organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Meth­­oxy­phen­yl)-1H-iso­indole-1,3(2H)-dione

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and bDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 15 June 2012; accepted 15 June 2012; online 28 July 2012)

In the title compound, C15H11NO3, the dihedral angle between the meth­oxy­benzene and isoindole ring systems is 70.21 (3)°. The meth­oxy C atom is close to being coplanar with its attached ring [deviation = 0.133 (2) Å] and is oriented away from the isoindole moiety. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(10) loops. Further C—H⋯O inter­actions lead to (010) infinite sheets and weak aromatic ππ stacking [centroid–centroid separations = 3.6990 (10) and 3.7217 (10) Å] is also observed.

Related literature

For related structures, see: Sim et al. (2009[Sim, Y. L., Ariffin, A., Khan, M. N. & Ng, S. W. (2009). Acta Cryst. E65, o2218.]); Sirajuddin et al. (2012[Sirajuddin, M., Ali, S. & Tahir, M. N. (2012). Acta Cryst. E68, o2282.]). For hydrogen-bond motifs, see: Bernstein et al., 1995)[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.].

[Scheme 1]

Experimental

Crystal data
  • C15H11NO3

  • Mr = 253.25

  • Orthorhombic, P b c a

  • a = 11.5768 (6) Å

  • b = 7.3222 (5) Å

  • c = 29.2849 (15) Å

  • V = 2482.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.977

  • 10815 measured reflections

  • 2428 independent reflections

  • 1816 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.03

  • 2428 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.57 3.428 (2) 153
C12—H12⋯O2ii 0.93 2.46 3.313 (2) 152
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized in an attempt to form the carboxylic acid containing methoxybenzene. We have reported the crystal structure of 1-(2-methoxyphenyl)-1H-pyrrole-2,5-dione (Sirajuddin et al., 2012) which is related to (I). The polymorph of (I) has also been published by (Sim et al., 2009).

In (I), 1H-isoindole-1,3(2H)-dione A (C1—C8/N1/O1/O2) and the methoxybenzene B (C9—C15/O3) are almost planar with r.m.s. deviation of 0.0458 and 0.0320 Å, respectively. The dihedral angle between A/B is 70.21 (3)°. The molecules are dimerized due to C—H···O type of H-bonding with R22(10) ring motifs (Bernstein et al., 1995). The dimers are interlinked due to further C—H···O bonds to form infinite sheets. There exist π···π interaction between Cg1···Cg2i [i = 3/2 - x, -1/2 + y, z] and Cg2···Cg1ii [ii = 3/2 - x, 1/2 + y, z] at a distance of 3.7217 (10) Å. Similarly, there exist π···π interaction between Cg2··· Cg2i [i = 3/2 - x, -1/2 + y, z] and Cg2··· Cg2ii [ii = 3/2 - x, 1/2 + y, z] at a distance of 3.6990 (10) Å. Cg1 and Cg2 are the centroids of (C1/C2/C7/C8/N1) and (C2—C7) rings, respectively.

Related literature top

For related structures, see: Sim et al. (2009); Sirajuddin et al. (2012). For hydrogen-bond motifs, see: Bernstein et al., 1995).

Experimental top

Equimolar quantities of 2-methoxyaniline and phthalic anhydride were stirred and refluxed in acetic acid for 4 h. The solution was kept at room temperature which afforded dark yellow prisms after 12 h.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Structure description top

The title compound (I), (Fig. 1) has been synthesized in an attempt to form the carboxylic acid containing methoxybenzene. We have reported the crystal structure of 1-(2-methoxyphenyl)-1H-pyrrole-2,5-dione (Sirajuddin et al., 2012) which is related to (I). The polymorph of (I) has also been published by (Sim et al., 2009).

In (I), 1H-isoindole-1,3(2H)-dione A (C1—C8/N1/O1/O2) and the methoxybenzene B (C9—C15/O3) are almost planar with r.m.s. deviation of 0.0458 and 0.0320 Å, respectively. The dihedral angle between A/B is 70.21 (3)°. The molecules are dimerized due to C—H···O type of H-bonding with R22(10) ring motifs (Bernstein et al., 1995). The dimers are interlinked due to further C—H···O bonds to form infinite sheets. There exist π···π interaction between Cg1···Cg2i [i = 3/2 - x, -1/2 + y, z] and Cg2···Cg1ii [ii = 3/2 - x, 1/2 + y, z] at a distance of 3.7217 (10) Å. Similarly, there exist π···π interaction between Cg2··· Cg2i [i = 3/2 - x, -1/2 + y, z] and Cg2··· Cg2ii [ii = 3/2 - x, 1/2 + y, z] at a distance of 3.6990 (10) Å. Cg1 and Cg2 are the centroids of (C1/C2/C7/C8/N1) and (C2—C7) rings, respectively.

For related structures, see: Sim et al. (2009); Sirajuddin et al. (2012). For hydrogen-bond motifs, see: Bernstein et al., 1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form dimers with R22(10) ring mtifs and C(18) chains are formed due to C—H···O bonds.
2-(2-Methoxyphenyl)-1H-isoindole-1,3(2H)-dione top
Crystal data top
C15H11NO3F(000) = 1056
Mr = 253.25Dx = 1.355 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1816 reflections
a = 11.5768 (6) Åθ = 2.2–26.0°
b = 7.3222 (5) ŵ = 0.10 mm1
c = 29.2849 (15) ÅT = 296 K
V = 2482.4 (2) Å3Prism, dark yellow
Z = 80.32 × 0.26 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2428 independent reflections
Radiation source: fine-focus sealed tube1816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 2.2°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 95
Tmin = 0.969, Tmax = 0.977l = 3536
10815 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.6208P]
where P = (Fo2 + 2Fc2)/3
2428 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H11NO3V = 2482.4 (2) Å3
Mr = 253.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.5768 (6) ŵ = 0.10 mm1
b = 7.3222 (5) ÅT = 296 K
c = 29.2849 (15) Å0.32 × 0.26 × 0.24 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2428 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1816 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.977Rint = 0.024
10815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
2428 reflectionsΔρmin = 0.17 e Å3
173 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45483 (10)0.37357 (19)0.07121 (4)0.0609 (4)
O20.74031 (12)0.1478 (2)0.16275 (4)0.0672 (5)
O30.41409 (11)0.01341 (19)0.11923 (4)0.0632 (5)
N10.57642 (11)0.2519 (2)0.12589 (4)0.0451 (4)
C10.54983 (14)0.3245 (2)0.08300 (5)0.0432 (5)
C20.66018 (14)0.3329 (2)0.05763 (5)0.0409 (5)
C30.68405 (17)0.3932 (2)0.01415 (6)0.0512 (6)
C40.79860 (18)0.3945 (3)0.00060 (6)0.0607 (6)
C50.88538 (17)0.3416 (3)0.02983 (7)0.0635 (7)
C60.86140 (15)0.2806 (2)0.07348 (7)0.0551 (6)
C70.74722 (14)0.2752 (2)0.08649 (5)0.0422 (5)
C80.69509 (14)0.2162 (2)0.13013 (5)0.0454 (5)
C90.49518 (15)0.2254 (3)0.16170 (5)0.0501 (5)
C100.41319 (15)0.0874 (3)0.15822 (6)0.0530 (6)
C110.33615 (18)0.0624 (3)0.19381 (7)0.0716 (8)
C120.3427 (2)0.1736 (4)0.23180 (7)0.0881 (9)
C130.4240 (2)0.3075 (4)0.23528 (7)0.0922 (10)
C140.5005 (2)0.3346 (3)0.19983 (6)0.0724 (8)
C150.3388 (2)0.1661 (3)0.11653 (9)0.0873 (10)
H30.625520.431510.005370.0615*
H40.817250.431900.028840.0728*
H50.961710.347060.020030.0762*
H60.920020.244650.093250.0661*
H110.280340.028750.192160.0860*
H120.290470.156810.255550.1058*
H130.427840.379890.261330.1107*
H140.555620.426690.201710.0869*
H15A0.354170.247680.141460.1309*
H15B0.351070.228760.088150.1309*
H15C0.260110.125070.118160.1309*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0466 (7)0.0825 (9)0.0537 (7)0.0051 (6)0.0098 (6)0.0129 (6)
O20.0672 (8)0.0852 (10)0.0493 (7)0.0108 (7)0.0175 (6)0.0115 (7)
O30.0594 (8)0.0663 (8)0.0640 (8)0.0159 (7)0.0127 (6)0.0053 (7)
N10.0446 (7)0.0554 (8)0.0354 (7)0.0026 (6)0.0048 (6)0.0049 (6)
C10.0469 (9)0.0450 (9)0.0377 (8)0.0029 (7)0.0084 (7)0.0011 (7)
C20.0486 (9)0.0354 (8)0.0386 (8)0.0039 (7)0.0041 (7)0.0020 (7)
C30.0687 (11)0.0425 (9)0.0424 (9)0.0034 (8)0.0003 (8)0.0020 (7)
C40.0791 (13)0.0484 (10)0.0546 (10)0.0081 (10)0.0193 (10)0.0008 (9)
C50.0580 (11)0.0530 (11)0.0794 (14)0.0071 (9)0.0204 (10)0.0039 (10)
C60.0472 (10)0.0479 (10)0.0701 (12)0.0016 (8)0.0024 (9)0.0064 (9)
C70.0466 (9)0.0350 (8)0.0451 (9)0.0031 (7)0.0037 (7)0.0049 (7)
C80.0497 (9)0.0450 (9)0.0414 (9)0.0003 (7)0.0116 (7)0.0016 (7)
C90.0507 (9)0.0640 (11)0.0356 (8)0.0064 (9)0.0014 (7)0.0044 (8)
C100.0499 (10)0.0628 (11)0.0464 (9)0.0077 (9)0.0064 (8)0.0125 (9)
C110.0632 (12)0.0882 (16)0.0635 (12)0.0137 (11)0.0195 (10)0.0266 (12)
C120.0832 (16)0.131 (2)0.0502 (12)0.0392 (16)0.0234 (12)0.0282 (14)
C130.1046 (19)0.131 (2)0.0410 (11)0.0330 (18)0.0029 (12)0.0085 (13)
C140.0815 (14)0.0915 (16)0.0442 (10)0.0069 (12)0.0051 (10)0.0098 (10)
C150.0696 (14)0.0819 (16)0.1103 (19)0.0268 (12)0.0106 (13)0.0047 (14)
Geometric parameters (Å, º) top
O1—C11.207 (2)C9—C141.375 (3)
O2—C81.199 (2)C10—C111.384 (3)
O3—C101.360 (2)C11—C121.381 (3)
O3—C151.420 (3)C12—C131.363 (4)
N1—C11.3982 (19)C13—C141.379 (3)
N1—C81.404 (2)C3—H30.9300
N1—C91.422 (2)C4—H40.9300
C1—C21.479 (2)C5—H50.9300
C2—C31.376 (2)C6—H60.9300
C2—C71.381 (2)C11—H110.9300
C3—C41.384 (3)C12—H120.9300
C4—C51.376 (3)C13—H130.9300
C5—C61.382 (3)C14—H140.9300
C6—C71.376 (2)C15—H15A0.9600
C7—C81.478 (2)C15—H15B0.9600
C9—C101.390 (3)C15—H15C0.9600
C10—O3—C15118.01 (16)C10—C11—C12119.6 (2)
C1—N1—C8111.45 (12)C11—C12—C13121.5 (2)
C1—N1—C9124.67 (13)C12—C13—C14119.4 (2)
C8—N1—C9123.82 (13)C9—C14—C13119.9 (2)
O1—C1—N1124.79 (14)C2—C3—H3121.00
O1—C1—C2129.10 (14)C4—C3—H3121.00
N1—C1—C2106.07 (13)C3—C4—H4119.00
C1—C2—C3130.67 (15)C5—C4—H4119.00
C1—C2—C7108.06 (13)C4—C5—H5119.00
C3—C2—C7121.19 (16)C6—C5—H5119.00
C2—C3—C4117.39 (17)C5—C6—H6121.00
C3—C4—C5121.29 (17)C7—C6—H6121.00
C4—C5—C6121.32 (18)C10—C11—H11120.00
C5—C6—C7117.27 (17)C12—C11—H11120.00
C2—C7—C6121.50 (15)C11—C12—H12119.00
C2—C7—C8108.70 (14)C13—C12—H12119.00
C6—C7—C8129.79 (15)C12—C13—H13120.00
O2—C8—N1125.14 (15)C14—C13—H13120.00
O2—C8—C7129.26 (15)C9—C14—H14120.00
N1—C8—C7105.59 (12)C13—C14—H14120.00
N1—C9—C10119.79 (15)O3—C15—H15A110.00
N1—C9—C14119.34 (18)O3—C15—H15B109.00
C10—C9—C14120.86 (16)O3—C15—H15C109.00
O3—C10—C9116.81 (15)H15A—C15—H15B109.00
O3—C10—C11124.44 (18)H15A—C15—H15C109.00
C9—C10—C11118.75 (17)H15B—C15—H15C109.00
C15—O3—C10—C9174.12 (17)C3—C2—C7—C61.9 (2)
C15—O3—C10—C116.5 (3)C3—C2—C7—C8179.07 (14)
C8—N1—C1—O1177.05 (15)C2—C3—C4—C51.5 (3)
C8—N1—C1—C20.97 (17)C3—C4—C5—C61.7 (3)
C9—N1—C1—O10.1 (3)C4—C5—C6—C70.1 (3)
C9—N1—C1—C2178.09 (16)C5—C6—C7—C21.7 (2)
C1—N1—C8—O2177.22 (15)C5—C6—C7—C8179.52 (17)
C1—N1—C8—C71.25 (17)C2—C7—C8—O2175.22 (16)
C9—N1—C8—O25.6 (3)C2—C7—C8—N13.16 (16)
C9—N1—C8—C7175.90 (15)C6—C7—C8—O25.9 (3)
C1—N1—C9—C1071.9 (2)C6—C7—C8—N1175.74 (15)
C1—N1—C9—C14109.5 (2)N1—C9—C10—O31.6 (3)
C8—N1—C9—C10111.38 (19)N1—C9—C10—C11179.02 (17)
C8—N1—C9—C1467.2 (3)C14—C9—C10—O3179.80 (18)
O1—C1—C2—C31.9 (3)C14—C9—C10—C110.4 (3)
O1—C1—C2—C7174.92 (16)N1—C9—C14—C13178.45 (19)
N1—C1—C2—C3179.77 (16)C10—C9—C14—C130.2 (3)
N1—C1—C2—C72.98 (16)O3—C10—C11—C12179.6 (2)
C1—C2—C3—C4176.14 (17)C9—C10—C11—C120.3 (3)
C7—C2—C3—C40.3 (2)C10—C11—C12—C130.4 (4)
C1—C2—C7—C6175.24 (14)C11—C12—C13—C141.0 (4)
C1—C2—C7—C83.77 (17)C12—C13—C14—C90.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.573.428 (2)153
C12—H12···O2ii0.932.463.313 (2)152
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H11NO3
Mr253.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.5768 (6), 7.3222 (5), 29.2849 (15)
V3)2482.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.969, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
10815, 2428, 1816
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.03
No. of reflections2428
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.573.428 (2)153
C12—H12···O2ii0.932.463.313 (2)152
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSim, Y. L., Ariffin, A., Khan, M. N. & Ng, S. W. (2009). Acta Cryst. E65, o2218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSirajuddin, M., Ali, S. & Tahir, M. N. (2012). Acta Cryst. E68, o2282.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds