organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

16α,17α-Ep­­oxy-17β-(1H-imidazol-1-yl)androst-4-en-3-one monohydrate

aDepartment of Physics, Seethalakshmi Ramaswami College(Autonomous), Tiruchirappalli 620 002, India, and bUniversity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160 014, India
*Correspondence e-mail: raghema2000@yahoo.co.in

(Received 6 June 2012; accepted 28 June 2012; online 7 July 2012)

In the title compound, C22H28N2O2·H2O, rings B and C adopt chair conformations. Ring A adopts an envelope conformation, with the non-fused C atom adjacent to the fused C atom bearing a methyl group as the flap atom. Ring D also adopts an envelope conformation, with the fused C atom not bearing a methyl group as the flap atom. The water mol­ecule links the mol­ecules via O—H⋯O and O—H⋯N hydrogen bonds, forming zigzag chains which run parallel to the c axis. Weak C—H⋯O inter­actions also occur.

Related literature

For background information on steroid activity, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.]). For conformational analysis, see: Altona et al. (1968[Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For details of the determination of the absolute configuration, see: Bansal et al. (2012[Bansal, R., Guleria, S., Thota, S., Bodhankar, S. L., Patwardhan, M. R., Zimmer, C., Hartmann, R. W. & Harvey, A. L. (2012). Steroids, 77, 621-629.]).

[Scheme 1]

Experimental

Crystal data
  • C22H28N2O2·H2O

  • Mr = 370.48

  • Orthorhombic, P 21 21 21

  • a = 9.7813 (2) Å

  • b = 13.5885 (3) Å

  • c = 14.2698 (3) Å

  • V = 1896.64 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004)[Bruker (2004). SAINT, XPREP, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.975, Tmax = 0.983

  • 10371 measured reflections

  • 3331 independent reflections

  • 2807 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.06

  • 3331 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N2 0.90 1.99 2.890 (3) 174
O3—H32⋯O1i 0.90 2.33 3.202 (3) 163
C20—H20⋯O3ii 0.93 2.43 3.208 (4) 142
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT, XPREP, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SAINT, XPREP, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SAINT, XPREP, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It is well known that minor changes in the basic composition of steroids significantly alter their biological activities (Duax and Norton, 1975).

The structure determination of C22H28N2O2.H2O , (I), was undertaken to investigate the conformation of the fused ring system. The puckering parameters in (I), ring-B: Q = 0.534 (2) Å, θ = 3.9 (2)°, ring-C: Q = 0.589 (2) Å, θ = 6.19 (19)°; (Cremer and Pople, 1975) show that rings B and C adopt chair confomation. The C4—C5-(Csp2-Csp2) distance of 1.336 (3) Å confirms the localization of a double bond at this position. Due to this double bond the environment of atom C5 is planar, and hence ring A is slightly distorted towards an envelope conformation with puckering parameters, Q = 0.435 (3) Å, θ = 56.4 (4)°, φ = 18.7 (4)°, with C1 being the flap. The five-membered ring-D exhibits an envelope conformation, with C14 being the flap, with pseudorotation parameter (P =14.7 (3)° and τ =38.7 (1)°), (Altona et al., 1968). The dihedral angle between the plane of imidazole moiety and the mean plane of rings A, B, C and D is 11.83 (9)°. The substitution of O2 between C17 and C16 does not affect the normal value of exocyclic angle of C16—C17—N1(121.8 (2)°). The water molecule links the molecules, via O3—H31···N2(within the asymmetric unit) and O3—H32···O1(3/2-x,2-y,-1/2+z hydrogen bonds, to form a zig-zag chains which run parallel to the c-axis. molecules. The molecular packing is also stabilized by weak C20—H20···O3( 1-x,-1/2+y,-1/2-z)) intermolecular interactions. Details of the determination of the absolute configuration can be found in (Bansal, et al. 2012).

Related literature top

For background information on steroid activity, see: Duax & Norton (1975). For conformational analysis, see: Altona et al. (1968); Cremer & Pople (1975). For details of the determination of the absolute configuration, see: Bansal et al. (2012).

Experimental top

A mixture of imidazole(1 g, 2.75 mmol) and anhydrous potassium carbonate(1 g) was stirred and refluxed in ethyl methyl ketone(50) ml for one hour. 16α/β-bromo-4-androstene-3, 17-dione(0.4 g, 1.09 mmol) was added to the reaction mixture and further refluxed for 3 h with continous stirring. The completion of reaction was monitored by TLC. The slurry was cooled, filtered and excess of solvent was removed under reduced pressure to obtain an oily residue. Iced water was added to the oily residue and it was allowed to stand overnight. The solid obtained was filtered, washed with water, dried and crystallized from acetone and hexane to afford the title compound(0.25 g, 64.78%), mp 419–420K.

Refinement top

All H atoms attached to C atoms were refined as riding atoms. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All remaining H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) with Uiso(H) = 1.2Ueq(C). The water H atoms, which were initially located on a difference Fourier map. The O–H distance was then restrained to a distancet of 0.900 (2)Å and then, in the final stages of the refinement, refined as riding atoms with Uiso(H) = 1.5Ueq(O). These positions were checked in a final difference Fourier and found to be satisfactory.

Friedel Pairs were merged.

Structure description top

It is well known that minor changes in the basic composition of steroids significantly alter their biological activities (Duax and Norton, 1975).

The structure determination of C22H28N2O2.H2O , (I), was undertaken to investigate the conformation of the fused ring system. The puckering parameters in (I), ring-B: Q = 0.534 (2) Å, θ = 3.9 (2)°, ring-C: Q = 0.589 (2) Å, θ = 6.19 (19)°; (Cremer and Pople, 1975) show that rings B and C adopt chair confomation. The C4—C5-(Csp2-Csp2) distance of 1.336 (3) Å confirms the localization of a double bond at this position. Due to this double bond the environment of atom C5 is planar, and hence ring A is slightly distorted towards an envelope conformation with puckering parameters, Q = 0.435 (3) Å, θ = 56.4 (4)°, φ = 18.7 (4)°, with C1 being the flap. The five-membered ring-D exhibits an envelope conformation, with C14 being the flap, with pseudorotation parameter (P =14.7 (3)° and τ =38.7 (1)°), (Altona et al., 1968). The dihedral angle between the plane of imidazole moiety and the mean plane of rings A, B, C and D is 11.83 (9)°. The substitution of O2 between C17 and C16 does not affect the normal value of exocyclic angle of C16—C17—N1(121.8 (2)°). The water molecule links the molecules, via O3—H31···N2(within the asymmetric unit) and O3—H32···O1(3/2-x,2-y,-1/2+z hydrogen bonds, to form a zig-zag chains which run parallel to the c-axis. molecules. The molecular packing is also stabilized by weak C20—H20···O3( 1-x,-1/2+y,-1/2-z)) intermolecular interactions. Details of the determination of the absolute configuration can be found in (Bansal, et al. 2012).

For background information on steroid activity, see: Duax & Norton (1975). For conformational analysis, see: Altona et al. (1968); Cremer & Pople (1975). For details of the determination of the absolute configuration, see: Bansal et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. View of the zig-zag hydrogen bonded chain running parallel to the c-axis.
16α,17α-Epoxy-17β-(1H-imidazol-1-yl)androst-4-en-3-one monohydrate top
Crystal data top
C22H28N2O2·H2OF(000) = 800
Mr = 370.48Dx = 1.297 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3481 reflections
a = 9.7813 (2) Åθ = 4.0–29.1°
b = 13.5885 (3) ŵ = 0.09 mm1
c = 14.2698 (3) ÅT = 293 K
V = 1896.64 (7) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3331 independent reflections
Radiation source: fine-focus sealed tube2807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.975, Tmax = 0.983k = 1316
10371 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.2407P]
where P = (Fo2 + 2Fc2)/3
3331 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C22H28N2O2·H2OV = 1896.64 (7) Å3
Mr = 370.48Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.7813 (2) ŵ = 0.09 mm1
b = 13.5885 (3) ÅT = 293 K
c = 14.2698 (3) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3331 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2807 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.029
10371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.06Δρmax = 0.12 e Å3
3331 reflectionsΔρmin = 0.16 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6588 (2)0.04599 (13)0.64733 (14)0.0679 (6)
O20.76907 (16)0.62764 (13)0.47612 (12)0.0530 (5)
N10.5710 (2)0.71088 (13)0.41686 (14)0.0414 (5)
N20.5333 (2)0.85703 (17)0.35422 (18)0.0605 (6)
C10.5023 (3)0.15748 (17)0.52622 (17)0.0468 (6)
H110.42630.16690.48350.056*
H120.58600.16640.49070.056*
C20.4982 (3)0.05208 (19)0.56319 (19)0.0543 (7)
H210.40930.03930.59070.065*
H220.51100.00660.51150.065*
C30.6069 (3)0.03508 (18)0.63520 (18)0.0494 (6)
C40.6411 (3)0.11847 (18)0.69325 (16)0.0447 (6)
H40.70490.10900.74070.054*
C50.5874 (2)0.20829 (17)0.68355 (15)0.0367 (5)
C60.6152 (3)0.28656 (17)0.75530 (15)0.0450 (6)
H610.68230.26240.79980.054*
H620.53170.30060.78950.054*
C70.6676 (3)0.38044 (17)0.71115 (15)0.0423 (6)
H710.75800.36900.68550.051*
H720.67520.43090.75890.051*
C80.5733 (2)0.41648 (16)0.63353 (15)0.0348 (5)
H80.48520.43580.66060.042*
C90.5502 (2)0.33505 (16)0.56073 (14)0.0332 (5)
H90.64100.31970.53570.040*
C100.4955 (2)0.23647 (17)0.60221 (14)0.0363 (5)
C110.4670 (3)0.37260 (18)0.47661 (15)0.0454 (6)
H1110.46260.32100.42970.054*
H1120.37430.38600.49710.054*
C120.5255 (3)0.46578 (17)0.43116 (15)0.0426 (6)
H1210.61310.45100.40270.051*
H1220.46410.48840.38230.051*
C130.5433 (2)0.54667 (17)0.50467 (14)0.0337 (5)
C140.6352 (2)0.50357 (15)0.58250 (15)0.0346 (5)
H140.71540.47720.54990.042*
C150.6875 (3)0.59235 (17)0.63698 (17)0.0461 (6)
H1510.62110.61440.68290.055*
H1520.77310.57780.66840.055*
C160.7067 (3)0.66715 (19)0.56080 (18)0.0493 (6)
H160.71860.73680.57680.059*
C170.6241 (2)0.63942 (16)0.48021 (16)0.0384 (5)
C180.4045 (3)0.58323 (18)0.53973 (17)0.0448 (6)
H1810.35330.60950.48810.067*
H1820.41810.63370.58590.067*
H1830.35510.52940.56720.067*
C190.3478 (2)0.24693 (19)0.63881 (17)0.0480 (6)
H1910.31790.18520.66430.072*
H1920.28870.26560.58810.072*
H1930.34500.29650.68670.072*
C200.5241 (3)0.6948 (2)0.32764 (17)0.0504 (7)
H200.51080.63450.29830.060*
C210.5013 (3)0.7846 (2)0.29144 (19)0.0590 (7)
H2110.46800.79610.23140.071*
C220.5740 (3)0.80970 (18)0.4289 (2)0.0517 (7)
H2210.60190.84030.48400.062*
O30.6304 (3)1.05448 (17)0.31888 (16)0.0989 (9)
H310.59470.99400.32740.148*
H320.67671.04250.26550.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0795 (14)0.0405 (10)0.0838 (13)0.0127 (10)0.0054 (12)0.0068 (10)
O20.0378 (9)0.0550 (11)0.0663 (11)0.0018 (8)0.0074 (8)0.0142 (10)
N10.0427 (11)0.0342 (11)0.0474 (11)0.0017 (9)0.0037 (10)0.0052 (9)
N20.0583 (14)0.0456 (13)0.0776 (16)0.0053 (12)0.0054 (13)0.0170 (13)
C10.0590 (16)0.0353 (13)0.0461 (13)0.0051 (12)0.0052 (13)0.0019 (11)
C20.0671 (18)0.0346 (13)0.0613 (16)0.0060 (13)0.0025 (15)0.0037 (12)
C30.0546 (16)0.0367 (14)0.0568 (15)0.0027 (12)0.0117 (14)0.0077 (12)
C40.0430 (13)0.0444 (14)0.0467 (13)0.0047 (12)0.0028 (12)0.0068 (12)
C50.0323 (11)0.0395 (13)0.0384 (12)0.0044 (10)0.0018 (10)0.0075 (10)
C60.0550 (15)0.0439 (14)0.0360 (11)0.0014 (12)0.0084 (11)0.0059 (11)
C70.0499 (15)0.0389 (13)0.0381 (12)0.0059 (12)0.0113 (11)0.0005 (11)
C80.0375 (12)0.0358 (12)0.0310 (11)0.0012 (10)0.0000 (10)0.0001 (9)
C90.0376 (12)0.0312 (11)0.0310 (11)0.0010 (10)0.0008 (10)0.0001 (9)
C100.0390 (12)0.0344 (12)0.0353 (11)0.0025 (11)0.0037 (10)0.0013 (9)
C110.0654 (15)0.0370 (13)0.0339 (11)0.0078 (12)0.0110 (12)0.0001 (10)
C120.0571 (15)0.0384 (13)0.0322 (11)0.0018 (12)0.0055 (11)0.0025 (10)
C130.0361 (12)0.0311 (11)0.0339 (11)0.0009 (10)0.0030 (10)0.0020 (10)
C140.0344 (11)0.0343 (12)0.0352 (11)0.0010 (10)0.0001 (10)0.0018 (10)
C150.0514 (15)0.0392 (13)0.0476 (13)0.0080 (12)0.0094 (12)0.0002 (12)
C160.0494 (14)0.0386 (14)0.0599 (15)0.0079 (12)0.0053 (14)0.0016 (12)
C170.0348 (12)0.0339 (13)0.0465 (13)0.0028 (10)0.0042 (11)0.0020 (11)
C180.0400 (13)0.0453 (14)0.0492 (13)0.0029 (11)0.0070 (11)0.0055 (11)
C190.0411 (13)0.0515 (15)0.0513 (14)0.0043 (12)0.0016 (12)0.0103 (13)
C200.0555 (16)0.0520 (16)0.0438 (13)0.0005 (13)0.0051 (12)0.0039 (12)
C210.0570 (17)0.0672 (19)0.0527 (14)0.0087 (15)0.0071 (14)0.0224 (15)
C220.0521 (15)0.0351 (14)0.0680 (17)0.0009 (12)0.0010 (15)0.0048 (13)
O30.142 (2)0.0577 (13)0.0970 (16)0.0040 (16)0.0123 (17)0.0052 (13)
Geometric parameters (Å, º) top
O1—C31.226 (3)C9—H90.9800
O2—C171.428 (3)C10—C191.542 (3)
O2—C161.456 (3)C11—C121.533 (3)
N1—C221.354 (3)C11—H1110.9700
N1—C201.371 (3)C11—H1120.9700
N1—C171.425 (3)C12—C131.529 (3)
N2—C221.307 (3)C12—H1210.9700
N2—C211.367 (4)C12—H1220.9700
C1—C21.527 (3)C13—C171.528 (3)
C1—C101.527 (3)C13—C181.530 (3)
C1—H110.9700C13—C141.544 (3)
C1—H120.9700C14—C151.524 (3)
C2—C31.496 (4)C14—H140.9800
C2—H210.9700C15—C161.500 (3)
C2—H220.9700C15—H1510.9700
C3—C41.443 (4)C15—H1520.9700
C4—C51.336 (3)C16—C171.455 (3)
C4—H40.9300C16—H160.9800
C5—C61.501 (3)C18—H1810.9600
C5—C101.517 (3)C18—H1820.9600
C6—C71.512 (3)C18—H1830.9600
C6—H610.9700C19—H1910.9600
C6—H620.9700C19—H1920.9600
C7—C81.522 (3)C19—H1930.9600
C7—H710.9700C20—C211.344 (4)
C7—H720.9700C20—H200.9300
C8—C141.516 (3)C21—H2110.9300
C8—C91.534 (3)C22—H2210.9300
C8—H80.9800O3—H310.90
C9—C111.538 (3)O3—H320.90
C9—C101.559 (3)
C17—O2—C1660.59 (15)C9—C11—H112108.8
C22—N1—C20106.5 (2)H111—C11—H112107.6
C22—N1—C17125.9 (2)C13—C12—C11110.25 (17)
C20—N1—C17127.1 (2)C13—C12—H121109.6
C22—N2—C21104.5 (2)C11—C12—H121109.6
C2—C1—C10114.4 (2)C13—C12—H122109.6
C2—C1—H11108.7C11—C12—H122109.6
C10—C1—H11108.7H121—C12—H122108.1
C2—C1—H12108.7C17—C13—C12119.69 (18)
C10—C1—H12108.7C17—C13—C18105.42 (18)
H11—C1—H12107.6C12—C13—C18110.9 (2)
C3—C2—C1111.3 (2)C17—C13—C14100.14 (17)
C3—C2—H21109.4C12—C13—C14106.69 (18)
C1—C2—H21109.4C18—C13—C14113.86 (18)
C3—C2—H22109.4C8—C14—C15120.47 (18)
C1—C2—H22109.4C8—C14—C13114.14 (18)
H21—C2—H22108.0C15—C14—C13105.19 (17)
O1—C3—C4121.9 (2)C8—C14—H14105.2
O1—C3—C2122.0 (2)C15—C14—H14105.2
C4—C3—C2116.0 (2)C13—C14—H14105.2
C5—C4—C3124.5 (2)C16—C15—C14102.05 (18)
C5—C4—H4117.7C16—C15—H151111.4
C3—C4—H4117.7C14—C15—H151111.4
C4—C5—C6120.3 (2)C16—C15—H152111.4
C4—C5—C10122.9 (2)C14—C15—H152111.4
C6—C5—C10116.77 (19)H151—C15—H152109.2
C5—C6—C7112.03 (18)C17—C16—O258.74 (14)
C5—C6—H61109.2C17—C16—C15109.1 (2)
C7—C6—H61109.2O2—C16—C15113.8 (2)
C5—C6—H62109.2C17—C16—H16120.0
C7—C6—H62109.2O2—C16—H16120.0
H61—C6—H62107.9C15—C16—H16120.0
C6—C7—C8111.68 (19)N1—C17—O2114.38 (19)
C6—C7—H71109.3N1—C17—C16121.8 (2)
C8—C7—H71109.3O2—C17—C1660.66 (16)
C6—C7—H72109.3N1—C17—C13121.21 (19)
C8—C7—H72109.3O2—C17—C13115.49 (19)
H71—C7—H72107.9C16—C17—C13108.68 (19)
C14—C8—C7111.01 (18)C13—C18—H181109.5
C14—C8—C9107.25 (16)C13—C18—H182109.5
C7—C8—C9110.48 (18)H181—C18—H182109.5
C14—C8—H8109.4C13—C18—H183109.5
C7—C8—H8109.4H181—C18—H183109.5
C9—C8—H8109.4H182—C18—H183109.5
C8—C9—C11111.55 (18)C10—C19—H191109.5
C8—C9—C10114.40 (16)C10—C19—H192109.5
C11—C9—C10113.57 (18)H191—C19—H192109.5
C8—C9—H9105.5C10—C19—H193109.5
C11—C9—H9105.5H191—C19—H193109.5
C10—C9—H9105.5H192—C19—H193109.5
C5—C10—C1109.87 (19)C21—C20—N1105.5 (2)
C5—C10—C19108.59 (17)C21—C20—H20127.2
C1—C10—C19110.26 (19)N1—C20—H20127.2
C5—C10—C9107.71 (17)C20—C21—N2111.3 (2)
C1—C10—C9108.62 (17)C20—C21—H211124.3
C19—C10—C9111.75 (19)N2—C21—H211124.3
C12—C11—C9113.99 (19)N2—C22—N1112.2 (3)
C12—C11—H111108.8N2—C22—H221123.9
C9—C11—H111108.8N1—C22—H221123.9
C12—C11—H112108.8H31—O3—H3298.3
C10—C1—C2—C354.1 (3)C17—C13—C14—C8171.47 (17)
C1—C2—C3—O1150.6 (3)C12—C13—C14—C863.2 (2)
C1—C2—C3—C432.9 (3)C18—C13—C14—C859.5 (2)
O1—C3—C4—C5179.7 (3)C17—C13—C14—C1537.2 (2)
C2—C3—C4—C53.2 (4)C12—C13—C14—C15162.61 (19)
C3—C4—C5—C6171.7 (2)C18—C13—C14—C1574.7 (2)
C3—C4—C5—C107.5 (4)C8—C14—C15—C16167.0 (2)
C4—C5—C6—C7127.9 (2)C13—C14—C15—C1636.4 (2)
C10—C5—C6—C752.8 (3)C17—O2—C16—C1598.7 (2)
C5—C6—C7—C853.1 (3)C14—C15—C16—C1720.9 (3)
C6—C7—C8—C14173.36 (19)C14—C15—C16—O242.5 (3)
C6—C7—C8—C954.5 (2)C22—N1—C17—O278.4 (3)
C14—C8—C9—C1153.3 (2)C20—N1—C17—O292.2 (3)
C7—C8—C9—C11174.37 (19)C22—N1—C17—C169.0 (4)
C14—C8—C9—C10176.12 (18)C20—N1—C17—C16161.6 (2)
C7—C8—C9—C1055.0 (3)C22—N1—C17—C13135.8 (3)
C4—C5—C10—C112.8 (3)C20—N1—C17—C1353.6 (3)
C6—C5—C10—C1167.93 (19)C16—O2—C17—N1114.2 (2)
C4—C5—C10—C19107.9 (3)C16—O2—C17—C1398.0 (2)
C6—C5—C10—C1971.4 (2)O2—C16—C17—N1102.0 (2)
C4—C5—C10—C9130.9 (2)C15—C16—C17—N1151.1 (2)
C6—C5—C10—C949.8 (2)C15—C16—C17—O2106.8 (2)
C2—C1—C10—C543.1 (3)O2—C16—C17—C13109.3 (2)
C2—C1—C10—C1976.6 (3)C15—C16—C17—C132.5 (3)
C2—C1—C10—C9160.7 (2)C12—C13—C17—N170.9 (3)
C8—C9—C10—C550.8 (2)C18—C13—C17—N154.8 (3)
C11—C9—C10—C5179.61 (18)C14—C13—C17—N1173.19 (19)
C8—C9—C10—C1169.70 (19)C12—C13—C17—O274.6 (3)
C11—C9—C10—C160.7 (2)C18—C13—C17—O2159.76 (19)
C8—C9—C10—C1968.4 (2)C14—C13—C17—O241.4 (2)
C11—C9—C10—C1961.2 (2)C12—C13—C17—C16140.3 (2)
C8—C9—C11—C1252.8 (3)C18—C13—C17—C1694.1 (2)
C10—C9—C11—C12176.12 (19)C14—C13—C17—C1624.3 (2)
C9—C11—C12—C1354.5 (3)C22—N1—C20—C210.2 (3)
C11—C12—C13—C17168.7 (2)C17—N1—C20—C21172.3 (2)
C11—C12—C13—C1868.3 (3)N1—C20—C21—N20.6 (3)
C11—C12—C13—C1456.2 (2)C22—N2—C21—C200.7 (3)
C7—C8—C14—C1551.4 (3)C21—N2—C22—N10.6 (3)
C9—C8—C14—C15172.2 (2)C20—N1—C22—N20.3 (3)
C7—C8—C14—C13178.06 (18)C17—N1—C22—N2171.9 (2)
C9—C8—C14—C1361.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N20.901.992.890 (3)174
O3—H32···O1i0.902.333.202 (3)163
C20—H20···O3ii0.932.433.208 (4)142
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H28N2O2·H2O
Mr370.48
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.7813 (2), 13.5885 (3), 14.2698 (3)
V3)1896.64 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10371, 3331, 2807
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.06
No. of reflections3331
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N20.901.992.890 (3)174
O3—H32···O1i0.902.333.202 (3)163
C20—H20···O3ii0.932.433.208 (4)142
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Babu Vargese, Regional Instrumentation Analytical Centre, IIT, Madras, India, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAltona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32.  CrossRef CAS Web of Science Google Scholar
First citationBansal, R., Guleria, S., Thota, S., Bodhankar, S. L., Patwardhan, M. R., Zimmer, C., Hartmann, R. W. & Harvey, A. L. (2012). Steroids, 77, 621–629.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). SAINT, XPREP, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds