organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-Meth­­oxy­imino]-2-{2-[(2-methyl­phen­­oxy)meth­yl]phen­yl}ethanoic acid

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, and bNational Research Centre for Grapes, Pune 412 307, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 3 July 2012; accepted 5 July 2012; online 10 July 2012)

In the title compound, C17H17NO4, the dihedral angle between the two aromatic rings is 59.64 (5)°. The (meth­oxy­imino)­ethanoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle = 81.07 (4)°]. In the crystal, pairs of O—H⋯O hydrogen bonds between carb­oxy groups link mol­ecules into inversion dimers. In addition, ππ stacking inter­actions between inversion-related benzene rings are observed [centroid–centroid distance = 3.702 (1) Å].

Related literature

For the biological activities of kresoxim-methyl, see: Balba (2007[Balba, H. (2007). J. Environ. Sci. Health B, 42, 441-451.]); Cash & Cronan (2001[Cash, H. & Cronan, J. M. Jr (2001). US Patent Appl. WO2001-US9649 20010323.]); Ammermann et al. (2000[Ammermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). Proceedings of the Brighton Crop Protection Conference - Pests and Diseases, Vol. 2, pp. 541-548. Alton, Hampshire, England: BCPC Publications.]). For a related structure, see: Chopra et al. (2004[Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2421-o2423.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO4

  • Mr = 299.32

  • Triclinic, [P \overline 1]

  • a = 7.8993 (3) Å

  • b = 8.5720 (3) Å

  • c = 12.6080 (5) Å

  • α = 88.013 (3)°

  • β = 82.270 (3)°

  • γ = 65.717 (4)°

  • V = 770.92 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.947, Tmax = 1.000

  • 18021 measured reflections

  • 3016 independent reflections

  • 2446 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.05

  • 3016 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.640 (2) 176
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is the acid metabolite of kresoxim-methyl, which is a systemic fungicide of strobilurin group with broad spectrum bio-efficacy against various diseases (Balba, 2007; Cash & Cronan, 2001; Ammermann et al., 2000) of economically important agricultural crops.

In (I), all bond lengths and angles are normal and correspond to those observed in the related structure (Chopra et al., 2004). The dihedral angle between the the two aromatic rings is 59.64 (5)°. The (methoxyimino)ethanoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle 81.07 (4)°]. In the crystal, O—H···O hydrogen bonds link pairs of molecules to form inversion dimers (Fig. 2). The crystal structure is further stabilized by ππ interactions between the benzene ring (C11—C16) of the molecule at (x, y, z) and the benzene ring of an inversion related molecule at (1 - x, 1 - y, 1 - z)[centroid separation = 3.702 (1) Å, interplanar spacing = 3.547Å and centroid shift = 1.05 Å].

Related literature top

For the biological activities of kresoxim-methyl, see: Balba (2007); Cash & Cronan (2001); Ammermann et al. (2000). For a related structure, see: Chopra et al. (2004).

Experimental top

Kresoxim-methyl (0.313 g, 0.001 mol) was dissolved in 5 ml acetone and to it 5 ml of 1 N NaOH solution was added. The reaction mixture was refluxed on a water bath at 343 K for 12 hrs, and then cooled. The compound was precipitated by neutralizing with 1 N HCl solution. The precipitated compound was dissolved in methanol and crystallized by the process of slow evaporation (m.p. 413 K).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C / O atoms, with O—H distance of 0.82 Å and C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C / O).

Structure description top

The title compound is the acid metabolite of kresoxim-methyl, which is a systemic fungicide of strobilurin group with broad spectrum bio-efficacy against various diseases (Balba, 2007; Cash & Cronan, 2001; Ammermann et al., 2000) of economically important agricultural crops.

In (I), all bond lengths and angles are normal and correspond to those observed in the related structure (Chopra et al., 2004). The dihedral angle between the the two aromatic rings is 59.64 (5)°. The (methoxyimino)ethanoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle 81.07 (4)°]. In the crystal, O—H···O hydrogen bonds link pairs of molecules to form inversion dimers (Fig. 2). The crystal structure is further stabilized by ππ interactions between the benzene ring (C11—C16) of the molecule at (x, y, z) and the benzene ring of an inversion related molecule at (1 - x, 1 - y, 1 - z)[centroid separation = 3.702 (1) Å, interplanar spacing = 3.547Å and centroid shift = 1.05 Å].

For the biological activities of kresoxim-methyl, see: Balba (2007); Cash & Cronan (2001); Ammermann et al. (2000). For a related structure, see: Chopra et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis. The dotted lines show intermolecular O—H···O hydrogen bonds.
2-[(E)-Methoxyimino]-2-{2-[(2-methylphenoxy)methyl]phenyl}ethanoic acid top
Crystal data top
C17H17NO4Z = 2
Mr = 299.32F(000) = 316
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8993 (3) ÅCell parameters from 8697 reflections
b = 8.5720 (3) Åθ = 4.0–29.0°
c = 12.6080 (5) ŵ = 0.09 mm1
α = 88.013 (3)°T = 293 K
β = 82.270 (3)°Block, colourless
γ = 65.717 (4)°0.3 × 0.2 × 0.1 mm
V = 770.92 (5) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3016 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 4.0°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.947, Tmax = 1.000l = 1515
18021 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.1581P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3016 reflectionsΔρmax = 0.21 e Å3
202 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.129 (7)
Crystal data top
C17H17NO4γ = 65.717 (4)°
Mr = 299.32V = 770.92 (5) Å3
Triclinic, P1Z = 2
a = 7.8993 (3) ÅMo Kα radiation
b = 8.5720 (3) ŵ = 0.09 mm1
c = 12.6080 (5) ÅT = 293 K
α = 88.013 (3)°0.3 × 0.2 × 0.1 mm
β = 82.270 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3016 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2446 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 1.000Rint = 0.031
18021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3016 reflectionsΔρmin = 0.14 e Å3
202 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.04205 (15)0.76501 (15)0.14263 (9)0.0411 (3)
O10.26565 (15)0.52466 (14)0.04947 (10)0.0627 (4)
H10.36550.46110.01570.094*
O20.41631 (14)0.69280 (13)0.05567 (9)0.0545 (3)
O30.19671 (13)0.89490 (14)0.19809 (9)0.0537 (3)
O40.29418 (13)0.65865 (12)0.32961 (7)0.0470 (3)
C10.10574 (17)0.79233 (16)0.14043 (10)0.0343 (3)
C20.27728 (18)0.66279 (17)0.07790 (11)0.0389 (3)
C30.3626 (2)0.8742 (3)0.18052 (16)0.0714 (5)
H3A0.37530.88410.10560.107*
H3B0.47040.96120.22030.107*
H3C0.35290.76340.20390.107*
C40.11852 (16)0.94464 (16)0.18597 (10)0.0343 (3)
C50.1139 (2)1.07741 (19)0.11881 (13)0.0481 (4)
H50.10531.06870.04660.058*
C60.1217 (2)1.2226 (2)0.15794 (16)0.0593 (5)
H60.11481.31260.11280.071*
C70.1399 (2)1.2330 (2)0.26406 (16)0.0589 (5)
H70.14641.32990.29080.071*
C80.14853 (19)1.10001 (19)0.33090 (13)0.0489 (4)
H80.16271.10770.40230.059*
C90.13653 (16)0.95487 (16)0.29377 (11)0.0364 (3)
C100.14079 (19)0.81417 (17)0.36887 (11)0.0418 (3)
H10A0.15580.84220.43990.050*
H10B0.02400.80060.37340.050*
C110.33196 (19)0.51830 (17)0.39422 (11)0.0400 (3)
C120.4895 (2)0.37100 (18)0.35617 (12)0.0447 (3)
C130.5341 (2)0.22787 (19)0.41993 (14)0.0551 (4)
H130.63820.12850.39650.066*
C140.4296 (3)0.2281 (2)0.51667 (15)0.0596 (4)
H140.46370.13050.55790.072*
C150.2752 (2)0.3729 (2)0.55158 (14)0.0568 (4)
H150.20330.37360.61650.068*
C160.2255 (2)0.5189 (2)0.49049 (12)0.0486 (4)
H160.12050.61720.51440.058*
C170.6052 (2)0.3689 (2)0.25175 (15)0.0647 (5)
H17A0.71980.26720.24580.097*
H17B0.63340.46790.24840.097*
H17C0.53690.37020.19400.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0358 (6)0.0487 (7)0.0405 (6)0.0196 (5)0.0022 (5)0.0041 (5)
O10.0494 (6)0.0518 (6)0.0893 (9)0.0285 (5)0.0166 (6)0.0286 (6)
O20.0408 (6)0.0539 (6)0.0715 (7)0.0260 (5)0.0106 (5)0.0200 (5)
O30.0315 (5)0.0610 (7)0.0665 (7)0.0183 (5)0.0021 (5)0.0155 (5)
O40.0466 (6)0.0382 (5)0.0395 (5)0.0021 (4)0.0011 (4)0.0007 (4)
C10.0342 (7)0.0385 (7)0.0324 (6)0.0170 (6)0.0055 (5)0.0023 (5)
C20.0377 (7)0.0420 (7)0.0407 (7)0.0207 (6)0.0020 (6)0.0044 (6)
C30.0362 (8)0.0977 (14)0.0844 (13)0.0323 (9)0.0035 (8)0.0062 (11)
C40.0262 (6)0.0339 (7)0.0411 (7)0.0112 (5)0.0026 (5)0.0007 (5)
C50.0460 (8)0.0499 (8)0.0516 (9)0.0235 (7)0.0062 (6)0.0095 (7)
C60.0512 (9)0.0417 (8)0.0876 (13)0.0241 (7)0.0038 (9)0.0121 (8)
C70.0440 (8)0.0402 (8)0.0953 (14)0.0206 (7)0.0037 (8)0.0142 (8)
C80.0375 (7)0.0466 (8)0.0590 (9)0.0127 (6)0.0045 (6)0.0178 (7)
C90.0252 (6)0.0352 (7)0.0426 (7)0.0063 (5)0.0023 (5)0.0067 (5)
C100.0391 (7)0.0404 (7)0.0357 (7)0.0061 (6)0.0033 (6)0.0044 (6)
C110.0402 (7)0.0380 (7)0.0421 (8)0.0139 (6)0.0136 (6)0.0015 (6)
C120.0412 (7)0.0398 (7)0.0526 (8)0.0133 (6)0.0149 (6)0.0030 (6)
C130.0567 (9)0.0359 (8)0.0712 (11)0.0129 (7)0.0236 (8)0.0008 (7)
C140.0768 (12)0.0452 (9)0.0666 (11)0.0306 (9)0.0266 (9)0.0139 (8)
C150.0678 (11)0.0583 (10)0.0534 (9)0.0341 (9)0.0124 (8)0.0092 (8)
C160.0478 (8)0.0471 (8)0.0485 (9)0.0165 (7)0.0082 (7)0.0018 (7)
C170.0535 (10)0.0515 (10)0.0675 (11)0.0022 (8)0.0010 (8)0.0043 (8)
Geometric parameters (Å, º) top
N1—C11.2784 (16)C7—H70.9300
N1—O31.3880 (14)C8—C91.3875 (19)
O1—C21.2910 (16)C8—H80.9300
O1—H10.8200C9—C101.4994 (19)
O2—C21.2228 (16)C10—H10A0.9700
O3—C31.4391 (18)C10—H10B0.9700
O4—C111.3791 (16)C11—C161.379 (2)
O4—C101.4305 (15)C11—C121.4006 (19)
C1—C41.4901 (17)C12—C131.388 (2)
C1—C21.4921 (18)C12—C171.495 (2)
C3—H3A0.9600C13—C141.378 (2)
C3—H3B0.9600C13—H130.9300
C3—H3C0.9600C14—C151.368 (2)
C4—C51.3859 (19)C14—H140.9300
C4—C91.3948 (18)C15—C161.387 (2)
C5—C61.383 (2)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—C71.374 (3)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—C81.378 (2)C17—H17C0.9600
C1—N1—O3111.46 (11)C8—C9—C10120.26 (13)
C2—O1—H1109.5C4—C9—C10121.31 (11)
N1—O3—C3108.63 (11)O4—C10—C9108.75 (10)
C11—O4—C10116.98 (10)O4—C10—H10A109.9
N1—C1—C4126.66 (12)C9—C10—H10A109.9
N1—C1—C2115.03 (11)O4—C10—H10B109.9
C4—C1—C2118.13 (10)C9—C10—H10B109.9
O2—C2—O1124.35 (12)H10A—C10—H10B108.3
O2—C2—C1119.61 (11)O4—C11—C16123.67 (12)
O1—C2—C1116.04 (11)O4—C11—C12115.46 (12)
O3—C3—H3A109.5C16—C11—C12120.87 (13)
O3—C3—H3B109.5C13—C12—C11117.19 (14)
H3A—C3—H3B109.5C13—C12—C17121.54 (14)
O3—C3—H3C109.5C11—C12—C17121.27 (13)
H3A—C3—H3C109.5C14—C13—C12122.24 (15)
H3B—C3—H3C109.5C14—C13—H13118.9
C5—C4—C9119.87 (12)C12—C13—H13118.9
C5—C4—C1118.75 (12)C15—C14—C13119.49 (15)
C9—C4—C1121.37 (11)C15—C14—H14120.3
C6—C5—C4120.78 (15)C13—C14—H14120.3
C6—C5—H5119.6C14—C15—C16120.20 (16)
C4—C5—H5119.6C14—C15—H15119.9
C7—C6—C5119.48 (15)C16—C15—H15119.9
C7—C6—H6120.3C11—C16—C15120.01 (14)
C5—C6—H6120.3C11—C16—H16120.0
C6—C7—C8120.08 (14)C15—C16—H16120.0
C6—C7—H7120.0C12—C17—H17A109.5
C8—C7—H7120.0C12—C17—H17B109.5
C7—C8—C9121.32 (15)H17A—C17—H17B109.5
C7—C8—H8119.3C12—C17—H17C109.5
C9—C8—H8119.3H17A—C17—H17C109.5
C8—C9—C4118.43 (13)H17B—C17—H17C109.5
C1—N1—O3—C3169.20 (13)C1—C4—C9—C8179.72 (11)
O3—N1—C1—C42.39 (18)C5—C4—C9—C10179.60 (12)
O3—N1—C1—C2177.26 (11)C1—C4—C9—C100.97 (18)
N1—C1—C2—O2167.44 (13)C11—O4—C10—C9173.59 (11)
C4—C1—C2—O27.90 (19)C8—C9—C10—O4121.94 (13)
N1—C1—C2—O111.62 (19)C4—C9—C10—O458.76 (15)
C4—C1—C2—O1173.04 (12)C10—O4—C11—C163.11 (19)
N1—C1—C4—C596.47 (16)C10—O4—C11—C12176.49 (11)
C2—C1—C4—C578.27 (16)O4—C11—C12—C13178.86 (12)
N1—C1—C4—C984.09 (17)C16—C11—C12—C130.8 (2)
C2—C1—C4—C9101.17 (14)O4—C11—C12—C170.6 (2)
C9—C4—C5—C61.8 (2)C16—C11—C12—C17179.77 (14)
C1—C4—C5—C6178.77 (13)C11—C12—C13—C140.1 (2)
C4—C5—C6—C71.9 (2)C17—C12—C13—C14179.57 (15)
C5—C6—C7—C80.6 (2)C12—C13—C14—C150.6 (2)
C6—C7—C8—C90.9 (2)C13—C14—C15—C160.6 (2)
C7—C8—C9—C41.1 (2)O4—C11—C16—C15178.85 (13)
C7—C8—C9—C10178.26 (13)C12—C11—C16—C150.7 (2)
C5—C4—C9—C80.29 (18)C14—C15—C16—C110.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.640 (2)176
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H17NO4
Mr299.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8993 (3), 8.5720 (3), 12.6080 (5)
α, β, γ (°)88.013 (3), 82.270 (3), 65.717 (4)
V3)770.92 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.947, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18021, 3016, 2446
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.05
No. of reflections3016
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.640 (2)176
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

RK acknowledges the Department of Science and Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAmmermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). Proceedings of the Brighton Crop Protection ConferencePests and Diseases, Vol. 2, pp. 541–548. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationBalba, H. (2007). J. Environ. Sci. Health B, 42, 441–451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCash, H. & Cronan, J. M. Jr (2001). US Patent Appl. WO2001-US9649 20010323.  Google Scholar
First citationChopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2421–o2423.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds