | 0.1974 | 0.048* | |
C8 | 0.0046 (3) | 0.71818 (19) | 0.2360 (4) | 0.0393 (9) | |
C9 | −0.0578 (3) | 0.7557 (2) | 0.2404 (5) | 0.0394 (11) | |
H9 | −0.0995 | 0.7316 | 0.2599 | 0.047* | |
C10 | −0.0611 (3) | 0.8288 (2) | 0.2168 (5) | 0.0330 (11) | |
C11 | 0.0005 (3) | 0.86673 (17) | 0.1894 (4) | 0.0297 (7) | |
C12 | 0.0062 (3) | 0.6385 (2) | 0.2598 (5) | 0.0538 (12) | |
C13 | 0.0775 (4) | 0.6074 (4) | 0.2618 (11) | 0.059 (3) | 0.592 (9) |
H13A | 0.0741 | 0.5574 | 0.2771 | 0.089* | 0.592 (9) |
H13B | 0.1047 | 0.6287 | 0.3328 | 0.089* | 0.592 (9) |
H13C | 0.1004 | 0.6159 | 0.1768 | 0.089* | 0.592 (9) |
C14 | −0.0277 (6) | 0.6227 (6) | 0.3911 (9) | 0.085 (4) | 0.592 (9) |
H14A | −0.0269 | 0.5725 | 0.4067 | 0.127* | 0.592 (9) |
H14B | −0.0759 | 0.6389 | 0.3898 | 0.127* | 0.592 (9) |
H14C | −0.0024 | 0.6463 | 0.4619 | 0.127* | 0.592 (9) |
C15 | −0.0368 (6) | 0.6024 (6) | 0.1554 (11) | 0.086 (4) | 0.592 (9) |
H15A | −0.0357 | 0.5522 | 0.1705 | 0.129* | 0.592 (9) |
H15B | −0.0178 | 0.6127 | 0.0678 | 0.129* | 0.592 (9) |
H15C | −0.0848 | 0.6188 | 0.1603 | 0.129* | 0.592 (9) |
C13' | 0.0409 (8) | 0.6032 (9) | 0.1429 (13) | 0.084 (6) | 0.408 (9) |
H13D | 0.0419 | 0.5530 | 0.1577 | 0.126* | 0.408 (9) |
H13E | 0.0883 | 0.6206 | 0.1335 | 0.126* | 0.408 (9) |
H13F | 0.0147 | 0.6132 | 0.0622 | 0.126* | 0.408 (9) |
C14' | 0.0491 (8) | 0.6226 (10) | 0.3793 (13) | 0.085 (6) | 0.408 (9) |
H14D | 0.0500 | 0.5724 | 0.3938 | 0.127* | 0.408 (9) |
H14E | 0.0289 | 0.6455 | 0.4567 | 0.127* | 0.408 (9) |
H14F | 0.0964 | 0.6395 | 0.3657 | 0.127* | 0.408 (9) |
C15' | −0.0633 (5) | 0.6048 (7) | 0.2754 (15) | 0.064 (4) | 0.408 (9) |
H15D | −0.0572 | 0.5550 | 0.2896 | 0.096* | 0.408 (9) |
H15E | −0.0908 | 0.6124 | 0.1953 | 0.096* | 0.408 (9) |
H15F | −0.0873 | 0.6251 | 0.3514 | 0.096* | 0.408 (9) |
Cl1 | 0.22950 (8) | 0.78567 (9) | 0.46056 (14) | 0.0669 (4) | |
O3 | 0.1844 (6) | 0.8458 (5) | 0.4620 (12) | 0.086 (4) | 0.527 (11) |
O4 | 0.2055 (8) | 0.7328 (7) | 0.5596 (13) | 0.160 (7) | 0.527 (11) |
O5 | 0.2295 (6) | 0.7511 (6) | 0.3334 (8) | 0.102 (4) | 0.527 (11) |
O6 | 0.2988 (5) | 0.8071 (8) | 0.4988 (16) | 0.153 (6) | 0.527 (11) |
O3' | 0.1632 (4) | 0.8212 (7) | 0.4726 (13) | 0.082 (4) | 0.473 (11) |
O4' | 0.2672 (7) | 0.8119 (8) | 0.3419 (11) | 0.142 (7) | 0.473 (11) |
O5' | 0.2189 (8) | 0.7114 (4) | 0.4411 (19) | 0.164 (7) | 0.473 (11) |
O6' | 0.2725 (5) | 0.7960 (6) | 0.5766 (10) | 0.084 (4) | 0.473 (11) |
H2B | 0.054 (4) | 0.932 (4) | 0.482 (8) | 0.101* | |
H2A | 0.115 (3) | 0.937 (3) | 0.395 (3) | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0211 (2) | 0.0202 (2) | 0.0506 (3) | 0.0005 (3) | −0.00050 (19) | −0.0018 (3) |
O1 | 0.0256 (12) | 0.0176 (11) | 0.0556 (16) | 0.0010 (15) | 0.002 (2) | 0.0020 (10) |
O2 | 0.051 (2) | 0.056 (2) | 0.078 (3) | 0.0051 (18) | 0.013 (2) | −0.008 (2) |
N1 | 0.0249 (17) | 0.0275 (18) | 0.042 (2) | 0.0022 (15) | 0.0023 (15) | −0.0005 (15) |
N2 | 0.0228 (17) | 0.031 (2) | 0.063 (3) | −0.0002 (15) | −0.0023 (17) | −0.0026 (18) |
C1 | 0.030 (2) | 0.027 (2) | 0.052 (3) | −0.0061 (17) | −0.004 (2) | −0.0028 (19) |
C2 | 0.026 (2) | 0.037 (3) | 0.134 (6) | 0.001 (2) | −0.013 (3) | −0.016 (3) |
C3 | 0.027 (2) | 0.049 (3) | 0.076 (3) | 0.002 (2) | −0.009 (2) | −0.003 (3) |
C4 | 0.030 (2) | 0.033 (2) | 0.066 (3) | 0.0016 (19) | 0.006 (2) | −0.006 (2) |
C5 | 0.029 (2) | 0.029 (2) | 0.046 (3) | 0.0074 (18) | 0.0041 (19) | 0.0023 (19) |
C6 | 0.034 (2) | 0.019 (2) | 0.043 (2) | 0.0015 (17) | −0.001 (2) | 0.0013 (19) |
C7 | 0.036 (2) | 0.024 (2) | 0.060 (3) | 0.0062 (19) | −0.002 (2) | 0.003 (2) |
C8 | 0.046 (2) | 0.0224 (17) | 0.049 (2) | 0.001 (2) | 0.000 (2) | 0.0035 (16) |
C9 | 0.047 (3) | 0.022 (2) | 0.049 (3) | −0.006 (2) | 0.004 (2) | 0.0032 (19) |
C10 | 0.034 (3) | 0.022 (2) | 0.043 (3) | −0.0023 (17) | 0.0053 (19) | 0.0008 (17) |
C11 | 0.0305 (17) | 0.0183 (15) | 0.040 (2) | 0.002 (2) | −0.004 (2) | 0.0004 (14) |
C12 | 0.054 (3) | 0.0230 (18) | 0.085 (3) | 0.001 (2) | −0.005 (3) | 0.010 (2) |
C13 | 0.062 (4) | 0.031 (4) | 0.085 (5) | 0.013 (3) | 0.003 (4) | 0.010 (3) |
C14 | 0.097 (6) | 0.066 (5) | 0.091 (6) | 0.013 (4) | 0.012 (4) | 0.020 (4) |
C15 | 0.095 (6) | 0.061 (5) | 0.102 (6) | −0.006 (4) | −0.015 (5) | −0.001 (4) |
C13' | 0.092 (8) | 0.068 (7) | 0.092 (8) | −0.002 (5) | 0.011 (5) | −0.008 (5) |
C14' | 0.088 (7) | 0.075 (7) | 0.091 (7) | −0.001 (5) | −0.008 (5) | 0.015 (5) |
C15' | 0.070 (6) | 0.048 (6) | 0.075 (6) | −0.007 (4) | 0.002 (5) | 0.007 (4) |
Cl1 | 0.0723 (9) | 0.0795 (10) | 0.0488 (7) | 0.0325 (8) | −0.0097 (7) | −0.0036 (7) |
O3 | 0.088 (5) | 0.075 (5) | 0.095 (5) | 0.031 (4) | −0.004 (4) | 0.003 (4) |
O4 | 0.169 (8) | 0.154 (8) | 0.157 (8) | 0.000 (5) | 0.014 (5) | 0.012 (5) |
O5 | 0.105 (6) | 0.110 (6) | 0.091 (5) | 0.033 (4) | 0.002 (4) | −0.021 (4) |
O6 | 0.142 (8) | 0.159 (8) | 0.157 (8) | −0.004 (5) | −0.012 (5) | 0.004 (5) |
O3' | 0.076 (6) | 0.082 (6) | 0.087 (6) | 0.019 (4) | 0.002 (4) | −0.001 (4) |
O4' | 0.137 (8) | 0.151 (8) | 0.137 (8) | 0.011 (5) | 0.013 (5) | 0.013 (5) |
O5' | 0.169 (9) | 0.151 (8) | 0.173 (9) | −0.002 (5) | 0.002 (5) | −0.011 (5) |
O6' | 0.072 (5) | 0.098 (6) | 0.082 (5) | 0.022 (4) | −0.026 (4) | −0.008 (4) |
Cu1—N1 | 1.939 (4) | C10—C1i | 1.444 (6) |
Cu1—N2 | 1.945 (4) | C12—C15' | 1.467 (8) |
Cu1—O1i | 1.954 (3) | C12—C14' | 1.468 (8) |
Cu1—O1 | 1.964 (3) | C12—C13 | 1.471 (7) |
Cu1—O2 | 2.707 (5) | C12—C14 | 1.482 (7) |
O1—C11 | 1.338 (4) | C12—C15 | 1.482 (8) |
O1—Cu1i | 1.954 (3) | C12—C13' | 1.489 (9) |
O2—H2B | 0.82 (2) | C13—H13A | 0.9600 |
O2—H2A | 0.81 (2) | C13—H13B | 0.9600 |
N1—C5 | 1.282 (6) | C13—H13C | 0.9600 |
N1—C4 | 1.481 (6) | C14—H14A | 0.9600 |
N2—C1 | 1.291 (6) | C14—H14B | 0.9600 |
N2—C2 | 1.494 (6) | C14—H14C | 0.9600 |
C1—C10i | 1.444 (6) | C15—H15A | 0.9600 |
C1—H1 | 0.9300 | C15—H15B | 0.9600 |
C2—C3 | 1.480 (7) | C15—H15C | 0.9600 |
C2—H2A' | 0.9700 | C13'—H13D | 0.9600 |
C2—H2B' | 0.9700 | C13'—H13E | 0.9600 |
C3—C4 | 1.516 (7) | C13'—H13F | 0.9600 |
C3—H3A | 0.9700 | C14'—H14D | 0.9600 |
C3—H3B | 0.9700 | C14'—H14E | 0.9600 |
C4—H4A | 0.9700 | C14'—H14F | 0.9600 |
C4—H4B | 0.9700 | C15'—H15D | 0.9600 |
C5—C6 | 1.435 (6) | C15'—H15E | 0.9600 |
C5—H5 | 0.9300 | C15'—H15F | 0.9600 |
C6—C7 | 1.411 (6) | Cl1—O5 | 1.421 (6) |
C6—C11 | 1.418 (6) | Cl1—O3 | 1.421 (6) |
C7—C8 | 1.372 (7) | Cl1—O6' | 1.422 (7) |
C7—H7 | 0.9300 | Cl1—O6 | 1.422 (7) |
C8—C9 | 1.378 (7) | Cl1—O3' | 1.426 (7) |
C8—C12 | 1.525 (5) | Cl1—O5' | 1.431 (7) |
C9—C10 | 1.403 (6) | Cl1—O4' | 1.462 (8) |
C9—H9 | 0.9300 | Cl1—O4 | 1.472 (8) |
C10—C11 | 1.395 (7) | ||
N1—Cu1—N2 | 97.38 (14) | C13—C12—C14 | 107.7 (6) |
N1—Cu1—O1i | 163.64 (15) | C13—C12—C15 | 109.2 (6) |
N2—Cu1—O1i | 94.27 (13) | C14—C12—C15 | 106.5 (6) |
N1—Cu1—O1 | 93.91 (13) | C15'—C12—C13' | 106.4 (7) |
N2—Cu1—O1 | 168.30 (15) | C14'—C12—C13' | 107.1 (7) |
O1i—Cu1—O1 | 75.33 (11) | C15'—C12—C8 | 115.3 (7) |
C11—O1—Cu1i | 127.5 (3) | C14'—C12—C8 | 109.8 (8) |
C11—O1—Cu1 | 125.6 (3) | C13—C12—C8 | 114.4 (5) |
Cu1i—O1—Cu1 | 104.28 (11) | C14—C12—C8 | 109.1 (6) |
H2B—O2—H2A | 125 (8) | C15—C12—C8 | 109.7 (6) |
C5—N1—C4 | 116.5 (4) | C13'—C12—C8 | 109.3 (8) |
C5—N1—Cu1 | 122.8 (3) | C12—C13—H13A | 109.5 |
C4—N1—Cu1 | 120.3 (3) | C12—C13—H13B | 109.5 |
C1—N2—C2 | 113.0 (4) | H13A—C13—H13B | 109.5 |
C1—N2—Cu1 | 122.9 (3) | C12—C13—H13C | 109.5 |
C2—N2—Cu1 | 124.1 (3) | H13A—C13—H13C | 109.5 |
N2—C1—C10i | 128.3 (4) | H13B—C13—H13C | 109.5 |
N2—C1—H1 | 115.9 | C12—C14—H14A | 109.5 |
C10i—C1—H1 | 115.9 | C12—C14—H14B | 109.5 |
C3—C2—N2 | 114.7 (4) | H14A—C14—H14B | 109.5 |
C3—C2—H2A' | 108.6 | C12—C14—H14C | 109.5 |
N2—C2—H2A' | 108.6 | H14A—C14—H14C | 109.5 |
C3—C2—H2B' | 108.6 | H14B—C14—H14C | 109.5 |
N2—C2—H2B' | 108.6 | C12—C15—H15A | 109.5 |
H2A'—C2—H2B' | 107.6 | C12—C15—H15B | 109.5 |
C2—C3—C4 | 112.8 (5) | H15A—C15—H15B | 109.5 |
C2—C3—H3A | 109.0 | C12—C15—H15C | 109.5 |
C4—C3—H3A | 109.0 | H15A—C15—H15C | 109.5 |
C2—C3—H3B | 109.0 | H15B—C15—H15C | 109.5 |
C4—C3—H3B | 109.0 | C12—C13'—H13D | 109.5 |
H3A—C3—H3B | 107.8 | C12—C13'—H13E | 109.5 |
N1—C4—C3 | 109.5 (4) | H13D—C13'—H13E | 109.5 |
N1—C4—H4A | 109.8 | C12—C13'—H13F | 109.5 |
C3—C4—H4A | 109.8 | H13D—C13'—H13F | 109.5 |
N1—C4—H4B | 109.8 | H13E—C13'—H13F | 109.5 |
C3—C4—H4B | 109.8 | C12—C14'—H14D | 109.5 |
H4A—C4—H4B | 108.2 | C12—C14'—H14E | 109.5 |
N1—C5—C6 | 127.7 (4) | H14D—C14'—H14E | 109.5 |
N1—C5—H5 | 116.1 | C12—C14'—H14F | 109.5 |
C6—C5—H5 | 116.1 | H14D—C14'—H14F | 109.5 |
C7—C6—C11 | 119.2 (4) | H14E—C14'—H14F | 109.5 |
C7—C6—C5 | 115.3 (4) | C12—C15'—H15D | 109.5 |
C11—C6—C5 | 125.6 (4) | C12—C15'—H15E | 109.5 |
C8—C7—C6 | 122.8 (4) | H15D—C15'—H15E | 109.5 |
C8—C7—H7 | 118.6 | C12—C15'—H15F | 109.5 |
C6—C7—H7 | 118.6 | H15D—C15'—H15F | 109.5 |
C7—C8—C9 | 117.2 (3) | H15E—C15'—H15F | 109.5 |
C7—C8—C12 | 121.5 (5) | O5—Cl1—O3 | 112.1 (6) |
C9—C8—C12 | 121.3 (5) | O5—Cl1—O6 | 111.6 (6) |
C8—C9—C10 | 122.6 (4) | O3—Cl1—O6 | 108.8 (7) |
C8—C9—H9 | 118.7 | O6'—Cl1—O3' | 111.6 (6) |
C10—C9—H9 | 118.7 | O6'—Cl1—O5' | 108.9 (7) |
C11—C10—C9 | 120.2 (4) | O3'—Cl1—O5' | 110.5 (6) |
C11—C10—C1i | 124.9 (4) | O6'—Cl1—O4' | 109.0 (6) |
C9—C10—C1i | 114.9 (4) | O3'—Cl1—O4' | 109.7 (6) |
O1—C11—C10 | 121.7 (4) | O5'—Cl1—O4' | 107.0 (7) |
O1—C11—C6 | 120.2 (4) | O5—Cl1—O4 | 106.3 (6) |
C10—C11—C6 | 118.0 (3) | O3—Cl1—O4 | 110.5 (6) |
C15'—C12—C14' | 108.7 (7) | O6—Cl1—O4 | 107.4 (6) |
N1—Cu1—O1—C11 | 23.1 (3) | C5—C6—C7—C8 | 178.0 (5) |
N2—Cu1—O1—C11 | −141.7 (7) | C6—C7—C8—C9 | 2.3 (7) |
O1i—Cu1—O1—C11 | −169.4 (3) | C6—C7—C8—C12 | 179.9 (5) |
N1—Cu1—O1—Cu1i | −174.27 (14) | C7—C8—C9—C10 | −1.4 (7) |
N2—Cu1—O1—Cu1i | 21.0 (8) | C12—C8—C9—C10 | −178.9 (5) |
O1i—Cu1—O1—Cu1i | −6.78 (17) | C8—C9—C10—C11 | −0.9 (8) |
N2—Cu1—N1—C5 | 163.2 (4) | C8—C9—C10—C1i | 178.9 (4) |
O1i—Cu1—N1—C5 | −61.8 (7) | Cu1i—O1—C11—C10 | 3.0 (5) |
O1—Cu1—N1—C5 | −13.7 (4) | Cu1—O1—C11—C10 | 161.7 (3) |
N2—Cu1—N1—C4 | −10.2 (4) | Cu1i—O1—C11—C6 | −177.9 (3) |
O1i—Cu1—N1—C4 | 124.9 (5) | Cu1—O1—C11—C6 | −19.3 (5) |
O1—Cu1—N1—C4 | 172.9 (3) | C9—C10—C11—O1 | −178.7 (4) |
N1—Cu1—N2—C1 | 173.9 (4) | C1i—C10—C11—O1 | 1.5 (7) |
O1i—Cu1—N2—C1 | 5.4 (4) | C9—C10—C11—C6 | 2.3 (6) |
O1—Cu1—N2—C1 | −21.5 (10) | C1i—C10—C11—C6 | −177.5 (5) |
N1—Cu1—N2—C2 | −7.4 (5) | C7—C6—C11—O1 | 179.5 (4) |
O1i—Cu1—N2—C2 | −175.8 (5) | C5—C6—C11—O1 | 0.7 (7) |
O1—Cu1—N2—C2 | 157.3 (7) | C7—C6—C11—C10 | −1.4 (7) |
C2—N2—C1—C10i | 178.0 (5) | C5—C6—C11—C10 | 179.8 (5) |
Cu1—N2—C1—C10i | −3.2 (7) | C7—C8—C12—C15' | −172.3 (8) |
C1—N2—C2—C3 | 163.5 (5) | C9—C8—C12—C15' | 5.1 (9) |
Cu1—N2—C2—C3 | −15.3 (8) | C7—C8—C12—C14' | 64.5 (9) |
N2—C2—C3—C4 | 59.5 (7) | C9—C8—C12—C14' | −118.0 (8) |
C5—N1—C4—C3 | −125.1 (4) | C7—C8—C12—C13 | 7.0 (8) |
Cu1—N1—C4—C3 | 48.7 (5) | C9—C8—C12—C13 | −175.5 (6) |
C2—C3—C4—N1 | −77.9 (6) | C7—C8—C12—C14 | 127.7 (7) |
C4—N1—C5—C6 | 175.2 (5) | C9—C8—C12—C14 | −54.8 (7) |
Cu1—N1—C5—C6 | 1.6 (7) | C7—C8—C12—C15 | −116.1 (7) |
N1—C5—C6—C7 | −169.8 (5) | C9—C8—C12—C15 | 61.4 (8) |
N1—C5—C6—C11 | 9.0 (9) | C7—C8—C12—C13' | −52.6 (9) |
C11—C6—C7—C8 | −0.9 (8) | C9—C8—C12—C13' | 124.9 (8) |
Symmetry code: (i) −x, −y+2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O2ii | 0.82 (2) | 2.07 (4) | 2.821 (6) | 153 (8) |
O2—H2A···O3 | 0.81 (2) | 2.26 (3) | 2.806 (8) | 125 (2) |
O2—H2A···O3′ | 0.81 (2) | 2.49 (4) | 2.947 (10) | 117 (3) |
O2—H2A···N1 | 0.81 (2) | 2.55 (3) | 3.197 (6) | 138 (3) |
Symmetry code: (ii) y−1, −x+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C30H38N4O2)(H2O)2](ClO4)2 |
Mr | 848.66 |
Crystal system, space group | Tetragonal, P421c |
Temperature (K) | 296 |
a, c (Å) | 18.9013 (4), 9.9174 (4) |
V (Å3) | 3543.08 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.42 |
Crystal size (mm) | 0.38 × 0.36 × 0.32 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.615, 0.660 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19006, 3489, 2942 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.115, 1.02 |
No. of reflections | 3489 |
No. of parameters | 298 |
No. of restraints | 125 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.47, −0.33 |
Absolute structure | Flack (1983), 1527 Friedel pairs |
Absolute structure parameter | 0.31 (3) |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 1.939 (4) | Cu1—O1 | 1.964 (3) |
Cu1—N2 | 1.945 (4) | Cu1—O2 | 2.707 (5) |
Cu1—O1i | 1.954 (3) |
Symmetry code: (i) −x, −y+2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O2ii | 0.82 (2) | 2.07 (4) | 2.821 (6) | 153 (8) |
O2—H2A···O3 | 0.81 (2) | 2.26 (3) | 2.806 (8) | 125 (2) |
O2—H2A···O3' | 0.81 (2) | 2.49 (4) | 2.947 (10) | 117 (3) |
O2—H2A···N1 | 0.81 (2) | 2.55 (3) | 3.197 (6) | 138 (3) |
Symmetry code: (ii) y−1, −x+1, −z+1. |
Acknowledgements
The authors thank the Science and Technology Project of Chongqing Municipal Education Commission (KJ071208) for support.
References
Bai, J.-L., Zhou, H., Pan, Z.-Q. & Meng, X.-G. (2007). Acta Cryst. E63, m2641. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, L., Zhou, H., Pan, Z.-Q., Hu, X.-L. & Liu, B. (2005). Acta Cryst. E61, m1467–m1469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lindoy, F. L., Meehan, V. G. & Svenstrup, N. (1998). Synthesis, pp. 1029–1032. CrossRef Google Scholar
Mohanta, S., Nanda, M. K., Werner, R., Haase, W., Mukherjee, A. K., Dutta, S. K. & Nag, K. (1997). Inorg. Chem. 36, 4656-4664. CSD CrossRef PubMed CAS Web of Science Google Scholar
Nanda, K. K., Venkatsubramanian, K., Majumdar, D. & Nag, K. (1994). Inorg. Chem. 33, 1581–1582. CSD CrossRef CAS Web of Science Google Scholar
Pilkington, N. H. & Robson, R. (1970). Aust. J. Chem. 23, 2225–2236. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thompson, I. K., Mandal, S. K., Tandon, S. S., Bridson, J. N. & Park, M. K. (1996). Inorg. Chem. 35, 3117–3125. CSD CrossRef PubMed CAS Web of Science Google Scholar
Zhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Liu, Y. Q. (2005). J. Coord. Chem. 58, 443–451. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dinuclear heterometallic and homometallic transition metal complexes have been well studied with a series of macrocyclic liagnds based on the first reported condensation reaction between 2,6-diformyl-4-R-phenol (R= CH3, Cl, F, n-butyl) and alkylenediamine by stepwise template reaction (Thompson et al., 1996; Pilkington & Robson, 1970; Zhou et al., 2005). Several tetranuclear as well as trinuclear nickel(II) and copper(II) complexes have been structurally characterized (Mohanta et al.,1997; Nanda et al.,1994). In addition, Mohanta et al. (1997) reported a protonated macrocyclic magnesium compound of composition [Mg2(L1H4)2(NO3)2](NO3)26H2O by a template reaction. The transmetalation reaction of the magnesium precursor with copper(II) perchlorate in the presence of triethylamine resulted in the formation of a dinuclear copper(II) complex (Mohanta et al.,1997). Herein, we synthesized a similar magnesium precursor by a template reaction involving 4-tert-butyl-2,6-diformylphenol, 1,3-diaminopropane, magnesium acetate, and magnesium nitrate.The transmetalation reaction of the new magnesium precursor with copper(II) perchlorate leads to a new dinuclear copper(II) complex.
The structure of the cation the title compound is shown in Fig.1. In the cation, each copper(II) is coordinated by two O atoms and two N atoms from the macrocylic ligand and one O from water molecule, forming a square pyramidal {N2O3} geometry. In {N2O3}, the N2O2 donor sets from the macrocyclic ligand occupy the basal plane of the pyramid and the O atom from the water molecule locates in the apical position. The distance of the apical O atom and the copper atom [Cu1–O2: 2.707 (5) Å] is longer than the basal donors [ranging from 1.938 (4) to 1.964 (3) Å] due to the Jahn-Teller effect. Fig. 2 shows the crystal packing of the title compound along the b axis.