organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-{[5-Bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­­oxy­phen­yl)-4-methyl­benzene­sulfonamide

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and cPG Department of Studies in Chemistry, JSS College of Arts Commerce and Science, Ooty Road Mysore 570 025, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 19 July 2012; accepted 24 July 2012; online 28 July 2012)

In the title compound, C22H23BrN4O4S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 68.9 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 69.7 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular ππ stacking inter­action between the pyrimidine and the 4-methylbenzene rings [centroid–centroid distance = 3.934 (2) Å]. The morpholine ring adopts a chair conformation and is disordered over two positions with an occupancy ratio of 0.853 (6):0.147 (6). In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains extending along the a axis and further, through C—H⋯N and C—H⋯O inter­actions, into a three-dimensional supramolecular structure.

Related literature

For the crystal structures of sulfonamides, see: Rodrigues et al. (2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2891.]); Akkurt et al. (2011[Akkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.]). For their biological activity, see: Gao & Pederson (2005[Gao, J. & Pederson, J. A. (2005). Environ. Sci. Technol. 39, 9509-9516.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring asymmetry parameters and conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23BrN4O4S2

  • Mr = 551.47

  • Monoclinic, P 21 /n

  • a = 10.0321 (3) Å

  • b = 17.4842 (6) Å

  • c = 13.9095 (4) Å

  • β = 91.699 (3)°

  • V = 2438.70 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.557, Tmax = 1.000

  • 21500 measured reflections

  • 4783 independent reflections

  • 3361 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.086

  • S = 1.01

  • 4783 reflections

  • 321 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O26Ai 0.85 (2) 2.02 (2) 2.846 (8) 163 (2)
N8—H8⋯O26Bi 0.85 (2) 2.06 (6) 2.895 (5) 165 (3)
C21—H21⋯N20ii 0.93 2.53 3.394 (4) 155
C25A—H251⋯O2iii 0.97 2.59 3.377 (6) 138
C27A—H272⋯O2iii 0.97 2.52 3.341 (6) 143
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. Sulfonamide compounds are well known as antimicrobial agents (Gao & Pederson, 2005). In the present work, the crystal structure of N-[2-(5-bromo-2-morpholin-4-yl-pyrimidin-4-ylsulfanyl)-4-methoxy-phenyl]-4- methyl-benzenesulfonamide has been determined.

Bond lengths and angles in the title compound (Fig. 1) have normal values (Allen et al., 1987) and are comparable with the similar crystal structures (Rodrigues et al., 2011; Akkurt et al., 2011). The morpholine ring is disordered over two positions with the occupancy ratio of 0.853 (6):0.147 (6) and adopts chair conformation (asymmetry parameters:ΔCs(C24A—C27A) = 1.30; ΔC2(C24A—C25A) = 1.59; ΔCs(C25B—C28B) = 2.37; ΔC2(C25B—O26B) = 3.65 (Duax & Norton, 1975). The two benzene rings are tilted relative to each other by 68.9 (1)°. The dihedral angle formed by the pyrimidine ring with two benzene rings (C9—C14/C1—C6) are 69.7 (1) and 2.2 (1)°, respectively. In the crystal, molecules are connected via N—H···O, C—H···N and C—H···O hydrogen bonds.

Related literature top

For the crystal structures of sulfonamides, see: Rodrigues et al. (2011); Akkurt et al. (2011). For their biological activity, see: Gao & Pederson (2005). For bond-length data, see: Allen et al. (1987). For ring asymmetry parameters and conformations, see: Duax & Norton (1975).

Experimental top

The reaction of N-[2-(5-bromo-2-chloro-pyrimidin-4-ylsulfanyl)-4-methoxy-phenyl]- 4-methyl-benzenesulfonamide (5.01 g, 0.01 mol) with morpholine (0.88g, 0.01) were carried out in the presence of triethylamine and the reaction mixture was allowed to stir at room temperature for 6-7 h in dry dichloromethane. The progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was extracted with ethyl acetate. The compound was purified by successive recrystallization from methanol (yield 84%, m.p. 485-487 K).

Refinement top

The N-bound H atom was located in a difference Fourier map and constrained to lie 0.86 (1) Å from the parent atom. All other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. Sulfonamide compounds are well known as antimicrobial agents (Gao & Pederson, 2005). In the present work, the crystal structure of N-[2-(5-bromo-2-morpholin-4-yl-pyrimidin-4-ylsulfanyl)-4-methoxy-phenyl]-4- methyl-benzenesulfonamide has been determined.

Bond lengths and angles in the title compound (Fig. 1) have normal values (Allen et al., 1987) and are comparable with the similar crystal structures (Rodrigues et al., 2011; Akkurt et al., 2011). The morpholine ring is disordered over two positions with the occupancy ratio of 0.853 (6):0.147 (6) and adopts chair conformation (asymmetry parameters:ΔCs(C24A—C27A) = 1.30; ΔC2(C24A—C25A) = 1.59; ΔCs(C25B—C28B) = 2.37; ΔC2(C25B—O26B) = 3.65 (Duax & Norton, 1975). The two benzene rings are tilted relative to each other by 68.9 (1)°. The dihedral angle formed by the pyrimidine ring with two benzene rings (C9—C14/C1—C6) are 69.7 (1) and 2.2 (1)°, respectively. In the crystal, molecules are connected via N—H···O, C—H···N and C—H···O hydrogen bonds.

For the crystal structures of sulfonamides, see: Rodrigues et al. (2011); Akkurt et al. (2011). For their biological activity, see: Gao & Pederson (2005). For bond-length data, see: Allen et al. (1987). For ring asymmetry parameters and conformations, see: Duax & Norton (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A crystal packing view of the title compound down the b axis, showing intermolecular interactions. For clarity, hydrogen atoms which are not involved in hydrogen bonding have been omitted.
N-(2-{[5-Bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfanyl}- 4-methoxyphenyl)-4-methylbenzenesulfonamide top
Crystal data top
C22H23BrN4O4S2F(000) = 1128
Mr = 551.47Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7219 reflections
a = 10.0321 (3) Åθ = 3.5–29.0°
b = 17.4842 (6) ŵ = 1.89 mm1
c = 13.9095 (4) ÅT = 293 K
β = 91.699 (3)°Block, brown
V = 2438.70 (13) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4783 independent reflections
Radiation source: fine-focus sealed tube3361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.7°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2121
Tmin = 0.557, Tmax = 1.000l = 1717
21500 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0237P)2 + 2.0098P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4783 reflectionsΔρmax = 0.53 e Å3
321 parametersΔρmin = 0.46 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (3)
Crystal data top
C22H23BrN4O4S2V = 2438.70 (13) Å3
Mr = 551.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0321 (3) ŵ = 1.89 mm1
b = 17.4842 (6) ÅT = 293 K
c = 13.9095 (4) Å0.3 × 0.2 × 0.1 mm
β = 91.699 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4783 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3361 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 1.000Rint = 0.040
21500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.53 e Å3
4783 reflectionsΔρmin = 0.46 e Å3
321 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.83360 (4)0.11861 (2)0.46770 (3)0.06867 (15)
S10.87974 (10)0.20496 (6)0.92605 (6)0.0704 (3)
S20.80399 (7)0.25279 (5)0.62864 (5)0.0479 (2)
O11.0028 (3)0.16380 (17)0.9297 (2)0.0948 (9)
O20.8356 (3)0.24415 (16)1.00940 (17)0.0942 (9)
C10.7515 (3)0.14086 (19)0.8915 (2)0.0580 (9)
C20.7717 (4)0.0890 (2)0.8185 (3)0.0658 (9)
H20.85130.08960.78580.079*
C30.6747 (4)0.0365 (2)0.7942 (3)0.0705 (10)
H30.68890.00250.74410.085*
C40.5572 (4)0.0332 (2)0.8422 (3)0.0750 (11)
C50.5381 (4)0.0859 (3)0.9135 (3)0.0899 (13)
H50.45850.08520.94620.108*
C60.6332 (4)0.1399 (2)0.9384 (3)0.0805 (11)
H60.61730.17540.98650.097*
C70.4547 (5)0.0272 (3)0.8165 (4)0.1122 (16)
H710.37850.02090.85590.168*
H720.49260.07700.82740.168*
H730.42790.02220.75000.168*
N80.8941 (3)0.26764 (16)0.84004 (19)0.0557 (7)
C90.7866 (3)0.31561 (17)0.8096 (2)0.0451 (7)
C100.7358 (3)0.31454 (16)0.71564 (19)0.0415 (7)
C110.6332 (3)0.36306 (17)0.6863 (2)0.0465 (7)
H110.60230.36270.62260.056*
C120.5771 (3)0.41192 (18)0.7516 (2)0.0510 (8)
C130.6270 (3)0.41381 (19)0.8452 (2)0.0575 (9)
H130.58960.44680.88940.069*
C140.7313 (3)0.36729 (19)0.8733 (2)0.0552 (8)
H140.76570.37040.93610.066*
O150.4760 (2)0.46199 (13)0.72933 (18)0.0700 (7)
C160.4322 (4)0.4661 (2)0.6311 (3)0.0917 (13)
H1610.50740.47500.59150.138*
H1620.36950.50720.62290.138*
H1630.39020.41870.61270.138*
C170.6708 (3)0.18839 (16)0.61096 (18)0.0383 (6)
N180.5635 (2)0.19533 (13)0.66305 (15)0.0399 (5)
C190.4636 (3)0.14544 (17)0.6460 (2)0.0435 (7)
N200.4648 (3)0.08807 (15)0.5818 (2)0.0587 (7)
C210.5749 (3)0.08278 (19)0.5312 (2)0.0606 (9)
H210.58010.04390.48580.073*
C220.6803 (3)0.13110 (17)0.5425 (2)0.0471 (7)
N230.3546 (2)0.15296 (15)0.70003 (19)0.0545 (7)
C24A0.2340 (5)0.1087 (3)0.6840 (4)0.0640 (14)0.853 (6)
H2410.21030.08320.74300.077*0.853 (6)
H2420.24840.06990.63550.077*0.853 (6)
C25A0.1230 (4)0.1615 (3)0.6511 (4)0.0714 (15)0.853 (6)
H2510.14280.18250.58860.086*0.853 (6)
H2520.04030.13290.64470.086*0.853 (6)
O26A0.1073 (7)0.2244 (3)0.7210 (6)0.093 (2)0.853 (6)
C27A0.2260 (4)0.2649 (3)0.7336 (4)0.0690 (14)0.853 (6)
H2710.21300.30610.77910.083*0.853 (6)
H2720.24970.28760.67280.083*0.853 (6)
C28A0.3385 (5)0.2149 (3)0.7696 (3)0.0578 (14)0.853 (6)
H2810.42020.24440.77590.069*0.853 (6)
H2820.31840.19400.83210.069*0.853 (6)
C24B0.217 (4)0.128 (2)0.650 (3)0.0640 (14)0.147 (6)
H2430.20280.15560.59060.077*0.147 (6)
H2440.21950.07350.63550.077*0.147 (6)
C25B0.117 (3)0.143 (2)0.711 (3)0.0714 (15)0.147 (6)
H2530.03600.12060.68350.086*0.147 (6)
H2540.13680.11540.77080.086*0.147 (6)
O26B0.097 (5)0.195 (3)0.728 (4)0.093 (2)0.147 (6)
C27B0.215 (2)0.2360 (18)0.795 (2)0.0690 (14)0.147 (6)
H2730.19200.28850.81000.083*0.147 (6)
H2740.23020.20820.85490.083*0.147 (6)
C28B0.333 (4)0.233 (2)0.735 (2)0.0578 (14)0.147 (6)
H2830.41090.24950.77210.069*0.147 (6)
H2840.32060.26670.68050.069*0.147 (6)
H80.945 (2)0.2490 (16)0.7983 (17)0.056 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0627 (2)0.0822 (3)0.0620 (2)0.00876 (19)0.01777 (17)0.02139 (19)
S10.0824 (7)0.0747 (7)0.0529 (5)0.0012 (5)0.0187 (5)0.0044 (5)
S20.0329 (4)0.0586 (5)0.0525 (4)0.0022 (4)0.0058 (3)0.0169 (4)
O10.0833 (19)0.094 (2)0.104 (2)0.0119 (17)0.0426 (16)0.0176 (17)
O20.146 (3)0.095 (2)0.0411 (13)0.0125 (19)0.0076 (14)0.0056 (13)
C10.065 (2)0.057 (2)0.0509 (19)0.0106 (18)0.0055 (16)0.0103 (16)
C20.056 (2)0.064 (2)0.077 (2)0.0132 (19)0.0008 (18)0.001 (2)
C30.071 (2)0.054 (2)0.086 (3)0.014 (2)0.008 (2)0.0039 (19)
C40.070 (3)0.069 (3)0.086 (3)0.002 (2)0.007 (2)0.018 (2)
C50.071 (3)0.107 (4)0.093 (3)0.004 (3)0.018 (2)0.015 (3)
C60.091 (3)0.086 (3)0.066 (2)0.003 (3)0.014 (2)0.001 (2)
C70.092 (3)0.094 (4)0.150 (5)0.019 (3)0.017 (3)0.018 (3)
N80.0513 (16)0.0634 (19)0.0523 (16)0.0050 (14)0.0011 (13)0.0056 (14)
C90.0397 (16)0.0506 (19)0.0454 (17)0.0066 (14)0.0055 (13)0.0053 (14)
C100.0342 (15)0.0445 (18)0.0461 (16)0.0066 (13)0.0063 (12)0.0112 (13)
C110.0386 (16)0.0492 (19)0.0515 (17)0.0026 (14)0.0006 (13)0.0106 (14)
C120.0408 (17)0.0457 (19)0.067 (2)0.0020 (15)0.0113 (15)0.0096 (16)
C130.060 (2)0.054 (2)0.060 (2)0.0027 (18)0.0227 (17)0.0143 (17)
C140.068 (2)0.058 (2)0.0398 (16)0.0088 (18)0.0082 (15)0.0064 (15)
O150.0602 (14)0.0639 (16)0.0861 (18)0.0172 (13)0.0062 (13)0.0164 (13)
C160.078 (3)0.088 (3)0.108 (3)0.036 (2)0.021 (2)0.021 (3)
C170.0350 (15)0.0425 (17)0.0371 (15)0.0052 (13)0.0036 (12)0.0042 (13)
N180.0323 (12)0.0437 (14)0.0435 (13)0.0020 (11)0.0002 (10)0.0055 (11)
C190.0349 (15)0.0416 (17)0.0540 (17)0.0031 (14)0.0006 (13)0.0026 (14)
N200.0505 (16)0.0478 (16)0.0780 (19)0.0068 (13)0.0068 (14)0.0197 (14)
C210.063 (2)0.050 (2)0.069 (2)0.0033 (18)0.0038 (17)0.0260 (17)
C220.0452 (17)0.0495 (19)0.0466 (17)0.0032 (15)0.0032 (13)0.0120 (14)
N230.0362 (13)0.0539 (17)0.0735 (18)0.0021 (13)0.0045 (12)0.0110 (14)
C24A0.047 (2)0.064 (4)0.081 (4)0.014 (2)0.002 (3)0.004 (3)
C25A0.040 (2)0.105 (4)0.069 (3)0.007 (2)0.007 (2)0.031 (3)
O26A0.0384 (19)0.119 (5)0.120 (3)0.016 (4)0.0075 (17)0.068 (5)
C27A0.063 (3)0.090 (4)0.054 (3)0.020 (2)0.004 (2)0.030 (3)
C28A0.0385 (18)0.088 (4)0.047 (3)0.003 (2)0.004 (2)0.009 (3)
C24B0.047 (2)0.064 (4)0.081 (4)0.014 (2)0.002 (3)0.004 (3)
C25B0.040 (2)0.105 (4)0.069 (3)0.007 (2)0.007 (2)0.031 (3)
O26B0.0384 (19)0.119 (5)0.120 (3)0.016 (4)0.0075 (17)0.068 (5)
C27B0.063 (3)0.090 (4)0.054 (3)0.020 (2)0.004 (2)0.030 (3)
C28B0.0385 (18)0.088 (4)0.047 (3)0.003 (2)0.004 (2)0.009 (3)
Geometric parameters (Å, º) top
Br1—C221.894 (3)C17—N181.321 (3)
S1—O21.428 (3)C17—C221.388 (4)
S1—O11.428 (3)N18—C191.344 (3)
S1—N81.632 (3)C19—N201.343 (4)
S1—C11.762 (4)C19—N231.351 (3)
S2—C171.759 (3)N20—C211.330 (4)
S2—C101.774 (3)C21—C221.359 (4)
C1—C61.370 (5)C21—H210.9300
C1—C21.382 (5)N23—C24A1.448 (6)
C2—C31.372 (5)N23—C28A1.464 (6)
C2—H20.9300N23—C28B1.49 (4)
C3—C41.373 (5)N23—C24B1.58 (4)
C3—H30.9300C24A—C25A1.508 (8)
C4—C51.372 (6)C24A—H2410.9700
C4—C71.509 (5)C24A—H2420.9700
C5—C61.380 (6)C25A—O26A1.480 (8)
C5—H50.9300C25A—H2510.9700
C6—H60.9300C25A—H2520.9700
C7—H710.9600O26A—C27A1.392 (8)
C7—H720.9600C27A—C28A1.502 (7)
C7—H730.9600C27A—H2710.9700
N8—C91.421 (4)C27A—H2720.9700
N8—H80.850 (10)C28A—H2810.9700
C9—C101.389 (4)C28A—H2820.9700
C9—C141.392 (4)C24B—C25B1.36 (5)
C10—C111.385 (4)C24B—H2430.9700
C11—C121.379 (4)C24B—H2440.9700
C11—H110.9300C25B—O26B0.97 (4)
C12—O151.369 (4)C25B—H2530.9700
C12—C131.381 (4)C25B—H2540.9700
C13—C141.373 (4)O26B—C27B1.65 (5)
C13—H130.9300C27B—C28B1.47 (4)
C14—H140.9300C27B—H2730.9700
O15—C161.424 (4)C27B—H2740.9700
C16—H1610.9600C28B—H2830.9700
C16—H1620.9600C28B—H2840.9700
C16—H1630.9600
O2—S1—O1120.06 (17)C21—N20—C19115.3 (3)
O2—S1—N8108.00 (16)N20—C21—C22123.5 (3)
O1—S1—N8105.63 (16)N20—C21—H21118.3
O2—S1—C1106.56 (18)C22—C21—H21118.3
O1—S1—C1108.22 (17)C21—C22—C17117.3 (3)
N8—S1—C1107.88 (14)C21—C22—Br1120.4 (2)
C17—S2—C10100.27 (12)C17—C22—Br1122.3 (2)
C6—C1—C2119.3 (4)C19—N23—C24A123.2 (3)
C6—C1—S1120.9 (3)C19—N23—C28A123.1 (3)
C2—C1—S1119.7 (3)C24A—N23—C28A112.9 (4)
C3—C2—C1120.1 (3)C19—N23—C28B113.6 (14)
C3—C2—H2120.0C24A—N23—C28B114.9 (14)
C1—C2—H2120.0C19—N23—C24B115.9 (16)
C2—C3—C4121.4 (4)C28A—N23—C24B112.5 (17)
C2—C3—H3119.3C28B—N23—C24B106 (2)
C4—C3—H3119.3N23—C24A—C25A109.0 (4)
C5—C4—C3117.6 (4)N23—C24A—H241109.9
C5—C4—C7122.1 (4)C25A—C24A—H241109.9
C3—C4—C7120.2 (4)N23—C24A—H242109.9
C4—C5—C6122.0 (4)C25A—C24A—H242109.9
C4—C5—H5119.0H241—C24A—H242108.3
C6—C5—H5119.0O26A—C25A—C24A110.4 (5)
C1—C6—C5119.4 (4)O26A—C25A—H251109.6
C1—C6—H6120.3C24A—C25A—H251109.6
C5—C6—H6120.3O26A—C25A—H252109.6
C4—C7—H71109.5C24A—C25A—H252109.6
C4—C7—H72109.5H251—C25A—H252108.1
H71—C7—H72109.5C27A—O26A—C25A110.7 (6)
C4—C7—H73109.5O26A—C27A—C28A112.2 (5)
H71—C7—H73109.5O26A—C27A—H271109.2
H72—C7—H73109.5C28A—C27A—H271109.2
C9—N8—S1122.1 (2)O26A—C27A—H272109.2
C9—N8—H8119 (2)C28A—C27A—H272109.2
S1—N8—H8108 (2)H271—C27A—H272107.9
C10—C9—C14117.8 (3)N23—C28A—C27A107.8 (4)
C10—C9—N8121.8 (3)N23—C28A—H281110.1
C14—C9—N8120.4 (3)C27A—C28A—H281110.1
C11—C10—C9121.2 (3)N23—C28A—H282110.1
C11—C10—S2118.0 (2)C27A—C28A—H282110.1
C9—C10—S2120.8 (2)H281—C28A—H282108.5
C12—C11—C10120.0 (3)C25B—C24B—N23109 (3)
C12—C11—H11120.0C25B—C24B—H243109.9
C10—C11—H11120.0N23—C24B—H243109.9
O15—C12—C11124.1 (3)C25B—C24B—H244109.9
O15—C12—C13116.3 (3)N23—C24B—H244109.9
C11—C12—C13119.5 (3)H243—C24B—H244108.3
C14—C13—C12120.4 (3)O26B—C25B—C24B119 (5)
C14—C13—H13119.8O26B—C25B—H253107.5
C12—C13—H13119.8C24B—C25B—H253107.5
C13—C14—C9121.2 (3)O26B—C25B—H254107.5
C13—C14—H14119.4C24B—C25B—H254107.5
C9—C14—H14119.4H253—C25B—H254107.0
C12—O15—C16117.0 (3)C25B—O26B—C27B114 (5)
O15—C16—H161109.5C28B—C27B—O26B104 (3)
O15—C16—H162109.5C28B—C27B—H273111.0
H161—C16—H162109.5O26B—C27B—H273111.0
O15—C16—H163109.5C28B—C27B—H274111.0
H161—C16—H163109.5O26B—C27B—H274111.0
H162—C16—H163109.5H273—C27B—H274109.0
N18—C17—C22121.1 (3)C27B—C28B—N23111 (3)
N18—C17—S2119.5 (2)C27B—C28B—H283109.5
C22—C17—S2119.4 (2)N23—C28B—H283109.5
C17—N18—C19117.3 (2)C27B—C28B—H284109.5
N20—C19—N18125.4 (3)N23—C28B—H284109.5
N20—C19—N23117.8 (3)H283—C28B—H284108.1
N18—C19—N23116.8 (3)
O2—S1—C1—C64.6 (3)C17—N18—C19—N23179.8 (3)
O1—S1—C1—C6135.0 (3)N18—C19—N20—C211.1 (5)
N8—S1—C1—C6111.2 (3)N23—C19—N20—C21179.3 (3)
O2—S1—C1—C2173.2 (3)C19—N20—C21—C220.1 (5)
O1—S1—C1—C242.8 (3)N20—C21—C22—C170.3 (5)
N8—S1—C1—C271.1 (3)N20—C21—C22—Br1179.6 (3)
C6—C1—C2—C30.8 (5)N18—C17—C22—C210.1 (4)
S1—C1—C2—C3177.0 (3)S2—C17—C22—C21179.9 (2)
C1—C2—C3—C41.2 (5)N18—C17—C22—Br1179.1 (2)
C2—C3—C4—C52.1 (6)S2—C17—C22—Br10.8 (3)
C2—C3—C4—C7177.5 (4)N20—C19—N23—C24A7.8 (5)
C3—C4—C5—C61.1 (6)N18—C19—N23—C24A173.8 (3)
C7—C4—C5—C6178.5 (4)N20—C19—N23—C28A177.4 (3)
C2—C1—C6—C51.8 (6)N18—C19—N23—C28A4.2 (5)
S1—C1—C6—C5176.0 (3)N20—C19—N23—C28B154.3 (14)
C4—C5—C6—C10.8 (6)N18—C19—N23—C28B27.2 (15)
O2—S1—N8—C955.5 (3)N20—C19—N23—C24B31.8 (17)
O1—S1—N8—C9174.9 (2)N18—C19—N23—C24B149.8 (16)
C1—S1—N8—C959.3 (3)C19—N23—C24A—C25A113.5 (5)
S1—N8—C9—C10120.3 (3)C28A—N23—C24A—C25A57.0 (6)
S1—N8—C9—C1461.8 (4)C28B—N23—C24A—C25A32.7 (16)
C14—C9—C10—C110.3 (4)C24B—N23—C24A—C25A37 (5)
N8—C9—C10—C11178.3 (3)N23—C24A—C25A—O26A55.1 (7)
C14—C9—C10—S2177.9 (2)C24A—C25A—O26A—C27A57.5 (8)
N8—C9—C10—S20.1 (4)C25A—O26A—C27A—C28A59.4 (8)
C17—S2—C10—C1170.7 (2)C19—N23—C28A—C27A113.4 (4)
C17—S2—C10—C9111.1 (2)C24A—N23—C28A—C27A57.2 (6)
C9—C10—C11—C122.0 (4)C28B—N23—C28A—C27A43 (4)
S2—C10—C11—C12179.9 (2)C24B—N23—C28A—C27A33.3 (16)
C10—C11—C12—O15179.7 (3)O26A—C27A—C28A—N2358.2 (6)
C10—C11—C12—C132.2 (4)C19—N23—C24B—C25B177 (2)
O15—C12—C13—C14178.0 (3)C24A—N23—C24B—C25B68 (4)
C11—C12—C13—C140.2 (5)C28A—N23—C24B—C25B27 (3)
C12—C13—C14—C92.0 (5)C28B—N23—C24B—C25B50 (4)
C10—C9—C14—C132.3 (4)N23—C24B—C25B—O26B65 (7)
N8—C9—C14—C13179.7 (3)C24B—C25B—O26B—C27B69 (7)
C11—C12—O15—C163.6 (5)C25B—O26B—C27B—C28B60 (7)
C13—C12—O15—C16174.1 (3)O26B—C27B—C28B—N2352 (4)
C10—S2—C17—N183.3 (3)C19—N23—C28B—C27B178.5 (19)
C10—S2—C17—C22176.7 (2)C24A—N23—C28B—C27B32 (3)
C22—C17—N18—C190.9 (4)C28A—N23—C28B—C27B58 (3)
S2—C17—N18—C19179.1 (2)C24B—N23—C28B—C27B53 (3)
C17—N18—C19—N201.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O26Ai0.85 (2)2.02 (2)2.846 (8)163 (2)
N8—H8···O26Bi0.85 (2)2.06 (6)2.895 (5)165 (3)
C21—H21···N20ii0.932.533.394 (4)155
C25A—H251···O2iii0.972.593.377 (6)138
C27A—H272···O2iii0.972.523.341 (6)143
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H23BrN4O4S2
Mr551.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.0321 (3), 17.4842 (6), 13.9095 (4)
β (°) 91.699 (3)
V3)2438.70 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.557, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21500, 4783, 3361
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.086, 1.01
No. of reflections4783
No. of parameters321
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.46

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O26Ai0.85 (2)2.02 (2)2.846 (8)163 (2)
N8—H8···O26Bi0.85 (2)2.06 (6)2.895 (5)165 (3)
C21—H21···N20ii0.932.533.394 (4)155
C25A—H251···O2iii0.972.593.377 (6)138
C27A—H272···O2iii0.972.523.341 (6)143
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAkkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGao, J. & Pederson, J. A. (2005). Environ. Sci. Technol. 39, 9509–9516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds