organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(4,4′′-Di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-[4-(methyl­sulfan­yl)phen­yl]prop-2-en-1-one

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 27 June 2012; accepted 2 July 2012; online 7 July 2012)

In the title compound, C29H22F2O2S, the central benzene ring makes dihedral angles of 45.83 (7), 38.90 (7) and 55.50 (7)° with the two fluoro-substituted benzene rings and the methyl­sulfanyl-substituted benzene ring, respectively. In the crystal, C—H⋯O contacts connect the mol­ecules into layers lying perpendicular to the c axis. In addition, ππ stacking inter­actions between one of the fluoro­phenyl groups [centroid–centroid distances = 3.681 (1) and 3.818 (1) Å] are observed.

Related literature

For the pharmacological importance of terphenyls, see: Liu (2006[Liu, J. K. (2006). Chem. Rev. 106, 2209-2223.]); Gill & Steglich (1987[Gill, M. & Steglich, W. (1987). Prog. Chem. Org. Nat. Prod. 51, 1-317.]). For related structures and background to terphenyl chalcones, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3327-o3328.]); Fun, Loh et al. (2012[Fun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2024.]); Fun, Hemamalini et al. (2012[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o163.]); Samshuddin et al. (2012[Samshuddin, S., Narayana, B., Yathirajan, H. S., Betz, R., Gerber, T. & Hosten, E. (2012). Acta Cryst. E68, o1538-o1539.]).

[Scheme 1]

Experimental

Crystal data
  • C29H22F2O2S

  • Mr = 472.53

  • Triclinic, [P \overline 1]

  • a = 6.9341 (3) Å

  • b = 11.4440 (4) Å

  • c = 15.4719 (5) Å

  • α = 89.611 (3)°

  • β = 84.738 (3)°

  • γ = 74.981 (3)°

  • V = 1180.63 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.743, Tmax = 1.000

  • 17866 measured reflections

  • 4637 independent reflections

  • 2891 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 1.06

  • 4637 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.47 3.289 (3) 147
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pharmacological importance of terphenyls is well documented (Gill & Steglich, 1987; Liu, 2006). The crystal structure of some terphenyl chalcones, viz. (E)-1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3-(6-methoxy naphthalen-2-yl)prop-2-en-1-one (Fun et al., 2011), (2E)-1- (4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3-(2-fluorophenyl) prop-2-en-1-one (Fun, Hemamalini et al., 2012) and (E)-3-(2-chlorophenyl) -1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)prop-2-en-1-one (Samshuddin et al., 2012) have been reported. In view of the importance of terphenyls, the title compound (I) was prepared from 4,4'-difluoro chalcone by several steps (Fun, Loh et al., 2012) and its crystal structure is reported here.

All bond lengths and angles are normal and correspond to those observed in related structures. The central benzene ring forms dihedral angles of 45.83 (7), 38.90 (7) and 55.50 (7) ° with the two fluoro- substituted benzene rings and methylsulfanyl substituted benzene ring, respectively. In the crystal, molecules are connected via intermolecular C—H···O hydrogen bonds (Fig.2) to form layers. The crystal structure is further stabilized by π-π interactions between the benzene ring (C10—C15) of the molecule at (x, y, z) and the same benzene ring of inversion related molecules at (2 - x, -1 - y, -z) [centroid separation = 3.681 (1) Å, interplanar spacing = 3.512 Å and centroid shift = 1.102 Å] and (1 - x, -1 - y, -z) [centroid separation = 3.818 (1) Å, interplanar spacing = 3.379 Å and centroid shift = 1.777 Å].

Related literature top

For the pharmacological importance of terphenyls, see: Liu (2006); Gill & Steglich (1987). For related structures and background to terphenyl chalcones, see: Fun et al. (2011); Fun, Loh et al. (2012); Fun, Hemamalini et al. (2012); Samshuddin et al. (2012).

Experimental top

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)ethanone (0.338 g, 001 mol) and 4-(methylsulfanyl)benzaldehyde (0.152 g, 0.001 mol) in 30 ml ethanol, 0.5 ml of 10% sodium hydroxide solution was added and the reaction mixture was stirred at 5–10°C for 3 hrs. The precipitate formed was collected by filtration and purified by recrystallization from ethanol ( yield 72%; m.p. 407 K). Single-crystal was grown from DMF by slow evaporation method.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

The pharmacological importance of terphenyls is well documented (Gill & Steglich, 1987; Liu, 2006). The crystal structure of some terphenyl chalcones, viz. (E)-1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3-(6-methoxy naphthalen-2-yl)prop-2-en-1-one (Fun et al., 2011), (2E)-1- (4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3-(2-fluorophenyl) prop-2-en-1-one (Fun, Hemamalini et al., 2012) and (E)-3-(2-chlorophenyl) -1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)prop-2-en-1-one (Samshuddin et al., 2012) have been reported. In view of the importance of terphenyls, the title compound (I) was prepared from 4,4'-difluoro chalcone by several steps (Fun, Loh et al., 2012) and its crystal structure is reported here.

All bond lengths and angles are normal and correspond to those observed in related structures. The central benzene ring forms dihedral angles of 45.83 (7), 38.90 (7) and 55.50 (7) ° with the two fluoro- substituted benzene rings and methylsulfanyl substituted benzene ring, respectively. In the crystal, molecules are connected via intermolecular C—H···O hydrogen bonds (Fig.2) to form layers. The crystal structure is further stabilized by π-π interactions between the benzene ring (C10—C15) of the molecule at (x, y, z) and the same benzene ring of inversion related molecules at (2 - x, -1 - y, -z) [centroid separation = 3.681 (1) Å, interplanar spacing = 3.512 Å and centroid shift = 1.102 Å] and (1 - x, -1 - y, -z) [centroid separation = 3.818 (1) Å, interplanar spacing = 3.379 Å and centroid shift = 1.777 Å].

For the pharmacological importance of terphenyls, see: Liu (2006); Gill & Steglich (1987). For related structures and background to terphenyl chalcones, see: Fun et al. (2011); Fun, Loh et al. (2012); Fun, Hemamalini et al. (2012); Samshuddin et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis.
(2E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3- [4-(methylsulfanyl)phenyl]prop-2-en-1-one top
Crystal data top
C29H22F2O2SZ = 2
Mr = 472.53F(000) = 492
Triclinic, P1Dx = 1.329 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9341 (3) ÅCell parameters from 6989 reflections
b = 11.4440 (4) Åθ = 3.4–29.0°
c = 15.4719 (5) ŵ = 0.18 mm1
α = 89.611 (3)°T = 293 K
β = 84.738 (3)°Block, colourless
γ = 74.981 (3)°0.3 × 0.2 × 0.1 mm
V = 1180.63 (8) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4637 independent reflections
Radiation source: fine-focus sealed tube2891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1414
Tmin = 0.743, Tmax = 1.000l = 1918
17866 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.050P)2 + 0.1774P]
where P = (Fo2 + 2Fc2)/3
4637 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C29H22F2O2Sγ = 74.981 (3)°
Mr = 472.53V = 1180.63 (8) Å3
Triclinic, P1Z = 2
a = 6.9341 (3) ÅMo Kα radiation
b = 11.4440 (4) ŵ = 0.18 mm1
c = 15.4719 (5) ÅT = 293 K
α = 89.611 (3)°0.3 × 0.2 × 0.1 mm
β = 84.738 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4637 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2891 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 1.000Rint = 0.044
17866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
4637 reflectionsΔρmin = 0.29 e Å3
309 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40890 (12)0.64035 (8)0.44889 (6)0.0889 (3)
O10.7122 (3)0.17723 (16)0.18542 (13)0.0650 (5)
O20.3175 (2)0.07240 (15)0.09901 (11)0.0553 (5)
F10.8319 (2)0.69853 (13)0.03117 (11)0.0751 (5)
F21.3029 (2)0.00661 (17)0.42397 (11)0.0909 (6)
C10.5711 (3)0.1332 (2)0.20122 (15)0.0442 (6)
C20.3756 (3)0.2042 (2)0.24325 (15)0.0480 (6)
H20.27240.16640.25440.058*
C30.3434 (4)0.3184 (2)0.26524 (16)0.0530 (6)
H30.44960.35320.25210.064*
C40.5921 (3)0.00322 (19)0.17939 (14)0.0372 (5)
C50.4622 (3)0.0251 (2)0.12300 (14)0.0399 (5)
C60.4896 (3)0.1416 (2)0.09174 (14)0.0395 (5)
H60.40480.15770.05280.047*
C70.6436 (3)0.2346 (2)0.11840 (14)0.0380 (5)
C80.7656 (3)0.2085 (2)0.17810 (14)0.0399 (5)
H80.86330.27140.19890.048*
C90.7460 (3)0.0909 (2)0.20762 (14)0.0375 (5)
C100.6860 (3)0.3577 (2)0.08015 (15)0.0397 (5)
C110.7337 (3)0.4601 (2)0.13080 (17)0.0497 (6)
H110.73350.45130.19050.060*
C120.7817 (3)0.5751 (2)0.0935 (2)0.0566 (7)
H120.81230.64350.12760.068*
C130.7829 (3)0.5854 (2)0.00604 (19)0.0508 (7)
C140.7387 (3)0.4878 (2)0.04658 (17)0.0508 (6)
H140.74230.49790.10640.061*
C150.6882 (3)0.3735 (2)0.00880 (16)0.0450 (6)
H150.65520.30600.04360.054*
C160.8901 (3)0.0692 (2)0.26791 (14)0.0403 (5)
C171.0920 (3)0.1319 (2)0.25431 (16)0.0468 (6)
H171.13370.18810.20880.056*
C181.2309 (4)0.1124 (2)0.30686 (17)0.0551 (7)
H181.36540.15440.29740.066*
C191.1654 (4)0.0298 (3)0.37315 (18)0.0591 (7)
C200.9699 (4)0.0323 (3)0.38994 (17)0.0588 (7)
H200.93030.08830.43560.071*
C210.8313 (4)0.0105 (2)0.33757 (16)0.0502 (6)
H210.69640.05010.34950.060*
C220.1589 (4)0.3980 (2)0.30834 (16)0.0508 (6)
C230.0195 (4)0.3617 (2)0.32391 (18)0.0600 (7)
H230.02420.28560.30510.072*
C240.1874 (4)0.4378 (3)0.36682 (18)0.0637 (8)
H240.30440.41240.37640.076*
C250.1853 (4)0.5513 (2)0.39591 (17)0.0582 (7)
C260.0107 (4)0.5880 (3)0.3797 (2)0.0715 (8)
H260.00700.66460.39790.086*
C270.1582 (4)0.5120 (2)0.3369 (2)0.0682 (8)
H270.27430.53830.32700.082*
C280.3394 (5)0.7674 (3)0.4870 (2)0.0957 (11)
H28A0.22900.74090.52180.144*
H28B0.45120.81880.52130.144*
H28C0.30020.81160.43840.144*
C290.1591 (3)0.0508 (2)0.05390 (17)0.0576 (7)
H29A0.21280.01440.00180.086*
H29B0.06210.12610.04630.086*
H29C0.09590.00270.08700.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0759 (6)0.0692 (6)0.1064 (7)0.0019 (4)0.0114 (5)0.0202 (5)
O10.0592 (11)0.0438 (11)0.0934 (14)0.0207 (9)0.0062 (10)0.0036 (10)
O20.0536 (10)0.0405 (10)0.0678 (12)0.0007 (8)0.0225 (8)0.0004 (9)
F10.0679 (10)0.0393 (9)0.1142 (14)0.0066 (7)0.0084 (9)0.0239 (9)
F20.0848 (12)0.1172 (16)0.0862 (13)0.0433 (11)0.0390 (10)0.0052 (11)
C10.0496 (14)0.0346 (14)0.0472 (14)0.0087 (11)0.0048 (11)0.0046 (11)
C20.0528 (14)0.0345 (14)0.0549 (15)0.0090 (11)0.0030 (11)0.0009 (12)
C30.0559 (15)0.0407 (15)0.0605 (17)0.0097 (12)0.0042 (12)0.0028 (13)
C40.0384 (12)0.0306 (12)0.0412 (13)0.0082 (9)0.0016 (9)0.0017 (10)
C50.0348 (11)0.0359 (13)0.0457 (14)0.0037 (10)0.0034 (10)0.0025 (11)
C60.0364 (12)0.0385 (14)0.0431 (13)0.0082 (10)0.0059 (10)0.0010 (11)
C70.0358 (12)0.0339 (13)0.0438 (13)0.0090 (9)0.0010 (9)0.0009 (10)
C80.0375 (12)0.0317 (13)0.0478 (14)0.0035 (9)0.0064 (10)0.0022 (11)
C90.0349 (11)0.0361 (13)0.0403 (13)0.0083 (9)0.0010 (9)0.0004 (10)
C100.0312 (11)0.0338 (13)0.0546 (15)0.0082 (9)0.0066 (10)0.0004 (11)
C110.0509 (14)0.0405 (15)0.0583 (16)0.0124 (11)0.0060 (11)0.0016 (13)
C120.0520 (15)0.0340 (15)0.084 (2)0.0098 (11)0.0099 (13)0.0075 (14)
C130.0366 (13)0.0338 (14)0.081 (2)0.0063 (10)0.0062 (12)0.0131 (14)
C140.0450 (14)0.0481 (16)0.0590 (16)0.0112 (11)0.0055 (11)0.0122 (13)
C150.0420 (13)0.0377 (14)0.0559 (16)0.0096 (10)0.0097 (11)0.0001 (12)
C160.0423 (12)0.0379 (13)0.0424 (13)0.0138 (10)0.0034 (10)0.0026 (11)
C170.0427 (13)0.0485 (15)0.0499 (15)0.0131 (11)0.0036 (10)0.0011 (12)
C180.0433 (14)0.0634 (18)0.0608 (17)0.0160 (12)0.0108 (12)0.0088 (14)
C190.0631 (17)0.068 (2)0.0560 (17)0.0301 (15)0.0213 (13)0.0079 (15)
C200.0731 (18)0.0593 (18)0.0465 (15)0.0198 (14)0.0109 (13)0.0065 (13)
C210.0500 (14)0.0500 (16)0.0493 (15)0.0111 (11)0.0033 (11)0.0011 (12)
C220.0557 (15)0.0361 (15)0.0570 (16)0.0041 (11)0.0084 (12)0.0019 (12)
C230.0672 (17)0.0413 (16)0.0694 (19)0.0096 (13)0.0077 (14)0.0066 (14)
C240.0596 (16)0.0539 (18)0.074 (2)0.0105 (14)0.0006 (14)0.0030 (15)
C250.0642 (17)0.0488 (17)0.0535 (17)0.0005 (13)0.0042 (12)0.0051 (13)
C260.078 (2)0.0461 (18)0.087 (2)0.0097 (15)0.0068 (16)0.0193 (16)
C270.0633 (17)0.0477 (17)0.091 (2)0.0124 (14)0.0013 (15)0.0157 (16)
C280.117 (3)0.065 (2)0.090 (3)0.0009 (19)0.004 (2)0.020 (2)
C290.0407 (13)0.0608 (18)0.0663 (18)0.0009 (12)0.0153 (12)0.0047 (14)
Geometric parameters (Å, º) top
S1—C251.753 (3)C14—C151.382 (3)
S1—C281.767 (3)C14—H140.9300
O1—C11.217 (3)C15—H150.9300
O2—C51.368 (3)C16—C211.378 (3)
O2—C291.428 (3)C16—C171.395 (3)
F1—C131.367 (3)C17—C181.377 (3)
F2—C191.367 (3)C17—H170.9300
C1—C21.482 (3)C18—C191.363 (4)
C1—C41.494 (3)C18—H180.9300
C2—C31.310 (3)C19—C201.360 (4)
C2—H20.9300C20—C211.383 (3)
C3—C221.470 (3)C20—H200.9300
C3—H30.9300C21—H210.9300
C4—C91.404 (3)C22—C271.378 (3)
C4—C51.406 (3)C22—C231.404 (3)
C5—C61.381 (3)C23—C241.377 (3)
C6—C71.389 (3)C23—H230.9300
C6—H60.9300C24—C251.381 (4)
C7—C81.392 (3)C24—H240.9300
C7—C101.479 (3)C25—C261.382 (4)
C8—C91.393 (3)C26—C271.380 (4)
C8—H80.9300C26—H260.9300
C9—C161.494 (3)C27—H270.9300
C10—C151.387 (3)C28—H28A0.9600
C10—C111.389 (3)C28—H28B0.9600
C11—C121.387 (3)C28—H28C0.9600
C11—H110.9300C29—H29A0.9600
C12—C131.358 (4)C29—H29B0.9600
C12—H120.9300C29—H29C0.9600
C13—C141.364 (3)
C25—S1—C28103.53 (15)C21—C16—C9122.5 (2)
C5—O2—C29118.40 (19)C17—C16—C9119.5 (2)
O1—C1—C2122.0 (2)C18—C17—C16121.4 (2)
O1—C1—C4120.2 (2)C18—C17—H17119.3
C2—C1—C4117.7 (2)C16—C17—H17119.3
C3—C2—C1122.1 (2)C19—C18—C17118.0 (2)
C3—C2—H2118.9C19—C18—H18121.0
C1—C2—H2118.9C17—C18—H18121.0
C2—C3—C22127.5 (2)C20—C19—C18122.9 (2)
C2—C3—H3116.2C20—C19—F2118.5 (3)
C22—C3—H3116.2C18—C19—F2118.5 (2)
C9—C4—C5118.7 (2)C19—C20—C21118.5 (2)
C9—C4—C1122.53 (19)C19—C20—H20120.7
C5—C4—C1118.6 (2)C21—C20—H20120.7
O2—C5—C6124.1 (2)C16—C21—C20121.0 (2)
O2—C5—C4114.4 (2)C16—C21—H21119.5
C6—C5—C4121.4 (2)C20—C21—H21119.5
C5—C6—C7120.0 (2)C27—C22—C23117.6 (2)
C5—C6—H6120.0C27—C22—C3120.0 (2)
C7—C6—H6120.0C23—C22—C3122.4 (2)
C6—C7—C8118.8 (2)C24—C23—C22120.6 (2)
C6—C7—C10120.8 (2)C24—C23—H23119.7
C8—C7—C10120.2 (2)C22—C23—H23119.7
C7—C8—C9122.0 (2)C23—C24—C25121.2 (3)
C7—C8—H8119.0C23—C24—H24119.4
C9—C8—H8119.0C25—C24—H24119.4
C8—C9—C4118.9 (2)C24—C25—C26118.4 (2)
C8—C9—C16118.8 (2)C24—C25—S1117.0 (2)
C4—C9—C16122.3 (2)C26—C25—S1124.6 (2)
C15—C10—C11118.3 (2)C27—C26—C25120.7 (3)
C15—C10—C7120.1 (2)C27—C26—H26119.7
C11—C10—C7121.5 (2)C25—C26—H26119.7
C12—C11—C10120.9 (2)C22—C27—C26121.6 (3)
C12—C11—H11119.5C22—C27—H27119.2
C10—C11—H11119.5C26—C27—H27119.2
C13—C12—C11118.4 (3)S1—C28—H28A109.5
C13—C12—H12120.8S1—C28—H28B109.5
C11—C12—H12120.8H28A—C28—H28B109.5
C12—C13—C14122.9 (2)S1—C28—H28C109.5
C12—C13—F1118.7 (2)H28A—C28—H28C109.5
C14—C13—F1118.4 (2)H28B—C28—H28C109.5
C13—C14—C15118.3 (2)O2—C29—H29A109.5
C13—C14—H14120.9O2—C29—H29B109.5
C15—C14—H14120.9H29A—C29—H29B109.5
C14—C15—C10121.2 (2)O2—C29—H29C109.5
C14—C15—H15119.4H29A—C29—H29C109.5
C10—C15—H15119.4H29B—C29—H29C109.5
C21—C16—C17118.1 (2)
O1—C1—C2—C30.4 (4)C12—C13—C14—C150.7 (3)
C4—C1—C2—C3179.6 (2)F1—C13—C14—C15179.68 (18)
C1—C2—C3—C22178.9 (2)C13—C14—C15—C101.2 (3)
O1—C1—C4—C953.5 (3)C11—C10—C15—C140.7 (3)
C2—C1—C4—C9125.7 (2)C7—C10—C15—C14176.28 (19)
O1—C1—C4—C5121.5 (2)C8—C9—C16—C21140.0 (2)
C2—C1—C4—C559.3 (3)C4—C9—C16—C2140.3 (3)
C29—O2—C5—C613.8 (3)C8—C9—C16—C1739.7 (3)
C29—O2—C5—C4169.76 (19)C4—C9—C16—C17140.0 (2)
C9—C4—C5—O2179.93 (18)C21—C16—C17—C182.1 (4)
C1—C4—C5—O24.7 (3)C9—C16—C17—C18178.2 (2)
C9—C4—C5—C63.4 (3)C16—C17—C18—C190.1 (4)
C1—C4—C5—C6171.84 (19)C17—C18—C19—C200.9 (4)
O2—C5—C6—C7178.6 (2)C17—C18—C19—F2177.8 (2)
C4—C5—C6—C72.4 (3)C18—C19—C20—C210.2 (4)
C5—C6—C7—C81.3 (3)F2—C19—C20—C21178.9 (2)
C5—C6—C7—C10174.82 (19)C17—C16—C21—C203.2 (4)
C6—C7—C8—C94.1 (3)C9—C16—C21—C20177.2 (2)
C10—C7—C8—C9172.08 (19)C19—C20—C21—C162.3 (4)
C7—C8—C9—C43.1 (3)C2—C3—C22—C27171.7 (3)
C7—C8—C9—C16176.63 (19)C2—C3—C22—C236.8 (4)
C5—C4—C9—C80.7 (3)C27—C22—C23—C240.5 (4)
C1—C4—C9—C8174.35 (19)C3—C22—C23—C24178.1 (2)
C5—C4—C9—C16179.65 (19)C22—C23—C24—C250.2 (4)
C1—C4—C9—C165.3 (3)C23—C24—C25—C261.0 (4)
C6—C7—C10—C1543.8 (3)C23—C24—C25—S1179.5 (2)
C8—C7—C10—C15132.3 (2)C28—S1—C25—C24173.2 (2)
C6—C7—C10—C11139.4 (2)C28—S1—C25—C268.4 (3)
C8—C7—C10—C1144.6 (3)C24—C25—C26—C271.1 (4)
C15—C10—C11—C120.2 (3)S1—C25—C26—C27179.5 (2)
C7—C10—C11—C12177.2 (2)C23—C22—C27—C260.4 (4)
C10—C11—C12—C130.7 (3)C3—C22—C27—C26178.2 (3)
C11—C12—C13—C140.2 (4)C25—C26—C27—C220.4 (5)
C11—C12—C13—F1179.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.473.289 (3)147
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC29H22F2O2S
Mr472.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9341 (3), 11.4440 (4), 15.4719 (5)
α, β, γ (°)89.611 (3), 84.738 (3), 74.981 (3)
V3)1180.63 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.743, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17866, 4637, 2891
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 1.06
No. of reflections4637
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.473.289 (3)147
Symmetry code: (i) x, y1, z.
 

Acknowledgements

RK acknowledges the Department of Science and Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003. BN thanks the UGC for financial assistance through BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3327–o3328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2024.  CSD CrossRef IUCr Journals Google Scholar
First citationGill, M. & Steglich, W. (1987). Prog. Chem. Org. Nat. Prod. 51, 1–317.  CAS Google Scholar
First citationLiu, J. K. (2006). Chem. Rev. 106, 2209–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Betz, R., Gerber, T. & Hosten, E. (2012). Acta Cryst. E68, o1538–o1539.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds