metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Oxido[2-{(E)-[((1E)-{(E)-2-[1-(2-oxido­phen­yl)ethyl­­idene]hydrazin-1-yl­­idene}(prop-2-en-1-ylsulfan­yl)meth­yl)­imino]­meth­yl}phenolato]vanadium(IV)

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 June 2012; accepted 29 June 2012; online 7 July 2012)

The VIV atom in the title complex, [V(C19H17N3O2S)O], is coordinated by two N and two O atoms of the dianionic tetra­dentate Schiff base ligand and the terminal oxide O atom. The N2O3 donor set defines a square-pyramidal coordination geometry with the oxide O atom in the apical site. Some buckling in the tetra­dentate ligand is indicated by the dihedral angle of 17.92 (19)° between the six-membered chelate rings. Supra­molecular chains are formed along the b axis via C—H⋯O contacts in the crystal. The chains are connected into a layer in the ab plane via C—H⋯π inter­actions. The atoms comprising the –SCH2—CH=CH2 and methyl substituents were found to be disordered in a 0.916 (2):0.088 (2) ratio. The crystal studied was found to be twinned by nonmerohedry with a 28.1 (4)% minor twin component.

Related literature

For background to the synthesis and characterization of isothio­semicarbazides, see: Ahmadi et al. (2012[Ahmadi, M., Mague, T. J., Akbari, A. & Takjoo, R. (2012). Polyhedron, doi:10.1016/j.poly.2012.05.004.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For the treatment of data from a twinned crystal, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C19H17N3O2S)O]

  • Mr = 418.36

  • Triclinic, [P \overline 1]

  • a = 7.1242 (3) Å

  • b = 9.5605 (5) Å

  • c = 14.2593 (9) Å

  • α = 76.083 (5)°

  • β = 75.577 (4)°

  • γ = 74.821 (4)°

  • V = 891.68 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.845, Tmax = 0.966

  • 12964 measured reflections

  • 4134 independent reflections

  • 3600 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.191

  • S = 1.20

  • 4134 reflections

  • 257 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected bond lengths (Å)

V—O1 1.918 (4)
V—O2 1.944 (3)
V—O3 1.603 (4)
V—N1 2.052 (4)
V—N3 2.057 (4)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.99 2.35 3.322 (7) 168
C8—H8CCg1ii 0.98 2.66 3.347 (6) 128
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

During the last years, the design, synthesis and characterization of new isothiosemicarbazides and their metal complexes have been performed in order to investigate the effect of the donor atom sets on the structure and properties of the complexes (Ahmadi et al., 2012). In continuation of these studies, the title complex was synthesized and characterized crystallographically.

The VIV atom in (I), Fig. 1, is coordinated by the N2O2 atoms of the dinegative tetradentate Schiff base ligand and the oxo-O3 atom, Table 1. The resulting N2O3 donor set defines a coordination geometry close to a square pyramidal geometry. This is quantified by the value of τ = 0.12 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). In this description, the VIV atom lies 0.590 (2) Å out of the plane of the Schiff base donor atoms [r.m.s. deviation = 0.056 Å] in the direction of the apical oxo-O3 atom. The five-membered chelate ring has an envelope conformation with the VIV atom being the flap atom. The six-membered chelate rings are more planar, having r.m.s. deviations of 0.266 and 0.150 Å, respectively, for the O1- and O2-rings. The dihedral angle between the latter chelate rings is 17.92 (19)° indicating some buckling in the tetradentate ligand.

In the crystal packing, supramolecular chains are formed along the b axis via C–H···O contacts, Table 2. These are connected into a layer in the ab plane via C–H..π interactions, Fig. 2 and Table 2. Layers stack without specific intermolecular interactions between them, Fig. 3.

Related literature top

For background to the synthesis and characterization of isothiosemicarbazides, see: Ahmadi et al. (2012). For additional structural analysis, see: Addison et al. (1984). For the treatment of twinned data, see: Spek (2009).

Experimental top

A solution of 1-(2-hydroxyphenyl)ethanone S-allylisothiosemicarbazone hydrobromide (0.33 g, 1.0 mmol) in ethanol (10 ml) was mixed with an ethanolic solution (5 ml) of vanadyl(IV) sulfate (0.16 g, 1 mmol) and salicylaldehyde (0.12 g, 1.0 mmol). The yellow solution was heated under reflux for 2 h at 363 K. Brown plates were deposited after one week, filtered off, washed with cold ethanol and dried over silica gel. M.pt. 486 K. Yield: 67%.

Refinement top

Nitrogen- and carbon-bound H-atoms were placed in calculated positions [N—H = 0.88 Å and C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(N,C)] and were included in the refinement in the riding model approximation.

The molecule is disordered with respect to the –SCH2–CHCH2 and methyl substituents in a 0.916 (2): 0.088 (2) ratio. The C9N2 linkage is necessarily disordered with respect to N9'C2' linkage; the C9/N9' atoms occupy the same site and were given the same displacement parameters; the N(2)/C(2') pair of atoms were treated similarly. The –CH2–CHCH2 unit is disordered with respect to the methylene atom only. The S—C pair of distances were restrained to within 0.01 Å of each other, as were the pair of C—C distances. The anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones. The C—Cmethyl distance of the minor component was restrained to 1.54±0.01 Å.

The crystal is a non-merohedral twin, with a twin law of (-1 0 0, 0 - 1 0, -0.800 - 0.561 1). The twin domains were separated by using PLATON (Spek, 2009).

Owing to poor agreement, two reflections, i.e. (0 1 0) and (1 2 10), were omitted from the final refinement.

Structure description top

During the last years, the design, synthesis and characterization of new isothiosemicarbazides and their metal complexes have been performed in order to investigate the effect of the donor atom sets on the structure and properties of the complexes (Ahmadi et al., 2012). In continuation of these studies, the title complex was synthesized and characterized crystallographically.

The VIV atom in (I), Fig. 1, is coordinated by the N2O2 atoms of the dinegative tetradentate Schiff base ligand and the oxo-O3 atom, Table 1. The resulting N2O3 donor set defines a coordination geometry close to a square pyramidal geometry. This is quantified by the value of τ = 0.12 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). In this description, the VIV atom lies 0.590 (2) Å out of the plane of the Schiff base donor atoms [r.m.s. deviation = 0.056 Å] in the direction of the apical oxo-O3 atom. The five-membered chelate ring has an envelope conformation with the VIV atom being the flap atom. The six-membered chelate rings are more planar, having r.m.s. deviations of 0.266 and 0.150 Å, respectively, for the O1- and O2-rings. The dihedral angle between the latter chelate rings is 17.92 (19)° indicating some buckling in the tetradentate ligand.

In the crystal packing, supramolecular chains are formed along the b axis via C–H···O contacts, Table 2. These are connected into a layer in the ab plane via C–H..π interactions, Fig. 2 and Table 2. Layers stack without specific intermolecular interactions between them, Fig. 3.

For background to the synthesis and characterization of isothiosemicarbazides, see: Ahmadi et al. (2012). For additional structural analysis, see: Addison et al. (1984). For the treatment of twinned data, see: Spek (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level. Only the major disorder component is shown.
[Figure 2] Fig. 2. A view of the supramolecular layer in the ab plane in (I) sustained by C—H···O and C—H···π interactions, shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I), showing the stacking of layers. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively. One layer has been highlighted in space-filling mode.
Oxido[2-{(E)-[((1E)-{(E)-2-[1-(2- oxidophenyl)ethylidene]hydrazin-1-ylidene}(prop-2-en-1- ylsulfanyl)methyl)imino]methyl}phenolato]vanadium(IV) top
Crystal data top
[V(C19H17N3O2S)O]Z = 2
Mr = 418.36F(000) = 430
Triclinic, P1Dx = 1.558 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1242 (3) ÅCell parameters from 5214 reflections
b = 9.5605 (5) Åθ = 2.2–27.5°
c = 14.2593 (9) ŵ = 0.70 mm1
α = 76.083 (5)°T = 100 K
β = 75.577 (4)°Plate, brown
γ = 74.821 (4)°0.25 × 0.20 × 0.05 mm
V = 891.68 (8) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4134 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3600 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.059
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1212
Tmin = 0.845, Tmax = 0.966l = 1018
12964 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0327P)2 + 4.9139P]
where P = (Fo2 + 2Fc2)/3
4134 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.98 e Å3
3 restraintsΔρmin = 0.94 e Å3
Crystal data top
[V(C19H17N3O2S)O]γ = 74.821 (4)°
Mr = 418.36V = 891.68 (8) Å3
Triclinic, P1Z = 2
a = 7.1242 (3) ÅMo Kα radiation
b = 9.5605 (5) ŵ = 0.70 mm1
c = 14.2593 (9) ÅT = 100 K
α = 76.083 (5)°0.25 × 0.20 × 0.05 mm
β = 75.577 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4134 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3600 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.966Rint = 0.059
12964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0763 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.20Δρmax = 0.98 e Å3
4134 reflectionsΔρmin = 0.94 e Å3
257 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V0.59271 (12)0.40615 (9)0.74852 (6)0.0108 (2)
S10.5616 (2)0.89878 (15)0.62531 (10)0.0157 (4)0.912 (6)
S1'0.327 (2)0.8438 (13)0.8527 (9)0.0157 (4)0.088
O10.4145 (5)0.2819 (4)0.8242 (3)0.0166 (8)
O20.6408 (5)0.3075 (4)0.6378 (2)0.0140 (7)
O30.7940 (5)0.3614 (4)0.7900 (3)0.0167 (8)
N10.4155 (6)0.5647 (5)0.8257 (3)0.0124 (8)
N20.4272 (6)0.7114 (5)0.7813 (3)0.0154 (9)0.912 (6)
C2'0.4272 (6)0.7114 (5)0.7813 (3)0.0154 (9)0.088
N30.5986 (6)0.5990 (4)0.6468 (3)0.0115 (8)
C10.3402 (7)0.2750 (6)0.9195 (4)0.0140 (10)
C20.3019 (7)0.1387 (6)0.9754 (4)0.0177 (10)
H20.32260.05830.94310.021*
C30.2350 (8)0.1199 (6)1.0760 (4)0.0211 (11)
H30.21540.02591.11250.025*
C40.1959 (8)0.2380 (6)1.1248 (4)0.0214 (11)
H40.15180.22421.19440.026*
C50.2215 (8)0.3730 (6)1.0718 (4)0.0190 (11)
H50.19030.45331.10530.023*
C60.2933 (7)0.3981 (6)0.9681 (4)0.0135 (9)
C70.3141 (7)0.5460 (6)0.9166 (4)0.0135 (10)
H7'0.25490.62810.94840.016*0.088 (6)
C80.2244 (8)0.6764 (6)0.9677 (4)0.0150 (11)0.912 (6)
H8A0.19640.76620.91850.022*0.912 (6)
H8B0.31780.68691.00440.022*0.912 (6)
H8C0.10070.66061.01340.022*0.912 (6)
C8'0.692 (8)0.768 (3)0.494 (4)0.0150 (11)0.088
H8'10.77620.76020.42890.022*0.088 (6)
H8'20.75200.81510.52960.022*0.088 (6)
H8'30.56030.82870.48590.022*0.088 (6)
C90.5221 (7)0.7251 (5)0.6912 (3)0.0120 (9)0.912 (6)
N9'0.5221 (7)0.7251 (5)0.6912 (3)0.0120 (9)0.088
C100.4414 (8)1.0123 (7)0.7193 (5)0.0184 (14)0.912 (6)
H10A0.46660.95310.78390.022*0.912 (6)
H10B0.50571.09730.70480.022*0.912 (6)
C10'0.416 (6)0.976 (8)0.750 (6)0.0184 (14)0.088
H10C0.49471.03270.76900.022*0.088 (6)
H10D0.49570.92930.69420.022*0.088 (6)
C110.2238 (9)1.0701 (6)0.7285 (4)0.0242 (12)
H11A0.15681.10980.78590.029*0.912 (6)
H11B0.16941.14420.76760.029*0.088 (6)
C120.1116 (9)1.0727 (6)0.6656 (5)0.0280 (13)
H12A0.17031.03450.60690.034*
H12B0.02711.11270.67960.034*
C130.6711 (7)0.6139 (5)0.5524 (4)0.0136 (10)
H130.67590.71060.51600.016*0.912 (6)
C140.7437 (7)0.4944 (5)0.5003 (4)0.0118 (9)
C150.8298 (7)0.5277 (6)0.3988 (4)0.0158 (10)
H150.83920.62650.36900.019*
C160.8992 (7)0.4200 (6)0.3431 (4)0.0180 (11)
H160.95560.44390.27500.022*
C170.8867 (8)0.2734 (6)0.3873 (4)0.0179 (10)
H170.93700.19810.34900.022*
C180.8023 (7)0.2380 (5)0.4854 (4)0.0153 (10)
H180.79430.13850.51350.018*
C190.7272 (7)0.3461 (5)0.5455 (3)0.0111 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V0.0126 (4)0.0112 (4)0.0079 (4)0.0034 (3)0.0006 (3)0.0024 (3)
S10.0217 (7)0.0092 (7)0.0142 (7)0.0046 (5)0.0007 (5)0.0018 (5)
S1'0.0217 (7)0.0092 (7)0.0142 (7)0.0046 (5)0.0007 (5)0.0018 (5)
O10.0195 (18)0.0191 (19)0.0112 (17)0.0072 (15)0.0033 (14)0.0063 (14)
O20.0189 (17)0.0119 (17)0.0107 (16)0.0031 (14)0.0002 (13)0.0049 (13)
O30.0160 (17)0.0196 (19)0.0133 (17)0.0035 (14)0.0012 (14)0.0029 (14)
N10.0129 (19)0.014 (2)0.0101 (19)0.0028 (15)0.0001 (15)0.0034 (16)
N20.016 (2)0.014 (2)0.017 (2)0.0038 (16)0.0019 (17)0.0047 (17)
C2'0.016 (2)0.014 (2)0.017 (2)0.0038 (16)0.0019 (17)0.0047 (17)
N30.0103 (18)0.0107 (19)0.013 (2)0.0019 (15)0.0013 (15)0.0035 (15)
C10.011 (2)0.021 (3)0.011 (2)0.0051 (19)0.0007 (18)0.0048 (19)
C20.017 (2)0.017 (3)0.018 (3)0.0044 (19)0.001 (2)0.004 (2)
C30.022 (3)0.017 (3)0.017 (3)0.004 (2)0.000 (2)0.004 (2)
C40.021 (3)0.027 (3)0.011 (2)0.002 (2)0.001 (2)0.002 (2)
C50.018 (2)0.026 (3)0.013 (2)0.006 (2)0.0000 (19)0.005 (2)
C60.009 (2)0.018 (2)0.012 (2)0.0015 (18)0.0004 (17)0.0027 (19)
C70.009 (2)0.018 (3)0.016 (2)0.0027 (18)0.0021 (18)0.0085 (19)
C80.013 (2)0.017 (3)0.015 (3)0.001 (2)0.001 (2)0.006 (2)
C8'0.013 (2)0.017 (3)0.015 (3)0.001 (2)0.001 (2)0.006 (2)
C90.013 (2)0.011 (2)0.012 (2)0.0017 (17)0.0050 (17)0.0007 (18)
N9'0.013 (2)0.011 (2)0.012 (2)0.0017 (17)0.0050 (17)0.0007 (18)
C100.025 (3)0.010 (3)0.022 (4)0.004 (2)0.011 (2)0.010 (2)
C10'0.025 (3)0.010 (3)0.022 (4)0.004 (2)0.011 (2)0.010 (2)
C110.029 (3)0.018 (3)0.025 (3)0.005 (2)0.004 (2)0.004 (2)
C120.028 (3)0.019 (3)0.038 (3)0.002 (2)0.010 (3)0.007 (3)
C130.015 (2)0.012 (2)0.015 (2)0.0057 (18)0.0025 (18)0.0012 (18)
C140.011 (2)0.014 (2)0.011 (2)0.0030 (18)0.0015 (17)0.0029 (18)
C150.016 (2)0.015 (2)0.017 (2)0.0073 (19)0.0013 (19)0.0013 (19)
C160.017 (2)0.022 (3)0.013 (2)0.008 (2)0.0036 (19)0.002 (2)
C170.020 (2)0.019 (3)0.018 (3)0.006 (2)0.001 (2)0.009 (2)
C180.019 (2)0.011 (2)0.016 (2)0.0049 (19)0.0026 (19)0.0016 (19)
C190.011 (2)0.012 (2)0.010 (2)0.0028 (17)0.0029 (17)0.0008 (18)
Geometric parameters (Å, º) top
V—O11.918 (4)C8—H8B0.9800
V—O21.944 (3)C8—H8C0.9800
V—O31.603 (4)C8'—C131.537 (10)
V—N12.052 (4)C8'—H8'10.9800
V—N32.057 (4)C8'—H8'20.9800
S1—C91.756 (5)C8'—H8'30.9800
S1—C101.830 (6)C10—C111.487 (8)
S1'—C10'1.79 (8)C10—H10A0.9900
O1—C11.322 (6)C10—H10B0.9900
O2—C191.315 (6)C10'—C111.486 (12)
N1—C71.312 (6)C10'—H10C0.9900
N1—N21.408 (6)C10'—H10D0.9900
N2—C91.287 (6)C11—C121.334 (9)
N3—C131.303 (6)C11—H11A0.9500
N3—C91.415 (6)C11—H11B0.9500
C1—C21.409 (7)C12—H12A0.9500
C1—C61.431 (7)C12—H12B0.9500
C2—C31.377 (7)C13—C141.425 (7)
C2—H20.9500C13—H130.9500
C3—C41.398 (8)C14—C151.419 (7)
C3—H30.9500C14—C191.431 (7)
C4—C51.362 (8)C15—C161.366 (7)
C4—H40.9500C15—H150.9500
C5—C61.422 (7)C16—C171.408 (7)
C5—H50.9500C16—H160.9500
C6—C71.455 (7)C17—C181.376 (7)
C7—C81.511 (7)C17—H170.9500
C7—H7'0.9500C18—C191.413 (7)
C8—H8A0.9800C18—H180.9500
O3—V—O1110.16 (18)H8'2—C8'—H8'3109.5
O3—V—O2107.10 (17)N2—C9—N3119.7 (4)
O1—V—O290.22 (15)N2—C9—S1119.9 (4)
O3—V—N1103.86 (17)N3—C9—S1120.4 (3)
O1—V—N186.06 (16)C11—C10—S1116.3 (4)
O2—V—N1148.15 (16)C11—C10—H10A108.2
O3—V—N3107.66 (18)S1—C10—H10A108.2
O1—V—N3141.15 (16)C11—C10—H10B108.2
O2—V—N387.00 (15)S1—C10—H10B108.2
N1—V—N376.59 (16)H10A—C10—H10B107.4
C9—S1—C10100.6 (3)C11—C10'—S1'100 (4)
C1—O1—V124.2 (3)C11—C10'—H10C111.8
C19—O2—V129.5 (3)S1'—C10'—H10C111.8
C7—N1—N2115.5 (4)C11—C10'—H10D111.8
C7—N1—V128.0 (4)S1'—C10'—H10D111.8
N2—N1—V115.8 (3)H10C—C10'—H10D109.5
C9—N2—N1113.3 (4)C12—C11—C10'134 (3)
C13—N3—C9120.1 (4)C12—C11—C10127.7 (6)
C13—N3—V127.7 (3)C12—C11—H11A116.2
C9—N3—V112.1 (3)C10'—C11—H11A106.3
O1—C1—C2117.6 (5)C10—C11—H11A116.2
O1—C1—C6123.8 (5)C12—C11—H11B113.1
C2—C1—C6118.6 (4)C10'—C11—H11B113.1
C3—C2—C1121.3 (5)C10—C11—H11B114.7
C3—C2—H2119.4C11—C12—H12A120.0
C1—C2—H2119.4C11—C12—H12B120.0
C2—C3—C4120.5 (5)H12A—C12—H12B120.0
C2—C3—H3119.7N3—C13—C14124.2 (5)
C4—C3—H3119.7N3—C13—C8'118 (2)
C5—C4—C3119.4 (5)C14—C13—C8'117 (2)
C5—C4—H4120.3N3—C13—H13117.9
C3—C4—H4120.3C14—C13—H13117.9
C4—C5—C6122.5 (5)C15—C14—C13117.4 (4)
C4—C5—H5118.8C15—C14—C19119.8 (4)
C6—C5—H5118.8C13—C14—C19122.8 (4)
C5—C6—C1117.6 (5)C16—C15—C14121.0 (5)
C5—C6—C7119.1 (5)C16—C15—H15119.5
C1—C6—C7123.3 (4)C14—C15—H15119.5
N1—C7—C6119.3 (4)C15—C16—C17119.5 (5)
N1—C7—C8120.2 (5)C15—C16—H16120.3
C6—C7—C8120.5 (4)C17—C16—H16120.3
N1—C7—H7'120.4C18—C17—C16120.8 (5)
C6—C7—H7'120.4C18—C17—H17119.6
C7—C8—H8A109.5C16—C17—H17119.6
C7—C8—H8B109.5C17—C18—C19121.6 (5)
C7—C8—H8C109.5C17—C18—H18119.2
C13—C8'—H8'1109.5C19—C18—H18119.2
C13—C8'—H8'2109.5O2—C19—C18119.1 (4)
H8'1—C8'—H8'2109.5O2—C19—C14123.5 (4)
C13—C8'—H8'3109.5C18—C19—C14117.3 (4)
H8'1—C8'—H8'3109.5
O3—V—O1—C161.8 (4)N2—N1—C7—C81.8 (7)
O2—V—O1—C1170.2 (4)V—N1—C7—C8168.0 (4)
N1—V—O1—C141.5 (4)C5—C6—C7—N1166.6 (5)
N3—V—O1—C1104.4 (4)C1—C6—C7—N113.8 (7)
O3—V—O2—C1981.9 (4)C5—C6—C7—C811.9 (7)
O1—V—O2—C19166.9 (4)C1—C6—C7—C8167.6 (5)
N1—V—O2—C1984.0 (5)N1—N2—C9—N31.1 (6)
N3—V—O2—C1925.6 (4)N1—N2—C9—S1177.2 (3)
O3—V—N1—C778.2 (4)C13—N3—C9—N2170.8 (5)
O1—V—N1—C731.6 (4)V—N3—C9—N212.6 (6)
O2—V—N1—C7115.6 (4)C13—N3—C9—S110.9 (6)
N3—V—N1—C7176.6 (4)V—N3—C9—S1165.7 (2)
O3—V—N1—N291.5 (3)C10—S1—C9—N20.4 (5)
O1—V—N1—N2158.6 (3)C10—S1—C9—N3177.8 (4)
O2—V—N1—N274.6 (4)C9—S1—C10—C1185.2 (5)
N3—V—N1—N213.7 (3)S1'—C10'—C11—C1295 (4)
C7—N1—N2—C9177.7 (4)S1'—C10'—C11—C10176 (13)
V—N1—N2—C911.2 (5)S1—C10—C11—C1213.5 (9)
O3—V—N3—C1389.2 (4)S1—C10—C11—C10'102 (10)
O1—V—N3—C13104.4 (4)C9—N3—C13—C14177.3 (4)
O2—V—N3—C1317.8 (4)V—N3—C13—C146.7 (7)
N1—V—N3—C13170.3 (4)C9—N3—C13—C8'7 (2)
O3—V—N3—C987.1 (3)V—N3—C13—C8'170 (2)
O1—V—N3—C979.3 (4)N3—C13—C14—C15176.0 (5)
O2—V—N3—C9165.9 (3)C8'—C13—C14—C150 (2)
N1—V—N3—C913.4 (3)N3—C13—C14—C196.0 (8)
V—O1—C1—C2147.8 (4)C8'—C13—C14—C19178 (2)
V—O1—C1—C633.5 (7)C13—C14—C15—C16178.7 (5)
O1—C1—C2—C3176.3 (5)C19—C14—C15—C160.6 (7)
C6—C1—C2—C34.9 (8)C14—C15—C16—C170.5 (8)
C1—C2—C3—C42.5 (8)C15—C16—C17—C181.1 (8)
C2—C3—C4—C51.0 (8)C16—C17—C18—C190.6 (8)
C3—C4—C5—C62.1 (8)V—O2—C19—C18160.0 (3)
C4—C5—C6—C10.3 (8)V—O2—C19—C1422.4 (7)
C4—C5—C6—C7179.2 (5)C17—C18—C19—O2177.3 (5)
O1—C1—C6—C5177.6 (5)C17—C18—C19—C140.4 (7)
C2—C1—C6—C53.8 (7)C15—C14—C19—O2176.6 (4)
O1—C1—C6—C72.9 (8)C13—C14—C19—O21.4 (7)
C2—C1—C6—C7175.8 (5)C15—C14—C19—C181.1 (7)
N2—N1—C7—C6179.6 (4)C13—C14—C19—C18179.0 (5)
V—N1—C7—C610.6 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.992.353.322 (7)168
C8—H8C···Cg1ii0.982.663.347 (6)128
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[V(C19H17N3O2S)O]
Mr418.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.1242 (3), 9.5605 (5), 14.2593 (9)
α, β, γ (°)76.083 (5), 75.577 (4), 74.821 (4)
V3)891.68 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.25 × 0.20 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.845, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
12964, 4134, 3600
Rint0.059
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.191, 1.20
No. of reflections4134
No. of parameters257
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.94

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
V—O11.918 (4)V—N12.052 (4)
V—O21.944 (3)V—N32.057 (4)
V—O31.603 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.992.353.322 (7)168
C8—H8C···Cg1ii0.982.663.347 (6)128
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: r.takjoo@um.ac.ir.

Acknowledgements

The authors are grateful to the Ferdowsi University of Mashhad for financial support, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAhmadi, M., Mague, T. J., Akbari, A. & Takjoo, R. (2012). Polyhedron, doi:10.1016/j.poly.2012.05.004.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds