organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,4-Di­nitro­phen­yl)benzohydrazide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 22 June 2012; accepted 4 July 2012; online 10 July 2012)

In the title compound, C13H10N4O5, the aromatic ring planes are close to perpendicular [dihedral angle = 75.94 (5)°] and the C—N—N—C torsion angle is 88.7 (2)°. Both nitro groups lie close to their attached ring plane, with C—C—N—O torsion angles of 3.1 (2) and 5.3 (2)°. This allows for the formation of an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains extending along [100].

Related literature

For a related structure, see: Wardell et al. (2007[Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o334-o336.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N4O5

  • Mr = 302.25

  • Monoclinic, C 2

  • a = 13.5714 (10) Å

  • b = 8.4621 (6) Å

  • c = 11.4547 (9) Å

  • β = 93.830 (2)°

  • V = 1312.55 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 130 K

  • 0.48 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.977

  • 6295 measured reflections

  • 1673 independent reflections

  • 1599 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.06

  • 1673 reflections

  • 206 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.92 (3) 1.96 (3) 2.803 (2) 151 (2)
N2—H2⋯O3ii 0.81 (3) 2.30 (2) 2.968 (2) 140 (2)
N2—H2⋯O3 0.81 (3) 2.02 (2) 2.606 (2) 129 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (ii) -x, y, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The PhC(O)NNPh core moiety of the title compound (Figure 1) is similar to that of N-anilino-4-nitrobenzamide (Wardell et al., 2007) with different ring substituents. The molecular conformation is determined by an intra-molecular N2–H···O3 hydrogen bond with H···O3 2.02 (2) Å and an associated torsion angle N2–C8–C9–N3 of -0.1 (3)°. The inter-molecular hydrogen bonds N1–H···O1(-x+0.5, y+0.5, -z) with H···O 1.96 (3) Å and N-H···O 151 (2)° as well as N2–H···O3(-x, y, -z) with H···O 2.30 (2) Å and C-H···O 140 (2)° link molecules into zigzag chains extended along the a-axis (Figure 2).

Related literature top

For a related structure, see: Wardell et al. (2007).

Experimental top

2,4-Dinitrophenyl hydrazine (2.8 mmol) in dry CH2Cl2 was treated with benzoyl chloride (2.8 mmol) and the mixture was refluxed for 3 hours. On completion of reaction, the mixture was allowed to cool and excess of solvent was evaporated under reduced pressure. Yellow prisms of the title compound were recrystallized from ethanol solution by slow evaporation of the solvent at room temperature (m.p 213-215°C).

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) and C—H 0.95 Å. H(N) atoms were refined freely. The title compound crystallizes in the non-centrosymmetric space group C 2; however, in the absence of significant anomalous scattering effects, Friedel pairs were merged.

Structure description top

The PhC(O)NNPh core moiety of the title compound (Figure 1) is similar to that of N-anilino-4-nitrobenzamide (Wardell et al., 2007) with different ring substituents. The molecular conformation is determined by an intra-molecular N2–H···O3 hydrogen bond with H···O3 2.02 (2) Å and an associated torsion angle N2–C8–C9–N3 of -0.1 (3)°. The inter-molecular hydrogen bonds N1–H···O1(-x+0.5, y+0.5, -z) with H···O 1.96 (3) Å and N-H···O 151 (2)° as well as N2–H···O3(-x, y, -z) with H···O 2.30 (2) Å and C-H···O 140 (2)° link molecules into zigzag chains extended along the a-axis (Figure 2).

For a related structure, see: Wardell et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewd along a-axis with intermolecular hydrogen bonding pattern as dashed lines. H atoms not involved are omitted.
N'-(2,4-Dinitrophenyl)benzohydrazide top
Crystal data top
C13H10N4O5F(000) = 624
Mr = 302.25Dx = 1.530 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 13.5714 (10) ÅCell parameters from 2900 reflections
b = 8.4621 (6) Åθ = 2.8–28.1°
c = 11.4547 (9) ŵ = 0.12 mm1
β = 93.830 (2)°T = 130 K
V = 1312.55 (17) Å3Prism, yellow
Z = 40.48 × 0.20 × 0.19 mm
Data collection top
Bruker SMART APEX
diffractometer
1673 independent reflections
Radiation source: sealed tube1599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1717
Tmin = 0.944, Tmax = 0.977k = 1110
6295 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.055P)2 + 0.2958P]
where P = (Fo2 + 2Fc2)/3
1673 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C13H10N4O5V = 1312.55 (17) Å3
Mr = 302.25Z = 4
Monoclinic, C2Mo Kα radiation
a = 13.5714 (10) ŵ = 0.12 mm1
b = 8.4621 (6) ÅT = 130 K
c = 11.4547 (9) Å0.48 × 0.20 × 0.19 mm
β = 93.830 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1673 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1599 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.977Rint = 0.018
6295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
1673 reflectionsΔρmin = 0.17 e Å3
206 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17978 (9)0.28363 (16)0.09274 (11)0.0246 (3)
O20.07017 (10)0.5010 (2)0.29368 (13)0.0372 (4)
O30.01782 (10)0.57932 (19)0.12955 (11)0.0279 (3)
O40.11363 (10)0.1665 (2)0.55486 (12)0.0357 (4)
O50.25511 (12)0.0749 (2)0.51048 (13)0.0336 (3)
N10.23735 (12)0.5032 (2)0.00043 (13)0.0236 (3)
H10.2805 (17)0.586 (3)0.0130 (19)0.027 (4)*
N20.15908 (12)0.5061 (2)0.07220 (13)0.0236 (3)
H20.1069 (18)0.542 (3)0.0466 (19)0.027 (4)*
N30.00676 (11)0.50411 (19)0.22250 (13)0.0236 (3)
N40.18149 (11)0.1576 (2)0.48955 (13)0.0251 (3)
C10.24091 (12)0.3905 (2)0.08297 (14)0.0205 (3)
C20.32573 (13)0.4038 (2)0.15959 (15)0.0211 (3)
C30.32016 (14)0.3169 (2)0.26364 (15)0.0245 (4)
H3A0.26390.25310.28350.029*
C40.39670 (14)0.3239 (3)0.33789 (16)0.0270 (4)
H4A0.39250.26540.40880.032*
C50.47950 (14)0.4162 (2)0.30909 (17)0.0278 (4)
H5A0.53190.42040.36010.033*
C60.48556 (14)0.5025 (3)0.20550 (17)0.0278 (4)
H6A0.54220.56550.18580.033*
C70.40929 (13)0.4967 (2)0.13092 (15)0.0245 (4)
H7A0.41370.55580.06030.029*
C80.16356 (12)0.4225 (2)0.17329 (14)0.0193 (3)
C90.08447 (12)0.4188 (2)0.24836 (15)0.0196 (3)
C100.09033 (13)0.3322 (2)0.35177 (15)0.0208 (3)
H10A0.03660.33050.40080.025*
C110.17514 (12)0.2492 (2)0.38177 (15)0.0210 (3)
C120.25477 (13)0.2501 (2)0.31123 (15)0.0221 (4)
H12A0.31280.19150.33340.027*
C130.24890 (12)0.3360 (2)0.20964 (15)0.0222 (4)
H13A0.30380.33730.16240.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (6)0.0214 (6)0.0306 (6)0.0018 (5)0.0028 (5)0.0007 (5)
O20.0236 (7)0.0448 (9)0.0449 (8)0.0141 (7)0.0145 (6)0.0069 (7)
O30.0240 (6)0.0297 (7)0.0294 (6)0.0053 (6)0.0025 (5)0.0004 (6)
O40.0279 (7)0.0482 (10)0.0319 (7)0.0008 (7)0.0084 (5)0.0095 (7)
O50.0320 (7)0.0326 (8)0.0354 (7)0.0077 (7)0.0031 (5)0.0069 (6)
N10.0225 (7)0.0249 (8)0.0243 (6)0.0025 (7)0.0078 (6)0.0003 (6)
N20.0185 (7)0.0284 (8)0.0244 (7)0.0034 (7)0.0054 (6)0.0001 (7)
N30.0183 (7)0.0231 (8)0.0296 (7)0.0032 (6)0.0020 (5)0.0042 (6)
N40.0237 (7)0.0252 (8)0.0261 (7)0.0012 (6)0.0006 (6)0.0015 (7)
C10.0187 (8)0.0204 (8)0.0223 (7)0.0026 (7)0.0001 (6)0.0051 (6)
C20.0199 (8)0.0206 (8)0.0227 (8)0.0022 (7)0.0016 (6)0.0039 (7)
C30.0247 (9)0.0234 (9)0.0255 (8)0.0012 (7)0.0013 (6)0.0005 (7)
C40.0293 (9)0.0271 (9)0.0248 (8)0.0039 (8)0.0040 (7)0.0024 (7)
C50.0246 (9)0.0285 (10)0.0311 (9)0.0041 (8)0.0079 (7)0.0077 (8)
C60.0211 (8)0.0269 (10)0.0353 (9)0.0004 (8)0.0013 (7)0.0052 (8)
C70.0231 (8)0.0241 (9)0.0261 (8)0.0000 (8)0.0002 (6)0.0003 (7)
C80.0174 (8)0.0180 (8)0.0228 (8)0.0000 (7)0.0033 (6)0.0036 (7)
C90.0145 (7)0.0192 (8)0.0252 (8)0.0017 (6)0.0021 (6)0.0042 (7)
C100.0162 (7)0.0217 (8)0.0250 (8)0.0005 (7)0.0047 (6)0.0040 (7)
C110.0209 (8)0.0189 (8)0.0230 (7)0.0009 (7)0.0011 (6)0.0024 (6)
C120.0176 (8)0.0212 (9)0.0273 (8)0.0022 (7)0.0005 (6)0.0036 (7)
C130.0161 (7)0.0239 (9)0.0269 (8)0.0006 (7)0.0049 (6)0.0057 (7)
Geometric parameters (Å, º) top
O1—C11.227 (2)C4—C51.390 (3)
O2—N31.2247 (19)C4—H4A0.9500
O3—N31.241 (2)C5—C61.391 (3)
O4—N41.2271 (19)C5—H5A0.9500
O5—N41.230 (2)C6—C71.386 (2)
N1—C11.353 (2)C6—H6A0.9500
N1—N21.386 (2)C7—H7A0.9500
N1—H10.92 (3)C8—C131.409 (2)
N2—C81.355 (2)C8—C91.420 (2)
N2—H20.81 (3)C9—C101.391 (2)
N3—C91.447 (2)C10—C111.372 (2)
N4—C111.455 (2)C10—H10A0.9500
C1—C21.498 (2)C11—C121.392 (2)
C2—C31.398 (2)C12—C131.370 (3)
C2—C71.401 (3)C12—H12A0.9500
C3—C41.387 (2)C13—H13A0.9500
C3—H3A0.9500
C1—N1—N2119.72 (16)C6—C5—H5A120.1
C1—N1—H1126.7 (14)C7—C6—C5120.21 (17)
N2—N1—H1113.5 (14)C7—C6—H6A119.9
C8—N2—N1120.36 (15)C5—C6—H6A119.9
C8—N2—H2119.7 (16)C6—C7—C2120.09 (17)
N1—N2—H2118.6 (15)C6—C7—H7A120.0
O2—N3—O3122.17 (14)C2—C7—H7A120.0
O2—N3—C9118.85 (15)N2—C8—C13120.84 (15)
O3—N3—C9118.98 (13)N2—C8—C9122.46 (15)
O4—N4—O5123.30 (16)C13—C8—C9116.69 (15)
O4—N4—C11118.70 (15)C10—C9—C8121.68 (15)
O5—N4—C11118.00 (15)C10—C9—N3115.90 (14)
O1—C1—N1121.88 (15)C8—C9—N3122.42 (15)
O1—C1—C2122.90 (16)C11—C10—C9118.82 (15)
N1—C1—C2115.21 (15)C11—C10—H10A120.6
C3—C2—C7119.45 (16)C9—C10—H10A120.6
C3—C2—C1117.41 (15)C10—C11—C12121.51 (16)
C7—C2—C1123.14 (15)C10—C11—N4119.08 (15)
C4—C3—C2120.02 (17)C12—C11—N4119.41 (15)
C4—C3—H3A120.0C13—C12—C11119.51 (16)
C2—C3—H3A120.0C13—C12—H12A120.2
C3—C4—C5120.34 (18)C11—C12—H12A120.2
C3—C4—H4A119.8C12—C13—C8121.78 (15)
C5—C4—H4A119.8C12—C13—H13A119.1
C4—C5—C6119.88 (17)C8—C13—H13A119.1
C4—C5—H5A120.1
C1—N1—N2—C888.7 (2)N2—C8—C9—N30.1 (3)
N2—N1—C1—O14.6 (3)C13—C8—C9—N3179.06 (16)
N2—N1—C1—C2176.85 (15)O2—N3—C9—C103.1 (2)
O1—C1—C2—C317.0 (3)O3—N3—C9—C10177.61 (16)
N1—C1—C2—C3164.49 (16)O2—N3—C9—C8176.91 (17)
O1—C1—C2—C7162.30 (17)O3—N3—C9—C82.4 (2)
N1—C1—C2—C716.2 (2)C8—C9—C10—C110.3 (3)
C7—C2—C3—C40.4 (3)N3—C9—C10—C11179.65 (16)
C1—C2—C3—C4179.70 (16)C9—C10—C11—C120.0 (3)
C2—C3—C4—C50.4 (3)C9—C10—C11—N4179.65 (16)
C3—C4—C5—C60.2 (3)O4—N4—C11—C105.3 (2)
C4—C5—C6—C70.0 (3)O5—N4—C11—C10174.74 (18)
C5—C6—C7—C20.1 (3)O4—N4—C11—C12175.03 (17)
C3—C2—C7—C60.1 (3)O5—N4—C11—C124.9 (2)
C1—C2—C7—C6179.42 (17)C10—C11—C12—C130.2 (3)
N1—N2—C8—C132.4 (3)N4—C11—C12—C13179.91 (16)
N1—N2—C8—C9178.54 (15)C11—C12—C13—C80.9 (3)
N2—C8—C9—C10179.94 (17)N2—C8—C13—C12179.65 (17)
C13—C8—C9—C100.9 (2)C9—C8—C13—C121.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.92 (3)1.96 (3)2.803 (2)151 (2)
N2—H2···O3ii0.81 (3)2.30 (2)2.968 (2)140 (2)
N2—H2···O30.81 (3)2.02 (2)2.606 (2)129 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC13H10N4O5
Mr302.25
Crystal system, space groupMonoclinic, C2
Temperature (K)130
a, b, c (Å)13.5714 (10), 8.4621 (6), 11.4547 (9)
β (°) 93.830 (2)
V3)1312.55 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.48 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.944, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6295, 1673, 1599
Rint0.018
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.06
No. of reflections1673
No. of parameters206
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.92 (3)1.96 (3)2.803 (2)151 (2)
N2—H2···O3ii0.81 (3)2.30 (2)2.968 (2)140 (2)
N2—H2···O30.81 (3)2.02 (2)2.606 (2)129 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.
 

Acknowledgements

AS gratefully acknowledges a research grant from the Higher Education Commission of Pakistan under the project No. 4-279/PAK-US/HEC 2010-917 (Pakistan–US Science and Technology Cooperation Program).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o334–o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds