organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Bromo­phen­yl)-8-methyl-2-oxo-1,2,3,4,4a,5,6,7-octa­hydro­quinoline-3-carbo­nitrile

aCenter of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 June 2012; accepted 29 June 2012; online 7 July 2012)

In the title compound, C17H17BrN2O, the N-containing ring adopts an envelope conformation with the C atom carrying the phenyl ring displaced by −0.531 (9) Å from the plane defined by the remaining five atoms (r.m.s. deviation = 0.0099 Å). The benzene ring is almost orthogonal to the ring to which it is attached, the CCN—C—CPh—CPh torsion angle being −101.3 (7)°. The cyclo­hexene ring is disordered over two conformations in a statistical ratio. The most prominent inter­actions in the crystal are pairs of N—H⋯O hydrogen bonds between inversion-related mol­ecules. The resulting dimers are linked into a three-dimensional architecture by C—H⋯N, C—H⋯Br and C—H⋯π inter­actions.

Related literature

For background to the cardiotonic and anti-inflammatory properties of octa­hydro­quinoline-3-carbonitrile derivatives, see: Behit & Baraka (2005[Behit, A. A. & Baraka, A. M. (2005). Eur. J. Med. Chem. 40, 1405-1413.]); Girgis et al. (2007[Girgis, A. S., Mishriky, N., Ellithey, M., Hosni, H. M. & Farag, H. (2007). Bioorg. Med. Chem. 15, 2403-2413.]). For a related structure, see: Asiri et al. (2012[Asiri, A. M., Faidallah, H. M., Saqer, A. A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2291-o2292.]). For additional conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17BrN2O

  • Mr = 345.24

  • Monoclinic, P 21 /c

  • a = 11.1959 (10) Å

  • b = 7.5902 (6) Å

  • c = 18.3886 (12) Å

  • β = 100.453 (8)°

  • V = 1536.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.68 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.581, Tmax = 1.000

  • 9883 measured reflections

  • 3549 independent reflections

  • 2296 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.173

  • S = 1.02

  • 3549 reflections

  • 199 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.88 2.08 2.921 (5) 161
C1—H1A⋯N2ii 0.98 2.57 3.442 (8) 148
C13—H13⋯Br1iii 0.95 2.86 3.811 (6) 174
C1—H1BCg1iv 0.98 2.78 3.590 (6) 141
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of our structural studies on octahydroquinoline-3-carbonitrile derivatives (Asiri et al., 2012), the crystal and molecular structure of the title compound, (I), was investigated. Interest in this class of compound stems from their demonstrated cardiotonic and anti-inflammatory properties (Behit & Baraka, 2005; Girgis et al., 2007).

In (I), Fig. 1, the N1-containing ring of the fused octahydroquinoline fused-ring system, adopts an envelope conformation with the C10 atom, carrying the phenyl ring, lying -0.531 (9)° out of the plane defined by the remaining five atoms [r.m.s. deviation = 0.0099 Å]. Owing to two conformations of equal weight, the assignment of conformation of the C6 ring is somewhat problematic but a conformational analysis indicates an intermediate conformation between screw-boat and half-chair (Cremer & Pople, 1975). The phenyl ring is almost orthogonal to the ring to which it is attached with the C9—C10—C12—C13 torsion angle being -101.3 (7)°.

The most prominent interactions in the crystal packing is a pair of N—H···O hydrogen bonds between inversion related molecules leading to an eight-membered {···HNCO}2 synthon, Table 1. These are linked into a three-dimensional architecture by C—H···N, C—H···Br and C—H···π interactions, Fig. 2 and Table 1.

Related literature top

For background to the cardiotonic and anti-inflammatory properties of octahydroquinoline-3-carbonitrile derivatives, see: Behit & Baraka (2005); Girgis et al. (2007). For a related structure, see: Asiri et al. (2012). For additional conformational analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of the p-bromobenzaldehyde (1.4 g, 0.01 M), 2-methylcyclohexanone (1.2 g, 0.01 M), ethyl cyanoacetate (1.1 g, 0.01 M) and ammonium acetate (6.2 g, 0.0 8M) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool, the formed precipitate was filtered, washed with water, dried and recrystallized from its ethanol solution as light yellow plates. M.pt: 511–513 K. Yield: 78%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atom was treated similarly with N—H = 0.88 Å and with Uiso(H) = 1.2Ueq(N). A part of the cyclohexene ring is disordered over two positions in an assumed 1:1 ratio. Pairs of 1,2-related distances were restrained to within 0.01 Å of each other. The anisotropic displacement parameters, restrained to be nearly isotropic, of the primed atoms were set to those of the unprimed ones. The amino H-atom is less than 2 Å from a methyl H-atom. As the methyl group was refined as a disordered methyl group, the short H1···H1d contact of 1.84 Å is an artifact.

Structure description top

In continuation of our structural studies on octahydroquinoline-3-carbonitrile derivatives (Asiri et al., 2012), the crystal and molecular structure of the title compound, (I), was investigated. Interest in this class of compound stems from their demonstrated cardiotonic and anti-inflammatory properties (Behit & Baraka, 2005; Girgis et al., 2007).

In (I), Fig. 1, the N1-containing ring of the fused octahydroquinoline fused-ring system, adopts an envelope conformation with the C10 atom, carrying the phenyl ring, lying -0.531 (9)° out of the plane defined by the remaining five atoms [r.m.s. deviation = 0.0099 Å]. Owing to two conformations of equal weight, the assignment of conformation of the C6 ring is somewhat problematic but a conformational analysis indicates an intermediate conformation between screw-boat and half-chair (Cremer & Pople, 1975). The phenyl ring is almost orthogonal to the ring to which it is attached with the C9—C10—C12—C13 torsion angle being -101.3 (7)°.

The most prominent interactions in the crystal packing is a pair of N—H···O hydrogen bonds between inversion related molecules leading to an eight-membered {···HNCO}2 synthon, Table 1. These are linked into a three-dimensional architecture by C—H···N, C—H···Br and C—H···π interactions, Fig. 2 and Table 1.

For background to the cardiotonic and anti-inflammatory properties of octahydroquinoline-3-carbonitrile derivatives, see: Behit & Baraka (2005); Girgis et al. (2007). For a related structure, see: Asiri et al. (2012). For additional conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents of (I), The N—H···O, C—H···N, C—H···Br and and C—H···.π interactions are shown as blue, orange, pink and purple dashed lines, respectively.
4-(4-Bromophenyl)-8-methyl-2-oxo-1,2,3,4,4a,5,6,7-octahydroquinoline-3- carbonitrile top
Crystal data top
C17H17BrN2OF(000) = 704
Mr = 345.24Dx = 1.492 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2464 reflections
a = 11.1959 (10) Åθ = 2.3–27.5°
b = 7.5902 (6) ŵ = 2.68 mm1
c = 18.3886 (12) ÅT = 100 K
β = 100.453 (8)°Plate, light-yellow
V = 1536.7 (2) Å30.40 × 0.20 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3549 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2296 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.052
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scanh = 149
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 99
Tmin = 0.581, Tmax = 1.000l = 2223
9883 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0744P)2 + 2.0179P]
where P = (Fo2 + 2Fc2)/3
3549 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.87 e Å3
22 restraintsΔρmin = 0.43 e Å3
Crystal data top
C17H17BrN2OV = 1536.7 (2) Å3
Mr = 345.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1959 (10) ŵ = 2.68 mm1
b = 7.5902 (6) ÅT = 100 K
c = 18.3886 (12) Å0.40 × 0.20 × 0.02 mm
β = 100.453 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3549 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2296 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 1.000Rint = 0.052
9883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06322 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.02Δρmax = 0.87 e Å3
3549 reflectionsΔρmin = 0.43 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.06147 (5)0.90018 (7)0.92341 (3)0.0586 (2)
O10.4933 (5)0.4661 (6)0.5872 (2)0.0912 (16)
N10.4052 (4)0.7076 (6)0.5296 (2)0.0576 (12)
H1n0.43730.68090.49070.069*
N20.3645 (6)0.3614 (6)0.7319 (3)0.0836 (18)
C10.3778 (6)0.9254 (7)0.3984 (3)0.0579 (14)
H1A0.35541.01800.36130.087*0.50
H1B0.34920.81120.37710.087*0.50
H1C0.46630.92230.41360.087*0.50
H1D0.42520.81630.40670.087*0.50
H1E0.43141.02310.39090.087*0.50
H1F0.31430.91200.35440.087*0.50
C20.3211 (5)0.9625 (7)0.4635 (3)0.0585 (14)
C30.2661 (15)1.1429 (16)0.4681 (7)0.061 (4)0.50
H3A0.32221.22880.45160.073*0.50
H3B0.19001.14610.43110.073*0.50
C40.2372 (13)1.2098 (17)0.5380 (6)0.063 (3)0.50
H4A0.30781.27630.56470.075*0.50
H4B0.16791.29250.52680.075*0.50
C50.2067 (11)1.0704 (13)0.5856 (8)0.055 (4)0.50
H5A0.12121.03580.56760.066*0.50
H5B0.21141.11970.63590.066*0.50
C3'0.2305 (15)1.1102 (18)0.4484 (7)0.061 (4)0.50
H3C0.27121.21600.43300.073*0.50
H3D0.16501.07620.40710.073*0.50
C4'0.1773 (13)1.1532 (17)0.5133 (7)0.063 (3)0.50
H4C0.22271.25500.53820.075*0.50
H4D0.09301.19350.49520.075*0.50
C5'0.1727 (10)1.0196 (15)0.5692 (8)0.055 (4)0.50
H5C0.10350.94040.55080.066*0.50
H5D0.15471.07900.61390.066*0.50
C60.2820 (6)0.9091 (8)0.5917 (3)0.075 (2)
H60.35750.95910.62220.090*0.50
H6'0.34370.98710.62210.090*0.50
C70.3338 (5)0.8612 (7)0.5242 (3)0.0543 (14)
C80.4298 (6)0.5976 (8)0.5872 (3)0.0675 (18)
C90.3741 (6)0.6431 (8)0.6547 (3)0.0667 (17)
H90.43730.71480.68720.080*
C100.2671 (5)0.7576 (6)0.6390 (2)0.0457 (11)
H100.20390.68330.60790.055*
C110.3637 (5)0.4810 (7)0.6963 (2)0.0522 (13)
C120.2137 (4)0.7995 (6)0.7068 (2)0.0423 (11)
C130.1125 (6)0.7135 (9)0.7198 (3)0.0698 (18)
H130.07400.62940.68500.084*
C140.0646 (5)0.7472 (9)0.7836 (3)0.0704 (18)
H140.00700.68870.79140.085*
C150.1213 (5)0.8642 (6)0.8342 (2)0.0447 (11)
C160.2224 (5)0.9533 (7)0.8224 (3)0.0507 (12)
H160.26021.03780.85730.061*
C170.2689 (5)0.9188 (6)0.7589 (3)0.0476 (12)
H170.34010.97840.75110.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0719 (4)0.0740 (4)0.0378 (3)0.0033 (3)0.0312 (3)0.0034 (2)
O10.134 (4)0.098 (3)0.057 (2)0.072 (3)0.058 (3)0.033 (2)
N10.072 (3)0.068 (3)0.044 (2)0.031 (2)0.041 (2)0.020 (2)
N20.153 (6)0.055 (3)0.057 (3)0.021 (3)0.057 (3)0.010 (2)
C10.076 (4)0.061 (3)0.043 (3)0.003 (3)0.028 (3)0.007 (2)
C20.066 (4)0.068 (3)0.050 (3)0.016 (3)0.035 (3)0.022 (3)
C30.072 (8)0.073 (5)0.041 (6)0.023 (5)0.020 (5)0.018 (4)
C40.069 (7)0.066 (6)0.061 (6)0.030 (5)0.032 (5)0.021 (4)
C50.071 (6)0.052 (6)0.051 (6)0.017 (5)0.032 (5)0.006 (5)
C3'0.072 (8)0.073 (5)0.041 (6)0.023 (5)0.020 (5)0.018 (4)
C4'0.069 (7)0.066 (6)0.061 (6)0.030 (5)0.032 (5)0.021 (4)
C5'0.071 (6)0.052 (6)0.051 (6)0.017 (5)0.032 (5)0.006 (5)
C60.090 (5)0.090 (4)0.062 (3)0.047 (4)0.058 (3)0.040 (3)
C70.060 (3)0.067 (3)0.045 (3)0.024 (3)0.035 (2)0.017 (2)
C80.085 (4)0.077 (4)0.051 (3)0.042 (3)0.041 (3)0.019 (3)
C90.096 (5)0.066 (3)0.050 (3)0.028 (3)0.043 (3)0.017 (3)
C100.064 (3)0.044 (3)0.034 (2)0.004 (2)0.023 (2)0.000 (2)
C110.090 (4)0.044 (3)0.031 (2)0.009 (3)0.032 (2)0.000 (2)
C120.057 (3)0.043 (2)0.032 (2)0.001 (2)0.021 (2)0.0019 (19)
C130.079 (4)0.096 (4)0.043 (3)0.039 (4)0.034 (3)0.027 (3)
C140.070 (4)0.100 (5)0.049 (3)0.039 (3)0.032 (3)0.020 (3)
C150.048 (3)0.056 (3)0.035 (2)0.002 (2)0.022 (2)0.002 (2)
C160.058 (3)0.053 (3)0.046 (3)0.001 (2)0.024 (2)0.011 (2)
C170.059 (3)0.041 (2)0.051 (3)0.004 (2)0.032 (2)0.003 (2)
Geometric parameters (Å, º) top
Br1—C151.900 (4)C3'—H3D0.9900
O1—C81.225 (6)C4'—C5'1.451 (10)
N1—C81.336 (6)C4'—H4C0.9900
N1—C71.407 (6)C4'—H4D0.9900
N1—H1n0.8800C5'—C61.480 (9)
N2—C111.118 (6)C5'—H5C0.9900
C1—C21.481 (7)C5'—H5D0.9900
C1—H1A0.9800C6—C101.469 (7)
C1—H1B0.9800C6—C71.507 (7)
C1—H1C0.9800C6—H61.0000
C1—H1D0.9800C6—H6'1.0000
C1—H1E0.9800C8—C91.527 (7)
C1—H1F0.9800C9—C111.465 (7)
C2—C71.342 (7)C9—C101.465 (7)
C2—C3'1.503 (9)C9—H91.0000
C2—C31.510 (9)C10—C121.511 (6)
C3—C41.471 (10)C10—H101.0000
C3—H3A0.9900C12—C131.366 (7)
C3—H3B0.9900C12—C171.380 (7)
C4—C51.454 (10)C13—C141.398 (7)
C4—H4A0.9900C13—H130.9500
C4—H4B0.9900C14—C151.358 (7)
C5—C61.479 (9)C14—H140.9500
C5—H5A0.9900C15—C161.369 (7)
C5—H5B0.9900C16—C171.387 (6)
C3'—C4'1.464 (10)C16—H160.9500
C3'—H3C0.9900C17—H170.9500
C8—N1—C7127.3 (4)H4C—C4'—H4D107.0
C8—N1—H1n116.3C4'—C5'—C6117.4 (10)
C7—N1—H1n116.3C4'—C5'—H5C107.9
C2—C1—H1A109.5C6—C5'—H5C107.9
C2—C1—H1B109.5C4'—C5'—H5D107.9
H1A—C1—H1B109.5C6—C5'—H5D107.9
C2—C1—H1C109.5H5C—C5'—H5D107.2
H1A—C1—H1C109.5C10—C6—C5'115.6 (7)
H1B—C1—H1C109.5C10—C6—C5124.6 (6)
C2—C1—H1D109.5C5'—C6—C522.9 (9)
H1A—C1—H1D141.1C10—C6—C7113.7 (5)
H1B—C1—H1D56.3C5'—C6—C7109.2 (7)
H1C—C1—H1D56.3C5—C6—C7115.9 (6)
C2—C1—H1E109.5C10—C6—H698.1
H1A—C1—H1E56.3C5'—C6—H6120.9
H1B—C1—H1E141.1C5—C6—H698.1
H1C—C1—H1E56.3C7—C6—H698.1
H1D—C1—H1E109.5C10—C6—H6'105.9
C2—C1—H1F109.5C5'—C6—H6'105.9
H1A—C1—H1F56.3C7—C6—H6'105.9
H1B—C1—H1F56.3C2—C7—N1120.4 (4)
H1C—C1—H1F141.1C2—C7—C6123.3 (5)
H1D—C1—H1F109.5N1—C7—C6116.1 (4)
H1E—C1—H1F109.5O1—C8—N1123.1 (5)
C7—C2—C1124.6 (5)O1—C8—C9120.4 (5)
C7—C2—C3'123.2 (7)N1—C8—C9116.6 (4)
C1—C2—C3'111.5 (6)C11—C9—C10117.5 (5)
C7—C2—C3117.1 (6)C11—C9—C8108.5 (4)
C1—C2—C3117.2 (6)C10—C9—C8114.4 (4)
C4—C3—C2121.3 (10)C11—C9—H9105.0
C4—C3—H3A107.0C10—C9—H9105.0
C2—C3—H3A107.0C8—C9—H9105.0
C4—C3—H3B107.0C9—C10—C6113.8 (5)
C2—C3—H3B107.0C9—C10—C12113.2 (4)
H3A—C3—H3B106.7C6—C10—C12115.4 (4)
C5—C4—C3112.8 (13)C9—C10—H10104.3
C5—C4—H4A109.0C6—C10—H10104.3
C3—C4—H4A109.0C12—C10—H10104.3
C5—C4—H4B109.0N2—C11—C9174.1 (7)
C3—C4—H4B109.0C13—C12—C17118.3 (4)
H4A—C4—H4B107.8C13—C12—C10120.6 (4)
C4—C5—C6117.1 (10)C17—C12—C10121.1 (4)
C4—C5—H5A108.0C12—C13—C14121.0 (5)
C6—C5—H5A108.0C12—C13—H13119.5
C4—C5—H5B108.0C14—C13—H13119.5
C6—C5—H5B108.0C15—C14—C13119.5 (5)
H5A—C5—H5B107.3C15—C14—H14120.3
C4'—C3'—C2112.1 (9)C13—C14—H14120.3
C4'—C3'—H3C109.2C14—C15—C16120.7 (4)
C2—C3'—H3C109.2C14—C15—Br1119.4 (4)
C4'—C3'—H3D109.2C16—C15—Br1119.8 (4)
C2—C3'—H3D109.2C15—C16—C17119.2 (5)
H3C—C3'—H3D107.9C15—C16—H16120.4
C5'—C4'—C3'119.5 (12)C17—C16—H16120.4
C5'—C4'—H4C107.4C12—C17—C16121.3 (5)
C3'—C4'—H4C107.4C12—C17—H17119.4
C5'—C4'—H4D107.4C16—C17—H17119.4
C3'—C4'—H4D107.4
C7—C2—C3—C44.8 (19)C7—N1—C8—O1179.9 (7)
C1—C2—C3—C4163.6 (12)C7—N1—C8—C90.2 (10)
C3'—C2—C3—C4117 (4)O1—C8—C9—C1124.4 (9)
C2—C3—C4—C530 (2)N1—C8—C9—C11155.5 (6)
C3—C4—C5—C642.1 (18)O1—C8—C9—C10157.8 (7)
C7—C2—C3'—C4'11.8 (19)N1—C8—C9—C1022.1 (9)
C1—C2—C3'—C4'177.7 (11)C11—C9—C10—C6175.0 (5)
C3—C2—C3'—C4'67 (2)C8—C9—C10—C646.0 (8)
C2—C3'—C4'—C5'25 (2)C11—C9—C10—C1250.7 (7)
C3'—C4'—C5'—C643 (2)C8—C9—C10—C12179.7 (5)
C4'—C5'—C6—C10170.4 (10)C5'—C6—C10—C9174.9 (8)
C4'—C5'—C6—C571 (2)C5—C6—C10—C9160.7 (9)
C4'—C5'—C6—C740.8 (15)C7—C6—C10—C947.5 (8)
C4—C5—C6—C10177.9 (10)C5'—C6—C10—C1251.8 (10)
C4—C5—C6—C5'109 (3)C5—C6—C10—C1227.4 (12)
C4—C5—C6—C730.9 (16)C7—C6—C10—C12179.2 (5)
C1—C2—C7—N10.2 (10)C9—C10—C12—C13101.3 (7)
C3'—C2—C7—N1169.4 (10)C6—C10—C12—C13125.1 (6)
C3—C2—C7—N1167.4 (9)C9—C10—C12—C1775.4 (6)
C1—C2—C7—C6175.6 (6)C6—C10—C12—C1758.2 (7)
C3'—C2—C7—C615.1 (13)C17—C12—C13—C141.1 (9)
C3—C2—C7—C68.1 (12)C10—C12—C13—C14177.9 (6)
C8—N1—C7—C2177.4 (6)C12—C13—C14—C151.6 (10)
C8—N1—C7—C61.7 (9)C13—C14—C15—C162.0 (9)
C10—C6—C7—C2158.9 (6)C13—C14—C15—Br1176.5 (5)
C5'—C6—C7—C228.2 (11)C14—C15—C16—C172.0 (8)
C5—C6—C7—C24.5 (12)Br1—C15—C16—C17176.6 (4)
C10—C6—C7—N125.4 (8)C13—C12—C17—C161.0 (8)
C5'—C6—C7—N1156.1 (7)C10—C12—C17—C16177.8 (4)
C5—C6—C7—N1179.8 (8)C15—C16—C17—C121.4 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.882.082.921 (5)161
C1—H1A···N2ii0.982.573.442 (8)148
C13—H13···Br1iii0.952.863.811 (6)174
C1—H1B···Cg1iv0.982.783.590 (6)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z+3/2; (iv) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC17H17BrN2O
Mr345.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.1959 (10), 7.5902 (6), 18.3886 (12)
β (°) 100.453 (8)
V3)1536.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.68
Crystal size (mm)0.40 × 0.20 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.581, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9883, 3549, 2296
Rint0.052
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.173, 1.02
No. of reflections3549
No. of parameters199
No. of restraints22
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.43

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.882.082.921 (5)161
C1—H1A···N2ii0.982.573.442 (8)148
C13—H13···Br1iii0.952.863.811 (6)174
C1—H1B···Cg1iv0.982.783.590 (6)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z+3/2; (iv) x, y+1/2, z3/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to King Abdulaziz University for providing the research facilities. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Saqer, A. A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2291–o2292.  CSD CrossRef IUCr Journals Google Scholar
First citationBehit, A. A. & Baraka, A. M. (2005). Eur. J. Med. Chem. 40, 1405–1413.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGirgis, A. S., Mishriky, N., Ellithey, M., Hosni, H. M. & Farag, H. (2007). Bioorg. Med. Chem. 15, 2403–2413.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds