organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-3-methyl-1,2-oxazole-4-carbo­nitrile

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy
*Correspondence e-mail: s.shoghpour@gmail.com

(Received 12 July 2012; accepted 18 July 2012; online 25 July 2012)

In the title compound, C5H5N3O, the isoxazole ring is essentially planar, with a maximum deviation of 0.007 (1) Å from the least-squares plane. The N atom of the amine group exhibits sp2 character (sum of bond angles around this atom = 358°). In the crystal, mol­ecules are aggregated by two kinds of N—H⋯N hydrogen bonds into fused R22(12) and R66(26) rings, forming a slightly puckered two-dimensional array lying parallel to (101).

Related literature

For the biological activities of isoxazole derivatives, see: Mantegani et al. (2011[Mantegani, S., Gabriella Brasca, M., Casuscelli, F., Ferguson, R., Posteri, H., Visco, C., Casale, E. & Zuccotto, F. (2011). US Patent No. 0294790A1.]); Ali et al. (2011[Ali, M. A., Ismail, R., Choon, T. S., Yoon, Y. K., Wei, A. C., Pandian, S., Samy, J. G., De Clercq, E. & Pannecouque, C. (2011). Acta Pol. Pharm. Drug Res. 68, 343-348.]); Panda et al. (2009[Panda, S. S., Chowdary, P. V. R. & Jayashree, B. S. (2009). Indian J. Pharm. Sci. 71, 684-687.]); Özdemir et al. (2007[Özdemir, Z., Kandilci, H. B., Gümüşel, B., Çaliş, U. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373-379.]); Banerjee et al. (1994[Banerjee, A. K., Bandyopadhyay, S., Gayen, A. K., Sengupta, T., Das, A. K., Chatterjee, G. K. & Chaudhuri, S. K. (1994). Arzneim. Forsch. 44, 863-866.]); Makoto et al. (2011[Makoto, I., Tasuku, H., Chisato, N., Teruyuki, N., Jun, S., Tadashi, S. & Takeru, Y. (2011). US Patent No. 0065739A1.]). For background to push–pull nitriles, see: Ziao et al. (2001[Ziao, N., Graton, J., Laurence, C. & Le Questel, J.-Y. (2001). Acta Cryst. B57, 850-858.]); Hao et al. (2005[Hao, X., Chen, J., Cammers, A., Parkin, S. & Brock, C. P. (2005). Acta Cryst. B61, 218-226.]). For hydrogen-bond motif definitions, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5N3O

  • Mr = 123.12

  • Monoclinic, P 21 /n

  • a = 3.8779 (2) Å

  • b = 18.8518 (11) Å

  • c = 8.2015 (4) Å

  • β = 100.780 (2)°

  • V = 588.99 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.56 × 0.26 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]) Tmin = 0.674, Tmax = 0.745

  • 5275 measured reflections

  • 1277 independent reflections

  • 1072 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.107

  • S = 1.07

  • 1277 reflections

  • 91 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.842 (19) 2.118 (19) 2.9567 (16) 174.2 (16)
N2—H2B⋯N3ii 0.870 (18) 2.174 (18) 3.0402 (17) 173.8 (15)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XPW (Siemens, 1996[Siemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Isoxazoles are an important class of heterocyclic compounds which are widely used in medicinal chemistry. A number of isoxazole derivatives are known to act as anti-tumor (Mantegani et al., 2011), anti-HIV (Ali et al., 2011), anti-inflammatory, antibacterial (Panda et al., 2009), antidepressant, anticonvulsant (Özdemir et al., 2007) and anthelmintic (Banerjee et al., 1994) agents. Isoxazole derivatives are also utilized in therapy in the treatment of diabetes, obesity or hyperlipemia (Makoto et al., 2011). Considering the potential of the title compound as a pharmaceutical intermediate, its crystal structure is reported here.

The title molecule (Fig. 1) exhibits a planar isoxazole ring with a maximum deviation of 0.007 (1) Å for atom C2. The sum of the bond angles around the N atom of the amine group (358°) is in accordance with sp2 hybridization.

As has been described for related push–pull nitriles (Ziao et al., 2001; Hao et al., 2005), there is a conjugative interaction between the amino nitrogen lone pair and the nitrile nitrogen via the C1C2 bond which increases the hydrogen-bonding acceptor capability of the nitrile nitrogen. Thus, the amino nitrogen lone pair is not available for a hydrogen-bond interaction and it does not form any hydrogen bond as an acceptor. In addition, the C4N3 bond length [1.1424 (16) Å] is typical of the nitrile bond lengths found in push–pull nitriles.

In the crystal structure (Fig. 2), molecules are linked by N—H···Ncyano (N2···N3 = 3.0402 (17) Å) and N—H···Nisoxazole (N2···N1 = 2.9567 (16) Å) hydrogen bonds (Table 1) building R22(12) and R66(26) rings (Bernstein et al., 1995) in a two-dimensional arrangement along the (101) plane.

Related literature top

For the biological activities of isoxazole derivatives, see: Mantegani et al. (2011); Ali et al. (2011); Panda et al. (2009); Özdemir et al. (2007); Banerjee et al. (1994); Makoto et al. (2011). For background to push–pull nitriles, see: Ziao et al. (2001); Hao et al. (2005). For hydrogen-bond motif definitions, see: Bernstein et al., (1995).

Experimental top

To a solution of hydroxylamine hydrochloride (13.9 g, 0.2 mol) in 10% sodium hydroxide (80 ml), (1-ethoxyethylidene)malononitrile (27.23 g, 0.2 mol) was added dropwise at 323 K under vigorous stirring condition. The temperature was kept below 323 K by making this addition slowly and by addition of small amount of ice. After stirring for an additional 1.5 h at approximately 293 K, the resulting solid was filtered and washed with water. Single crystals of title compound were obtained from a solution of aqueous ethanol after slow evaporation at room temperature.

Refinement top

All H atoms were located on a final ΔF map. The positions of H atoms from the methyl group were determined geometrically (C—H = 0.96 Å) and these atoms were refined as riding with Uiso(H) = 1.5Ueq(C). The H atoms of the amine group were freely refined.

Structure description top

Isoxazoles are an important class of heterocyclic compounds which are widely used in medicinal chemistry. A number of isoxazole derivatives are known to act as anti-tumor (Mantegani et al., 2011), anti-HIV (Ali et al., 2011), anti-inflammatory, antibacterial (Panda et al., 2009), antidepressant, anticonvulsant (Özdemir et al., 2007) and anthelmintic (Banerjee et al., 1994) agents. Isoxazole derivatives are also utilized in therapy in the treatment of diabetes, obesity or hyperlipemia (Makoto et al., 2011). Considering the potential of the title compound as a pharmaceutical intermediate, its crystal structure is reported here.

The title molecule (Fig. 1) exhibits a planar isoxazole ring with a maximum deviation of 0.007 (1) Å for atom C2. The sum of the bond angles around the N atom of the amine group (358°) is in accordance with sp2 hybridization.

As has been described for related push–pull nitriles (Ziao et al., 2001; Hao et al., 2005), there is a conjugative interaction between the amino nitrogen lone pair and the nitrile nitrogen via the C1C2 bond which increases the hydrogen-bonding acceptor capability of the nitrile nitrogen. Thus, the amino nitrogen lone pair is not available for a hydrogen-bond interaction and it does not form any hydrogen bond as an acceptor. In addition, the C4N3 bond length [1.1424 (16) Å] is typical of the nitrile bond lengths found in push–pull nitriles.

In the crystal structure (Fig. 2), molecules are linked by N—H···Ncyano (N2···N3 = 3.0402 (17) Å) and N—H···Nisoxazole (N2···N1 = 2.9567 (16) Å) hydrogen bonds (Table 1) building R22(12) and R66(26) rings (Bernstein et al., 1995) in a two-dimensional arrangement along the (101) plane.

For the biological activities of isoxazole derivatives, see: Mantegani et al. (2011); Ali et al. (2011); Panda et al. (2009); Özdemir et al. (2007); Banerjee et al. (1994); Makoto et al. (2011). For background to push–pull nitriles, see: Ziao et al. (2001); Hao et al. (2005). For hydrogen-bond motif definitions, see: Bernstein et al., (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of two-dimensional structure in the title compound showing the R22(12) and R66(26) graph-set motifs, built from N—H···N hydrogen bonds (dashed lines).
5-Amino-3-methyl-1,2-oxazole-4-carbonitrile top
Crystal data top
C5H5N3OF(000) = 256
Mr = 123.12Dx = 1.388 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2187 reflections
a = 3.8779 (2) Åθ = 2.8–26.2°
b = 18.8518 (11) ŵ = 0.10 mm1
c = 8.2015 (4) ÅT = 296 K
β = 100.780 (2)°Irregular, colourless
V = 588.99 (5) Å30.56 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1277 independent reflections
Radiation source: fine-focus sealed tube1072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 44
Tmin = 0.674, Tmax = 0.745k = 2423
5275 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.0596P]
where P = (Fo2 + 2Fc2)/3
1277 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C5H5N3OV = 588.99 (5) Å3
Mr = 123.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.8779 (2) ŵ = 0.10 mm1
b = 18.8518 (11) ÅT = 296 K
c = 8.2015 (4) Å0.56 × 0.26 × 0.20 mm
β = 100.780 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1072 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.745Rint = 0.020
5275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.19 e Å3
1277 reflectionsΔρmin = 0.16 e Å3
91 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8940 (2)0.77984 (4)0.37710 (11)0.0430 (3)
C20.8212 (3)0.89315 (6)0.30725 (13)0.0343 (3)
N10.9900 (3)0.78822 (6)0.21727 (13)0.0454 (3)
N20.6888 (4)0.84546 (6)0.57048 (14)0.0463 (3)
N30.6449 (4)1.02356 (6)0.30830 (16)0.0577 (4)
C40.7269 (3)0.96534 (6)0.30883 (14)0.0384 (3)
C30.9420 (3)0.85487 (7)0.17972 (14)0.0381 (3)
C51.0051 (4)0.88260 (8)0.01801 (16)0.0518 (4)
H5A1.10580.84590.03940.078*
H5B1.16370.92210.03720.078*
H5C0.78660.89770.04820.078*
C10.7919 (3)0.84280 (6)0.42663 (14)0.0347 (3)
H2A0.647 (4)0.8074 (10)0.617 (2)0.063 (5)*
H2B0.610 (4)0.8842 (10)0.608 (2)0.061 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0636 (6)0.0243 (4)0.0437 (5)0.0043 (4)0.0167 (4)0.0011 (3)
C20.0426 (6)0.0264 (6)0.0346 (6)0.0016 (4)0.0092 (5)0.0006 (4)
N10.0611 (7)0.0367 (6)0.0413 (6)0.0057 (5)0.0168 (5)0.0060 (4)
N20.0752 (8)0.0257 (6)0.0434 (6)0.0018 (5)0.0256 (6)0.0023 (4)
N30.0844 (10)0.0318 (6)0.0616 (8)0.0114 (6)0.0260 (7)0.0054 (5)
C40.0504 (7)0.0306 (7)0.0367 (6)0.0018 (5)0.0145 (5)0.0021 (4)
C30.0420 (6)0.0358 (6)0.0369 (6)0.0029 (5)0.0083 (5)0.0038 (5)
C50.0622 (8)0.0581 (9)0.0384 (7)0.0072 (7)0.0180 (6)0.0027 (6)
C10.0440 (6)0.0237 (6)0.0369 (6)0.0003 (4)0.0090 (5)0.0026 (4)
Geometric parameters (Å, º) top
O1—C11.3383 (13)N2—H2A0.842 (19)
O1—N11.4367 (13)N2—H2B0.870 (18)
C2—C11.3836 (16)N3—C41.1424 (16)
C2—C41.4098 (16)C3—C51.4877 (17)
C2—C31.4204 (16)C5—H5A0.9600
N1—C31.2988 (16)C5—H5B0.9600
N2—C11.3154 (16)C5—H5C0.9600
C1—O1—N1108.74 (8)C2—C3—C5127.57 (12)
C1—C2—C4126.86 (10)C3—C5—H5A109.5
C1—C2—C3104.75 (10)C3—C5—H5B109.5
C4—C2—C3128.25 (11)H5A—C5—H5B109.5
C3—N1—O1105.83 (9)C3—C5—H5C109.5
C1—N2—H2A119.3 (12)H5A—C5—H5C109.5
C1—N2—H2B122.4 (11)H5B—C5—H5C109.5
H2A—N2—H2B116.3 (16)N2—C1—O1117.57 (10)
N3—C4—C2178.79 (15)N2—C1—C2133.44 (11)
N1—C3—C2111.67 (11)O1—C1—C2109.00 (10)
N1—C3—C5120.74 (11)
C1—O1—N1—C30.14 (14)N1—O1—C1—N2179.10 (11)
O1—N1—C3—C20.70 (14)N1—O1—C1—C20.94 (13)
O1—N1—C3—C5178.01 (10)C4—C2—C1—N22.8 (2)
C1—C2—C3—N11.26 (14)C3—C2—C1—N2178.75 (15)
C4—C2—C3—N1177.17 (12)C4—C2—C1—O1177.29 (12)
C1—C2—C3—C5177.35 (12)C3—C2—C1—O11.31 (13)
C4—C2—C3—C51.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.842 (19)2.118 (19)2.9567 (16)174.2 (16)
N2—H2B···N3ii0.870 (18)2.174 (18)3.0402 (17)173.8 (15)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC5H5N3O
Mr123.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)3.8779 (2), 18.8518 (11), 8.2015 (4)
β (°) 100.780 (2)
V3)588.99 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.674, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
5275, 1277, 1072
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.107, 1.07
No. of reflections1277
No. of parameters91
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPW (Siemens, 1996), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.842 (19)2.118 (19)2.9567 (16)174.2 (16)
N2—H2B···N3ii0.870 (18)2.174 (18)3.0402 (17)173.8 (15)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAli, M. A., Ismail, R., Choon, T. S., Yoon, Y. K., Wei, A. C., Pandian, S., Samy, J. G., De Clercq, E. & Pannecouque, C. (2011). Acta Pol. Pharm. Drug Res. 68, 343–348.  CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBanerjee, A. K., Bandyopadhyay, S., Gayen, A. K., Sengupta, T., Das, A. K., Chatterjee, G. K. & Chaudhuri, S. K. (1994). Arzneim. Forsch. 44, 863–866.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.   Google Scholar
First citationHao, X., Chen, J., Cammers, A., Parkin, S. & Brock, C. P. (2005). Acta Cryst. B61, 218–226.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMakoto, I., Tasuku, H., Chisato, N., Teruyuki, N., Jun, S., Tadashi, S. & Takeru, Y. (2011). US Patent No. 0065739A1.  Google Scholar
First citationMantegani, S., Gabriella Brasca, M., Casuscelli, F., Ferguson, R., Posteri, H., Visco, C., Casale, E. & Zuccotto, F. (2011). US Patent No. 0294790A1.  Google Scholar
First citationÖzdemir, Z., Kandilci, H. B., Gümüşel, B., Çaliş, U. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373–379.  Web of Science PubMed Google Scholar
First citationPanda, S. S., Chowdary, P. V. R. & Jayashree, B. S. (2009). Indian J. Pharm. Sci. 71, 684–687.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZiao, N., Graton, J., Laurence, C. & Le Questel, J.-Y. (2001). Acta Cryst. B57, 850–858.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds