organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-1H-benzotriazole 3-oxide–1-hy­dr­oxy-1H-benzotriazole (1/1)

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, bDepartment of Physics, Sethupathy Government Arts College, Ramanathapuram 623 502, Tamilnadu, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 25 June 2012; accepted 2 July 2012; online 10 July 2012)

In the title compound, C6H5N3O·C13H11N3O, the benzo­triazole ring system in the 1-benzyl-1H-benzotriazole 3-oxide (A) mol­ecule is close to being planar (r.m.s. deviation = 0.011 Å); its mean plane forms a dihedral angle of 67.56 (7)° with that of the attached phenyl ring. The benzotriazole ring system in the 1-hy­droxy­benzotriazole (B) mol­ecule is also close to being planar (r.m.s. deviation = 0.010 Å). In the crystal, weak C—H⋯O and C—H⋯π inter­actions are present. The A and B molecules are linked by an O—H⋯N hydrogen bond.

Related literature

For related structures and background to benzotriazoles, see: Ravindran et al. (2009[Ravindran Durai Nayagam, B., Jebas, S. R., Edward Rajkumar, J. P. & Schollmeyer, D. (2009). Acta Cryst. E65, o917.]); Selvarathy Grace et al. (2012[Selvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5N3O·C13H11N3O

  • Mr = 360.38

  • Monoclinic, P 21 /c

  • a = 11.2728 (8) Å

  • b = 12.2354 (5) Å

  • c = 13.1002 (9) Å

  • β = 110.946 (3)°

  • V = 1687.47 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 193 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3364 measured reflections

  • 3197 independent reflections

  • 2980 reflections with I > 2σ(I)

  • Rint = 0.102

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.08

  • 3197 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N3i 0.84 2.57 3.3621 (18) 157
C3—H3⋯O1ii 0.95 2.50 3.200 (2) 130
C7—H7BCg1iii 0.99 2.85 3.5146 (17) 125
C18—H18⋯Cg1iv 0.95 2.69 3.510 (2) 145
Symmetry codes: (i) x+1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]; Wiehl & Schollmeyer, 1994[Wiehl, L. & Schollmeyer, D. (1994). CORINC. University of Mainz, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of benzotriazole derivatives (Ravindran et al., 2009; Selvarathy Grace et al., 2012), we now report the crystal structure of the title compound (I), (Fig. 1).

The benzotriazole rings are essentially planar with the maximum deviation from planarity being 0.015 (14) Å for atoms N1 and N5. The mean plane of the benzotriazole ring N1—N3/C1—C6 forms a dihedral angle of 67.56 (7) Å with the mean plane of the phenyl ring (C8—C13).

The crystal packing features weak C—H···π interactions. The hydrogen bonding interactions are shown in Fig 2.

Related literature top

For related structures and background to benzotriazoles, see: Ravindran et al. (2009); Selvarathy Grace et al. (2012).

Experimental top

A mixture of the sodium salt of 1- hydroxyl benzotriazole (0.314 g, 2 mmol) and benzyl chloride (0.126 g, 1 mmol) in methanol (10 ml), were heated at 333K with stirring for 6 hours. The mixture was kept aside for slow evaporation. After a week, colourless blocks were recovered.

Refinement top

H atoms were positioned geometrically [C—H = 0.95 (aromatic) or 0.99 Å (methylene)] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

As part of our ongoing studies of benzotriazole derivatives (Ravindran et al., 2009; Selvarathy Grace et al., 2012), we now report the crystal structure of the title compound (I), (Fig. 1).

The benzotriazole rings are essentially planar with the maximum deviation from planarity being 0.015 (14) Å for atoms N1 and N5. The mean plane of the benzotriazole ring N1—N3/C1—C6 forms a dihedral angle of 67.56 (7) Å with the mean plane of the phenyl ring (C8—C13).

The crystal packing features weak C—H···π interactions. The hydrogen bonding interactions are shown in Fig 2.

For related structures and background to benzotriazoles, see: Ravindran et al. (2009); Selvarathy Grace et al. (2012).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971; Wiehl & Schollmeyer, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The unit cell showing the hydrogen bonding interaction of the title compound. Hydrogen bonds are shown as dashed lines.
1-Benzyl-1H-benzotriazole 3-oxide–1-hydroxy-1H-benzotriazole (1/1) top
Crystal data top
C6H5N3O·C13H11N3OF(000) = 752
Mr = 360.38Dx = 1.419 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.2728 (8) Åθ = 65–69°
b = 12.2354 (5) ŵ = 0.80 mm1
c = 13.1002 (9) ÅT = 193 K
β = 110.946 (3)°Block, colourless
V = 1687.47 (18) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.102
Radiation source: rotating anodeθmax = 70.0°, θmin = 4.2°
Graphite monochromatorh = 013
ω/2θ scansk = 014
3364 measured reflectionsl = 1514
3197 independent reflections3 standard reflections every 60 min
2980 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0776P)2 + 0.6089P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3197 reflectionsΔρmax = 0.35 e Å3
245 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (5)
Crystal data top
C6H5N3O·C13H11N3OV = 1687.47 (18) Å3
Mr = 360.38Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2728 (8) ŵ = 0.80 mm1
b = 12.2354 (5) ÅT = 193 K
c = 13.1002 (9) Å0.40 × 0.40 × 0.30 mm
β = 110.946 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.102
3364 measured reflections3 standard reflections every 60 min
3197 independent reflections intensity decay: 2%
2980 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
3197 reflectionsΔρmin = 0.27 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.23017 (11)0.44814 (10)0.07382 (10)0.0233 (3)
N20.21688 (11)0.34031 (10)0.08272 (10)0.0261 (3)
N30.12730 (11)0.32935 (10)0.12460 (10)0.0256 (3)
C10.08113 (13)0.42800 (12)0.14320 (11)0.0231 (3)
C20.01438 (14)0.45549 (14)0.18361 (13)0.0314 (4)
H20.06180.40170.20480.038*
C30.03466 (15)0.56486 (15)0.19043 (13)0.0351 (4)
H30.09850.58800.21720.042*
C40.03627 (15)0.64472 (14)0.15895 (13)0.0340 (4)
H40.01910.71970.16630.041*
C50.12920 (14)0.61800 (12)0.11806 (13)0.0284 (3)
H50.17600.67190.09630.034*
C60.15024 (13)0.50592 (11)0.11070 (11)0.0216 (3)
C70.32424 (14)0.48951 (13)0.02917 (12)0.0285 (3)
H7A0.29760.56270.00300.034*
H7B0.32690.44020.02990.034*
C80.45521 (13)0.49730 (12)0.11541 (12)0.0250 (3)
C90.50482 (15)0.59795 (13)0.15887 (14)0.0327 (4)
H90.45660.66260.13330.039*
C100.62432 (17)0.60451 (15)0.23944 (15)0.0384 (4)
H100.65760.67360.26910.046*
C110.69520 (15)0.51109 (15)0.27686 (13)0.0368 (4)
H110.77680.51580.33260.044*
C120.64695 (16)0.41032 (15)0.23292 (15)0.0379 (4)
H120.69570.34590.25830.045*
C130.52801 (15)0.40353 (13)0.15226 (14)0.0323 (4)
H130.49570.33450.12170.039*
O10.09227 (11)0.23257 (9)0.14562 (11)0.0383 (3)
N40.66756 (14)0.18397 (12)0.08895 (14)0.0428 (4)
N50.75634 (14)0.21667 (11)0.05304 (14)0.0417 (4)
N60.81861 (13)0.12778 (10)0.03929 (12)0.0312 (3)
C140.77039 (14)0.03437 (12)0.06416 (12)0.0252 (3)
C150.79910 (16)0.07638 (13)0.06063 (13)0.0329 (4)
H150.86550.10090.03770.039*
C160.72455 (18)0.14724 (13)0.09268 (14)0.0372 (4)
H160.74000.22350.09210.045*
C170.62562 (17)0.11034 (15)0.12655 (14)0.0378 (4)
H170.57680.16250.14820.045*
C180.59823 (16)0.00226 (15)0.12905 (14)0.0353 (4)
H180.53130.02180.15160.042*
C190.67306 (15)0.07221 (13)0.09693 (13)0.0293 (3)
O20.91290 (12)0.13654 (10)0.00258 (11)0.0419 (3)
H2A0.97530.16920.04240.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0237 (6)0.0214 (6)0.0286 (6)0.0013 (5)0.0138 (5)0.0007 (5)
N20.0253 (6)0.0211 (6)0.0344 (7)0.0006 (5)0.0139 (5)0.0006 (5)
N30.0235 (6)0.0201 (6)0.0339 (7)0.0012 (4)0.0112 (5)0.0047 (5)
C10.0217 (6)0.0232 (7)0.0246 (7)0.0012 (5)0.0086 (5)0.0035 (5)
C20.0267 (7)0.0391 (9)0.0321 (8)0.0020 (6)0.0150 (6)0.0055 (7)
C30.0309 (8)0.0452 (10)0.0327 (8)0.0095 (7)0.0157 (7)0.0010 (7)
C40.0361 (8)0.0288 (8)0.0355 (8)0.0080 (6)0.0109 (7)0.0055 (6)
C50.0311 (8)0.0215 (7)0.0322 (8)0.0004 (6)0.0108 (6)0.0006 (6)
C60.0210 (6)0.0215 (7)0.0226 (7)0.0002 (5)0.0081 (5)0.0004 (5)
C70.0290 (8)0.0327 (8)0.0294 (8)0.0041 (6)0.0173 (6)0.0016 (6)
C80.0264 (7)0.0273 (7)0.0280 (7)0.0023 (6)0.0179 (6)0.0000 (6)
C90.0350 (8)0.0258 (8)0.0426 (9)0.0038 (6)0.0203 (7)0.0017 (6)
C100.0405 (9)0.0372 (9)0.0416 (9)0.0148 (7)0.0197 (7)0.0068 (7)
C110.0292 (8)0.0537 (11)0.0301 (8)0.0065 (7)0.0138 (6)0.0012 (7)
C120.0342 (8)0.0414 (9)0.0415 (9)0.0066 (7)0.0177 (7)0.0076 (7)
C130.0334 (8)0.0287 (8)0.0407 (9)0.0001 (6)0.0206 (7)0.0030 (6)
O10.0371 (6)0.0216 (6)0.0573 (8)0.0058 (4)0.0181 (5)0.0105 (5)
N40.0421 (8)0.0264 (7)0.0647 (10)0.0033 (6)0.0249 (7)0.0049 (7)
N50.0449 (8)0.0207 (7)0.0623 (10)0.0006 (6)0.0225 (7)0.0008 (6)
N60.0332 (7)0.0223 (6)0.0432 (8)0.0021 (5)0.0199 (6)0.0021 (5)
C140.0301 (7)0.0211 (7)0.0261 (7)0.0034 (6)0.0121 (6)0.0010 (5)
C150.0427 (9)0.0258 (8)0.0357 (8)0.0037 (7)0.0208 (7)0.0014 (6)
C160.0550 (11)0.0203 (7)0.0382 (9)0.0034 (7)0.0189 (8)0.0006 (6)
C170.0452 (10)0.0367 (9)0.0342 (9)0.0141 (7)0.0175 (7)0.0008 (7)
C180.0343 (8)0.0419 (9)0.0350 (9)0.0054 (7)0.0187 (7)0.0043 (7)
C190.0313 (8)0.0247 (8)0.0327 (8)0.0001 (6)0.0124 (6)0.0043 (6)
O20.0451 (7)0.0395 (7)0.0521 (7)0.0101 (5)0.0309 (6)0.0005 (6)
Geometric parameters (Å, º) top
N1—N21.3376 (17)C10—H100.9500
N1—C61.3625 (18)C11—C121.387 (3)
N1—C71.4718 (17)C11—H110.9500
N2—N31.3171 (17)C12—C131.381 (2)
N3—O11.3082 (16)C12—H120.9500
N3—C11.3703 (19)C13—H130.9500
C1—C61.391 (2)N4—N51.311 (2)
C1—C21.400 (2)N4—C191.371 (2)
C2—C31.366 (2)N5—N61.3411 (19)
C2—H20.9500N6—C141.3545 (19)
C3—C41.414 (3)N6—O21.3635 (17)
C3—H30.9500C14—C191.393 (2)
C4—C51.376 (2)C14—C151.398 (2)
C4—H40.9500C15—C161.373 (2)
C5—C61.401 (2)C15—H150.9500
C5—H50.9500C16—C171.414 (3)
C7—H7A0.9900C16—H160.9500
C7—H7B0.9900C17—C181.361 (3)
C8—C91.388 (2)C17—H170.9500
C8—C131.393 (2)C18—C191.404 (2)
C9—H90.9500C18—H180.9500
C10—C111.380 (3)O2—H2A0.8400
N2—N1—C6111.83 (11)C11—C10—C9120.30 (16)
N2—N1—C7119.53 (12)C11—C10—H10119.9
C6—N1—C7128.63 (12)C9—C10—H10119.9
N3—N2—N1105.26 (11)C10—C11—C12119.83 (16)
O1—N3—N2120.92 (12)C10—C11—H11120.1
O1—N3—C1126.69 (12)C12—C11—H11120.1
N2—N3—C1112.38 (12)C13—C12—C11120.02 (16)
N3—C1—C6105.04 (12)C13—C12—H12120.0
N3—C1—C2132.16 (14)C11—C12—H12120.0
C6—C1—C2122.80 (14)C12—C13—C8120.41 (15)
C3—C2—C1115.44 (15)C12—C13—H13119.8
C3—C2—H2122.3C8—C13—H13119.8
C1—C2—H2122.3N5—N4—C19108.20 (14)
C2—C3—C4122.17 (15)N4—N5—N6107.69 (13)
C2—C3—H3118.9N5—N6—C14112.19 (13)
C4—C3—H3118.9N5—N6—O2120.74 (13)
C5—C4—C3122.55 (15)C14—N6—O2126.92 (13)
C5—C4—H4118.7N6—C14—C19102.81 (13)
C3—C4—H4118.7N6—C14—C15133.83 (14)
C4—C5—C6115.51 (14)C19—C14—C15123.35 (14)
C4—C5—H5122.2C16—C15—C14115.32 (15)
C6—C5—H5122.2C16—C15—H15122.3
N1—C6—C1105.47 (12)C14—C15—H15122.3
N1—C6—C5133.00 (14)C15—C16—C17122.14 (15)
C1—C6—C5121.52 (13)C15—C16—H16118.9
N1—C7—C8112.06 (12)C17—C16—H16118.9
N1—C7—H7A109.2C18—C17—C16121.94 (16)
C8—C7—H7A109.2C18—C17—H17119.0
N1—C7—H7B109.2C16—C17—H17119.0
C8—C7—H7B109.2C17—C18—C19117.22 (15)
H7A—C7—H7B107.9C17—C18—H18121.4
C9—C8—C13119.20 (14)C19—C18—H18121.4
C9—C8—C7120.43 (14)N4—C19—C14109.10 (14)
C13—C8—C7120.37 (14)N4—C19—C18130.86 (15)
C10—C9—C8120.23 (15)C14—C19—C18120.03 (15)
C10—C9—H9119.9N6—O2—H2A109.5
C8—C9—H9119.9
C6—N1—N2—N30.52 (15)C7—C8—C9—C10178.88 (14)
C7—N1—N2—N3179.96 (12)C8—C9—C10—C110.2 (3)
N1—N2—N3—O1178.89 (12)C9—C10—C11—C120.5 (3)
N1—N2—N3—C10.15 (16)C10—C11—C12—C130.3 (3)
O1—N3—C1—C6178.25 (13)C11—C12—C13—C80.7 (2)
N2—N3—C1—C60.73 (16)C9—C8—C13—C121.5 (2)
O1—N3—C1—C22.6 (3)C7—C8—C13—C12178.64 (14)
N2—N3—C1—C2178.37 (15)C19—N4—N5—N60.6 (2)
N3—C1—C2—C3179.72 (15)N4—N5—N6—C141.1 (2)
C6—C1—C2—C30.8 (2)N4—N5—N6—O2176.88 (14)
C1—C2—C3—C40.1 (2)N5—N6—C14—C191.03 (18)
C2—C3—C4—C50.9 (3)O2—N6—C14—C19176.51 (14)
C3—C4—C5—C60.7 (2)N5—N6—C14—C15178.09 (17)
N2—N1—C6—C10.96 (15)O2—N6—C14—C152.6 (3)
C7—N1—C6—C1179.66 (13)N6—C14—C15—C16179.35 (17)
N2—N1—C6—C5179.96 (15)C19—C14—C15—C160.4 (2)
C7—N1—C6—C50.7 (3)C14—C15—C16—C170.1 (2)
N3—C1—C6—N10.98 (15)C15—C16—C17—C180.2 (3)
C2—C1—C6—N1178.23 (13)C16—C17—C18—C190.3 (3)
N3—C1—C6—C5179.87 (13)N5—N4—C19—C140.01 (19)
C2—C1—C6—C50.9 (2)N5—N4—C19—C18178.73 (17)
C4—C5—C6—N1178.71 (15)N6—C14—C19—N40.61 (17)
C4—C5—C6—C10.2 (2)C15—C14—C19—N4178.63 (15)
C6—N1—C7—C894.88 (17)N6—C14—C19—C18179.50 (14)
N1—C7—C8—C9104.04 (16)C15—C14—C19—C180.3 (2)
N1—C7—C8—C1376.11 (17)C17—C18—C19—N4178.71 (17)
C13—C8—C9—C101.3 (2)C17—C18—C19—C140.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N3i0.842.573.3621 (18)157
C3—H3···O1ii0.952.503.200 (2)130
C7—H7B···Cg1iii0.992.853.5146 (17)125
C18—H18···Cg1iv0.952.693.510 (2)145
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H5N3O·C13H11N3O
Mr360.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)11.2728 (8), 12.2354 (5), 13.1002 (9)
β (°) 110.946 (3)
V3)1687.47 (18)
Z4
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3364, 3197, 2980
Rint0.102
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.08
No. of reflections3197
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971; Wiehl & Schollmeyer, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N3i0.842.573.3621 (18)157
C3—H3···O1ii0.952.503.200 (2)130
C7—H7B···Cg1iii0.992.853.5146 (17)125
C18—H18···Cg1iv0.952.693.510 (2)145
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y1/2, z+1/2.
 

References

First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationRavindran Durai Nayagam, B., Jebas, S. R., Edward Rajkumar, J. P. & Schollmeyer, D. (2009). Acta Cryst. E65, o917.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSelvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiehl, L. & Schollmeyer, D. (1994). CORINC. University of Mainz, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds