organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Amino-4-(3,3-di­methyl-2-oxo­butyl­­idene)-1-[2-(2-hy­dr­oxy­eth­­oxy)eth­yl]-6-methyl-1,4-di­hydro­pyridine-3-carbo­nitrile

aSchool of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea, and bDepartment of Chemistry, Sunchon National University, Sunchon 540-742, Republic of Korea
*Correspondence e-mail: hyungkim@chonnam.ac.kr, chkwak@sunchon.ac.kr

(Received 11 July 2012; accepted 24 July 2012; online 28 July 2012)

In the title compound, C17H25N3O3, there are intra­molecular hydrogen bonds between an amine H atom and the ep­oxy O atom, and between a dihydro­pyridine ring H atom and the ketone O atom. In the crystal, mol­ecules are linked into a zigzag chain running parallel to the c axis by hydrogen bonds between the hy­droxy group and the ketone O atom. There are also weak C—H⋯O and C—H⋯π inter­actions which link the mol­ecules into sheets lying in the bc plane.

Related literature

For related structures, see: Ha et al. (2009[Ha, K., Heo, J. & Kim, H. J. (2009). Acta Cryst. E65, o3131.]); Kim et al. (2011[Kim, Y. H., Kim, H. J., Otgonbaatar, E. & Kwak, C.-H. (2011). Acta Cryst. E67, o670.]). For the synthesis, see: VanAllan & Reynolds (1971[VanAllan, J. A. & Reynolds, G. A. (1971). J. Heterocycl. Chem. 8, 367-371.]).

[Scheme 1]

Experimental

Crystal data
  • C17H25N3O3

  • Mr = 319.40

  • Monoclinic, P 21 /c

  • a = 9.9007 (5) Å

  • b = 13.2890 (7) Å

  • c = 13.0686 (8) Å

  • β = 91.314 (2)°

  • V = 1718.99 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.6 × 0.4 × 0.2 mm

Data collection
  • Rigaku R-AXIS RAPID II-S diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2008[Rigaku (2008). RAPIDO-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.983

  • 15989 measured reflections

  • 3912 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.136

  • S = 1.08

  • 3912 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the dihydro­pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.86 2.27 2.9083 (17) 131
C4—H4⋯O3 0.93 2.21 2.8405 (17) 124
O2—H2⋯O3i 0.82 2.03 2.650 (2) 132
C7—H7A⋯O2ii 0.97 2.47 3.303 (2) 144
C9—H9ACg1ii 0.97 2.81 3.5275 (16) 131
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2008[Rigaku (2008). RAPIDO-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,6-Disubstituted (1,4-pyridine-4-ylidene)malononitrile derivatives are key intermediates in the synthesis of dihydropyridine-based fluorescent dyes (Ha et al., 2009; Kim et al., 2011), and are readily prepared from the reaction of the corresponding 2,6-disubstituted (4H-pyran-4-ylidene)maolononitrile with a primary amine. We reacted 2-(2-tert-butyl-6-methyl-4H-pyran-4-ylidene)malononitrile with 2-(2-aminoethoxy)ethanol in order to obtain the (1,4-pyridine-4-ylidene)malononitrile substituted with tert-butyl and methyl groups at 2 and 6-positions, respectively. The title compound was however produced as a major product instead of the corresponding malononitrile derivative (VanAllan & Reynolds, 1971). The molecular structure of C17H25N3O3, is shown in (Fig. 1). There are intramolecular hydrogen bonds N3-H3···O1 and C4–H4···O3 (Table 1). An intermolecular hydrogen bond O2-H2···O3(x,1/2-y,-1/2+ z) links the molecules into a zigzag chain which runs along the c axis. These chains are linked to form a sheet by a weak C7–H7A···O21-x,-y,1-z and as C9—H9A···π interaction involving the dihydropyridine ring(1-x,-y,1-z) 1, (Table 1, Fig. 2).

Related literature top

For related structures, see: Ha et al. (2009); Kim et al. (2011). For the synthesis, see: VanAllan & Reynolds (1971).

Experimental top

A mixture of 2-(2-tert-butyl-6-methyl-4H-pyran-4-ylidene)malononitrile (632 mg, 2.94 mmol) and 2-(2-aminoethoxy)ethanol (465 mg, 4.42 mmol) dissolved in n-butanol (7 ml) was heated at 100 °C for 4 h. The mixture was cooled and concentrated under vacuum. The residue was chromatographed on SiO2 eluting with a mixture of EtOAc/MeOH (1:1) solution to afford the title compound (300 mg, 32%) as a yellow solid. Crystals suitable for X-ray analysis were obtained by slow evaporation from a CHCl3/MeOH solution at room temperature. Mp 173 °C.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 (CH, sp2), 0.98 (CH, sp3), 0.86 (NH2) and 0.82 Å (OH), respectively and Uiso(H) = 1.2Ueq(C), 1.2Ueq(N) and 1.5Ueq(O), respectively]. The positions of the methyl, amino and hydroxyl H atoms were checked on a final difference map and were found to be satisfactory.

Structure description top

2,6-Disubstituted (1,4-pyridine-4-ylidene)malononitrile derivatives are key intermediates in the synthesis of dihydropyridine-based fluorescent dyes (Ha et al., 2009; Kim et al., 2011), and are readily prepared from the reaction of the corresponding 2,6-disubstituted (4H-pyran-4-ylidene)maolononitrile with a primary amine. We reacted 2-(2-tert-butyl-6-methyl-4H-pyran-4-ylidene)malononitrile with 2-(2-aminoethoxy)ethanol in order to obtain the (1,4-pyridine-4-ylidene)malononitrile substituted with tert-butyl and methyl groups at 2 and 6-positions, respectively. The title compound was however produced as a major product instead of the corresponding malononitrile derivative (VanAllan & Reynolds, 1971). The molecular structure of C17H25N3O3, is shown in (Fig. 1). There are intramolecular hydrogen bonds N3-H3···O1 and C4–H4···O3 (Table 1). An intermolecular hydrogen bond O2-H2···O3(x,1/2-y,-1/2+ z) links the molecules into a zigzag chain which runs along the c axis. These chains are linked to form a sheet by a weak C7–H7A···O21-x,-y,1-z and as C9—H9A···π interaction involving the dihydropyridine ring(1-x,-y,1-z) 1, (Table 1, Fig. 2).

For related structures, see: Ha et al. (2009); Kim et al. (2011). For the synthesis, see: VanAllan & Reynolds (1971).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2008); cell refinement: RAPID-AUTO (Rigaku, 2008); data reduction: RAPID-AUTO (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of titled compound with displacement ellipsoids drawn at 50% probability level for non-H atom.
[Figure 2] Fig. 2. A packing diagram of the titled compound. Dashed line are intermolecular hydrogen bonds (black) and C—H···π interactions (green).
(E)-2-Amino-4-(3,3-dimethyl-2-oxobutylidene)-1-[2-(2- hydroxyethoxy)ethyl]-6-methyl-1,4-dihydropyridine-3-carbonitrile top
Crystal data top
C17H25N3O3F(000) = 688
Mr = 319.40Dx = 1.234 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.9007 (5) Åθ = 3.0–27.5°
b = 13.2890 (7) ŵ = 0.09 mm1
c = 13.0686 (8) ÅT = 293 K
β = 91.314 (2)°Block, brown
V = 1718.99 (16) Å30.6 × 0.4 × 0.2 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II-S
diffractometer
3912 independent reflections
Radiation source: fine-focus sealed tube3104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2008)
h = 1212
Tmin = 0.960, Tmax = 0.983k = 1717
15989 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.2655P]
where P = (Fo2 + 2Fc2)/3
3912 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H25N3O3V = 1718.99 (16) Å3
Mr = 319.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9007 (5) ŵ = 0.09 mm1
b = 13.2890 (7) ÅT = 293 K
c = 13.0686 (8) Å0.6 × 0.4 × 0.2 mm
β = 91.314 (2)°
Data collection top
Rigaku R-AXIS RAPID II-S
diffractometer
3912 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2008)
3104 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.983Rint = 0.058
15989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
3912 reflectionsΔρmin = 0.26 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.88179 (15)0.25846 (10)0.48356 (11)0.0372 (3)
O30.69984 (11)0.51832 (9)0.73210 (10)0.0539 (3)
N20.99132 (14)0.23098 (11)0.47668 (11)0.0514 (4)
C110.33488 (15)0.36674 (12)0.54335 (13)0.0472 (4)
H11A0.32650.40210.60690.071*
H11B0.28560.30460.54630.071*
H11C0.29890.40740.48850.071*
N30.67042 (14)0.18281 (10)0.35965 (10)0.0444 (3)
H3A0.60550.15920.32200.053*
H3B0.75200.16320.35030.053*
O10.41901 (10)0.06974 (7)0.36195 (8)0.0411 (3)
N10.51316 (11)0.27979 (8)0.44545 (9)0.0346 (3)
O20.56463 (12)0.12848 (9)0.36431 (9)0.0530 (3)
H20.61070.07790.35650.079*
C10.64429 (14)0.25077 (10)0.43342 (10)0.0338 (3)
C20.74686 (13)0.29353 (10)0.49497 (10)0.0336 (3)
C50.48117 (14)0.34495 (10)0.52525 (11)0.0352 (3)
C120.82613 (14)0.41643 (10)0.62401 (11)0.0355 (3)
H120.91350.39700.60850.043*
C40.57932 (14)0.38748 (10)0.58437 (11)0.0353 (3)
H40.55430.43090.63650.042*
C30.72004 (14)0.36870 (10)0.57037 (10)0.0328 (3)
C130.81221 (14)0.49139 (10)0.69951 (11)0.0355 (3)
C140.93855 (14)0.54230 (11)0.74837 (11)0.0374 (3)
C70.33697 (15)0.15161 (11)0.39359 (12)0.0425 (3)
H7A0.32180.14710.46650.051*
H7B0.25000.14910.35800.051*
C60.40756 (16)0.24924 (11)0.36958 (12)0.0417 (3)
H6A0.44860.24300.30320.050*
H6B0.34040.30230.36450.050*
C80.36595 (15)0.02510 (11)0.39327 (12)0.0417 (3)
H8A0.26890.02620.38160.050*
H8B0.38400.03490.46580.050*
C90.43021 (16)0.10829 (11)0.33368 (12)0.0445 (4)
H9A0.37720.16910.34140.053*
H9B0.42800.09050.26170.053*
C160.95355 (17)0.50352 (15)0.85821 (13)0.0536 (4)
H16A1.03120.53400.89080.080*
H16B0.96460.43180.85740.080*
H16C0.87420.52050.89540.080*
C170.91462 (18)0.65630 (12)0.75167 (14)0.0517 (4)
H17A0.99230.68880.78210.078*
H17B0.83670.67030.79170.078*
H17C0.89990.68110.68330.078*
C151.06820 (15)0.52174 (14)0.69025 (14)0.0508 (4)
H15A1.14270.55510.72410.076*
H15B1.05820.54660.62150.076*
H15C1.08500.45060.68870.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0403 (8)0.0336 (7)0.0380 (7)0.0010 (6)0.0054 (6)0.0014 (5)
O30.0340 (6)0.0642 (7)0.0635 (7)0.0013 (5)0.0022 (5)0.0277 (6)
N20.0414 (7)0.0528 (8)0.0601 (9)0.0073 (6)0.0055 (6)0.0048 (6)
C110.0335 (8)0.0464 (8)0.0617 (10)0.0041 (7)0.0018 (7)0.0061 (7)
N30.0469 (7)0.0444 (7)0.0420 (7)0.0025 (6)0.0010 (5)0.0098 (5)
O10.0404 (6)0.0358 (5)0.0474 (6)0.0015 (4)0.0056 (4)0.0000 (4)
N10.0363 (6)0.0318 (5)0.0353 (6)0.0008 (5)0.0042 (5)0.0015 (4)
O20.0527 (7)0.0528 (6)0.0537 (7)0.0076 (5)0.0085 (5)0.0170 (5)
C10.0390 (7)0.0301 (6)0.0322 (7)0.0010 (6)0.0029 (5)0.0039 (5)
C20.0337 (7)0.0312 (6)0.0360 (7)0.0010 (5)0.0041 (5)0.0018 (5)
C50.0341 (7)0.0309 (6)0.0404 (7)0.0030 (5)0.0013 (5)0.0018 (5)
C120.0294 (6)0.0374 (7)0.0395 (7)0.0022 (6)0.0008 (5)0.0001 (5)
C40.0343 (7)0.0331 (6)0.0385 (7)0.0019 (6)0.0019 (5)0.0025 (5)
C30.0349 (7)0.0301 (6)0.0335 (7)0.0013 (5)0.0016 (5)0.0038 (5)
C130.0324 (7)0.0383 (7)0.0359 (7)0.0016 (6)0.0004 (5)0.0016 (5)
C140.0342 (7)0.0428 (7)0.0349 (7)0.0036 (6)0.0031 (5)0.0029 (6)
C70.0359 (7)0.0435 (8)0.0477 (9)0.0030 (6)0.0074 (6)0.0056 (6)
C60.0455 (8)0.0386 (7)0.0403 (8)0.0045 (6)0.0127 (6)0.0014 (6)
C80.0373 (8)0.0412 (8)0.0465 (9)0.0077 (6)0.0027 (6)0.0021 (6)
C90.0488 (9)0.0391 (8)0.0458 (8)0.0069 (7)0.0027 (6)0.0019 (6)
C160.0482 (9)0.0698 (11)0.0423 (9)0.0093 (8)0.0081 (7)0.0114 (8)
C170.0525 (10)0.0454 (9)0.0570 (10)0.0091 (7)0.0052 (7)0.0010 (7)
C150.0340 (8)0.0648 (10)0.0536 (10)0.0091 (7)0.0002 (7)0.0037 (8)
Geometric parameters (Å, º) top
C10—N21.1497 (19)C4—H40.9300
C10—C21.4259 (19)C13—C141.547 (2)
O3—C131.2526 (17)C14—C161.529 (2)
C11—C51.5011 (19)C14—C151.531 (2)
C11—H11A0.9600C14—C171.534 (2)
C11—H11B0.9600C7—C61.510 (2)
C11—H11C0.9600C7—H7A0.9700
N3—C11.3504 (18)C7—H7B0.9700
N3—H3A0.8600C6—H6A0.9700
N3—H3B0.8600C6—H6B0.9700
O1—C71.4247 (18)C8—C91.502 (2)
O1—C81.4289 (17)C8—H8A0.9700
N1—C11.3670 (17)C8—H8B0.9700
N1—C51.3974 (18)C9—H9A0.9700
N1—C61.4811 (18)C9—H9B0.9700
O2—C91.407 (2)C16—H16A0.9600
O2—H20.8200C16—H16B0.9600
C1—C21.4012 (19)C16—H16C0.9600
C2—C31.4323 (18)C17—H17A0.9600
C5—C41.351 (2)C17—H17B0.9600
C12—C31.401 (2)C17—H17C0.9600
C12—C131.411 (2)C15—H15A0.9600
C12—H120.9300C15—H15B0.9600
C4—C31.4312 (19)C15—H15C0.9600
N2—C10—C2178.37 (16)O1—C7—C6109.03 (12)
C5—C11—H11A109.5O1—C7—H7A109.9
C5—C11—H11B109.5C6—C7—H7A109.9
H11A—C11—H11B109.5O1—C7—H7B109.9
C5—C11—H11C109.5C6—C7—H7B109.9
H11A—C11—H11C109.5H7A—C7—H7B108.3
H11B—C11—H11C109.5N1—C6—C7114.79 (12)
C1—N3—H3A120.0N1—C6—H6A108.6
C1—N3—H3B120.0C7—C6—H6A108.6
H3A—N3—H3B120.0N1—C6—H6B108.6
C7—O1—C8112.00 (11)C7—C6—H6B108.6
C1—N1—C5119.52 (11)H6A—C6—H6B107.5
C1—N1—C6120.22 (11)O1—C8—C9109.74 (12)
C5—N1—C6120.06 (11)O1—C8—H8A109.7
C9—O2—H2109.5C9—C8—H8A109.7
N3—C1—N1117.96 (13)O1—C8—H8B109.7
N3—C1—C2122.20 (13)C9—C8—H8B109.7
N1—C1—C2119.82 (12)H8A—C8—H8B108.2
C1—C2—C10118.41 (12)O2—C9—C8113.71 (13)
C1—C2—C3122.30 (12)O2—C9—H9A108.8
C10—C2—C3119.26 (12)C8—C9—H9A108.8
C4—C5—N1120.90 (12)O2—C9—H9B108.8
C4—C5—C11120.87 (13)C8—C9—H9B108.8
N1—C5—C11118.24 (12)H9A—C9—H9B107.7
C3—C12—C13125.83 (13)C14—C16—H16A109.5
C3—C12—H12117.1C14—C16—H16B109.5
C13—C12—H12117.1H16A—C16—H16B109.5
C5—C4—C3122.91 (13)C14—C16—H16C109.5
C5—C4—H4118.5H16A—C16—H16C109.5
C3—C4—H4118.5H16B—C16—H16C109.5
C12—C3—C4125.30 (12)C14—C17—H17A109.5
C12—C3—C2120.75 (12)C14—C17—H17B109.5
C4—C3—C2113.95 (12)H17A—C17—H17B109.5
O3—C13—C12122.76 (13)C14—C17—H17C109.5
O3—C13—C14116.80 (12)H17A—C17—H17C109.5
C12—C13—C14120.42 (12)H17B—C17—H17C109.5
C16—C14—C15109.94 (13)C14—C15—H15A109.5
C16—C14—C17108.55 (14)C14—C15—H15B109.5
C15—C14—C17108.78 (13)H15A—C15—H15B109.5
C16—C14—C13107.47 (12)C14—C15—H15C109.5
C15—C14—C13113.36 (12)H15A—C15—H15C109.5
C17—C14—C13108.64 (12)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the dihydropyridine ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.272.9083 (17)131
C4—H4···O30.932.212.8405 (17)124
O2—H2···O3i0.822.032.650 (2)132
C7—H7A···O2ii0.972.473.303 (2)144
C9—H9A···Cg1ii0.972.813.5275 (16)131
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H25N3O3
Mr319.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.9007 (5), 13.2890 (7), 13.0686 (8)
β (°) 91.314 (2)
V3)1718.99 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.6 × 0.4 × 0.2
Data collection
DiffractometerRigaku R-AXIS RAPID II-S
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 2008)
Tmin, Tmax0.960, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
15989, 3912, 3104
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.136, 1.08
No. of reflections3912
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.26

Computer programs: RAPID-AUTO (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the dihydropyridine ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.272.9083 (17)131
C4—H4···O30.932.212.8405 (17)124
O2—H2···O3i0.822.032.650 (2)132
C7—H7A···O2ii0.972.473.303 (2)144
C9—H9A···Cg1ii0.972.813.5275 (16)131
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2011–0009193). HJK thanks Cheonnam National University (2011) for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K., Heo, J. & Kim, H. J. (2009). Acta Cryst. E65, o3131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y. H., Kim, H. J., Otgonbaatar, E. & Kwak, C.-H. (2011). Acta Cryst. E67, o670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). RAPIDO-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanAllan, J. A. & Reynolds, G. A. (1971). J. Heterocycl. Chem. 8, 367–371.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds