organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10a-Hy­dr­oxy-9-(4-meth­­oxy­phen­yl)-3,4,5,6,7,8a,9,10a-octa­hydro-1H-xanthene-1,8(2H)-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 June 2012; accepted 2 July 2012; online 7 July 2012)

In the title compound, C20H22O5, the tetra­hydro­pyran, cyclo­hexene and cyclo­hexane rings of the xanthene ring system adopt half-chair, half-boat and chair conformations, respectively. The mean plane of the four roughly planar atoms of the tetra­hydro­pyran ring (r.m.s. deviation = 0.111 Å) forms a dihedral angle of 82.91 (4)° with the meth­oxy­benzene group. In the crystal, mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds into sheets lying parallel to the ac plane. The crystal is further consolidated by weak C—H⋯π inter­actions.

Related literature

For background to the applications of xanthene, see: Menchen et al. (2003[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, J. Y. L., Sun, W., Rosenblum, D., Khan, B. B. & Taing, S. H. (2003). US Patent No. 6583168.]); Knight & Stephens (1989[Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683-689.]). For our previous studies in this area, see: Palakshi Reddy et al. (2010[Palakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806-o2807.]); Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Loh et al. (2011[Loh, W.-S., Fun, H.-K., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o35-o36.]). For bond length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22O5

  • Mr = 342.38

  • Orthorhombic, P b c n

  • a = 15.7611 (9) Å

  • b = 18.0089 (11) Å

  • c = 11.6451 (7) Å

  • V = 3305.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.48 × 0.23 × 0.11 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.990

  • 97212 measured reflections

  • 7190 independent reflections

  • 6068 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.05

  • 7190 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O3i 0.886 (17) 1.935 (17) 2.8156 (8) 172.0 (16)
C12—H12B⋯O4ii 0.99 2.50 3.1879 (9) 126
C12—H12ACg1iii 0.99 2.78 3.6557 (8) 147
C16—H16ACg1iv 0.99 2.78 3.7467 (8) 165
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Xanthene derivatives are important heterocyclic compounds: their uses vary from dyes (Menchen et al., 2003) to agricultural bactericides (Knight et al., 1989). In continuation of our earlier interest in 1,4-DHP's and piperidones (Palakshi Reddy et al. 2009; Palakshi Reddy et al. 2010), herein we report the crystal structure of the title compound.

In the title compound (Fig. 1), the xanthene ring system consists of three rings which adopt different conformations. The tetrahydropyran ring (O5/C8/C9/C14/C15/C20) adopts a half chair conformation with the puckering parameters Q = 0.4980 (7) Å, θ = 122.73 (8)°, φ = 104.23 (9)° (Cremer & Pople, 1975). The cyclohexene (C9–C14) and cyclohexane (C15–C20) rings adopt half boat and chair conformations with the puckering parameters Q = 0.4905 (8) Å, θ = 117.37 (9)°, φ = 349.74 (10)° and Q = 0.5575 (8) Å, θ = 176.39 (8)°, φ = 192.6 (13)° (Cremer & Pople, 1975), respectively. The mean plane of the tetrahydropyran ring [r.m.s deviation = 0.111 Å] forms a dihedral angle of 82.91 (4)° with the methoxyphenyl group (C1–C7/O1). The bond lengths and angles are comparable to those in a related structure (Loh et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular O4—H1O4···O3 and C12—H12B···O4 hydrogen bonds (Table 1) into two-dimensional networks parallel to the ac plane. The crystal structure is further consolidated by weak C—H···π interactions (Table 1), involving the centroid of the benzene ring (C2–C7; Cg1).

Related literature top

For background to the applications of xanthene, see: Menchen et al. (2003); Knight & Stephens (1989). For our previous studies in this area, see: Palakshi Reddy et al. (2009, 2010). For ring conformation, see: Cremer & Pople (1975). For a related structure, see: Loh et al. (2011). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 4-methoxybenzaldehyde (1 mol) and 1,3-cyclohexanedione (2 mol) was refluxed in acetonitrile for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, it was kept for 2 days for solid formation. The pure product was obtained by recrystallization from acetonitrile in the form of colourless blocks. M.p.: 194–196°C; Yield 70%.

Refinement top

Atom H1O4 was located from the difference map and was refined freely [O–H = 0.887 (17) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C–H = 0.95, 0.98, 0.99 and 1.00 Å). A rotating group model was applied to the methyl group. In the final refinement, one outlier (1 0 4) was omitted.

Structure description top

Xanthene derivatives are important heterocyclic compounds: their uses vary from dyes (Menchen et al., 2003) to agricultural bactericides (Knight et al., 1989). In continuation of our earlier interest in 1,4-DHP's and piperidones (Palakshi Reddy et al. 2009; Palakshi Reddy et al. 2010), herein we report the crystal structure of the title compound.

In the title compound (Fig. 1), the xanthene ring system consists of three rings which adopt different conformations. The tetrahydropyran ring (O5/C8/C9/C14/C15/C20) adopts a half chair conformation with the puckering parameters Q = 0.4980 (7) Å, θ = 122.73 (8)°, φ = 104.23 (9)° (Cremer & Pople, 1975). The cyclohexene (C9–C14) and cyclohexane (C15–C20) rings adopt half boat and chair conformations with the puckering parameters Q = 0.4905 (8) Å, θ = 117.37 (9)°, φ = 349.74 (10)° and Q = 0.5575 (8) Å, θ = 176.39 (8)°, φ = 192.6 (13)° (Cremer & Pople, 1975), respectively. The mean plane of the tetrahydropyran ring [r.m.s deviation = 0.111 Å] forms a dihedral angle of 82.91 (4)° with the methoxyphenyl group (C1–C7/O1). The bond lengths and angles are comparable to those in a related structure (Loh et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular O4—H1O4···O3 and C12—H12B···O4 hydrogen bonds (Table 1) into two-dimensional networks parallel to the ac plane. The crystal structure is further consolidated by weak C—H···π interactions (Table 1), involving the centroid of the benzene ring (C2–C7; Cg1).

For background to the applications of xanthene, see: Menchen et al. (2003); Knight & Stephens (1989). For our previous studies in this area, see: Palakshi Reddy et al. (2009, 2010). For ring conformation, see: Cremer & Pople (1975). For a related structure, see: Loh et al. (2011). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
10a-Hydroxy-9-(4-methoxyphenyl)-3,4,5,6,7,8a,9,10a-octahydro- 1H-xanthene-1,8(2H)-dione top
Crystal data top
C20H22O5F(000) = 1456
Mr = 342.38Dx = 1.376 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9871 reflections
a = 15.7611 (9) Åθ = 2.6–34.8°
b = 18.0089 (11) ŵ = 0.10 mm1
c = 11.6451 (7) ÅT = 100 K
V = 3305.3 (3) Å3Block, colourless
Z = 80.48 × 0.23 × 0.11 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
7190 independent reflections
Radiation source: fine-focus sealed tube6068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 34.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2525
Tmin = 0.954, Tmax = 0.990k = 2828
97212 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.059P)2 + 0.8159P]
where P = (Fo2 + 2Fc2)/3
7190 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H22O5V = 3305.3 (3) Å3
Mr = 342.38Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 15.7611 (9) ŵ = 0.10 mm1
b = 18.0089 (11) ÅT = 100 K
c = 11.6451 (7) Å0.48 × 0.23 × 0.11 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
7190 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6068 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.990Rint = 0.045
97212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.55 e Å3
7190 reflectionsΔρmin = 0.24 e Å3
231 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41955 (4)0.43646 (3)0.11953 (4)0.01606 (10)
O20.12092 (4)0.39264 (4)0.24042 (6)0.02378 (13)
O30.35506 (4)0.19277 (3)0.24263 (5)0.01785 (11)
O40.18491 (3)0.32355 (3)0.50833 (5)0.01370 (10)
O50.32107 (3)0.36949 (3)0.53699 (4)0.01306 (10)
C10.38478 (5)0.41214 (5)0.22594 (6)0.01835 (14)
H1A0.41870.43210.28940.028*
H1B0.32620.42990.23280.028*
H1C0.38550.35780.22890.028*
C20.38251 (4)0.40829 (4)0.02218 (5)0.01168 (11)
C30.42230 (5)0.42661 (4)0.08114 (6)0.01375 (12)
H3A0.47180.45670.08110.016*
C40.38909 (4)0.40059 (4)0.18390 (6)0.01299 (11)
H4A0.41650.41300.25400.016*
C50.31611 (4)0.35644 (4)0.18628 (5)0.01067 (11)
C60.27766 (4)0.33891 (4)0.08261 (6)0.01223 (11)
H6A0.22790.30920.08280.015*
C70.31024 (4)0.36386 (4)0.02199 (6)0.01273 (11)
H7A0.28340.35070.09210.015*
C80.27857 (4)0.33101 (4)0.30012 (5)0.01100 (11)
H8A0.23100.29580.28410.013*
C90.34387 (4)0.29187 (4)0.37349 (5)0.01071 (11)
C100.37999 (4)0.22215 (4)0.33249 (6)0.01227 (11)
C110.44481 (5)0.18319 (4)0.40660 (6)0.01532 (12)
H11A0.48450.15530.35680.018*
H11B0.41550.14700.45680.018*
C120.49507 (5)0.23714 (4)0.48070 (6)0.01564 (12)
H12A0.53000.26980.43120.019*
H12B0.53370.20920.53200.019*
C130.43452 (4)0.28408 (4)0.55218 (6)0.01375 (12)
H13A0.41030.25320.61440.016*
H13B0.46640.32530.58820.016*
C140.36412 (4)0.31523 (4)0.48106 (6)0.01110 (11)
C150.23657 (4)0.38542 (4)0.49304 (6)0.01137 (11)
C160.20491 (5)0.45323 (4)0.55788 (6)0.01448 (12)
H16A0.24590.49450.54880.017*
H16B0.20040.44150.64070.017*
C170.11806 (5)0.47705 (4)0.51201 (7)0.01725 (13)
H17A0.10030.52340.55090.021*
H17B0.07580.43820.53030.021*
C180.11950 (5)0.48996 (5)0.38134 (7)0.02103 (15)
H18A0.06100.49900.35370.025*
H18B0.15380.53460.36400.025*
C190.15647 (5)0.42367 (4)0.31926 (6)0.01632 (13)
C200.24286 (4)0.39890 (4)0.36411 (6)0.01216 (11)
H20A0.28330.44090.35210.015*
H1O40.1773 (11)0.3167 (9)0.5830 (15)0.044 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0198 (2)0.0200 (2)0.0083 (2)0.00409 (19)0.00179 (17)0.00088 (17)
O20.0187 (3)0.0334 (3)0.0192 (3)0.0069 (2)0.0042 (2)0.0018 (2)
O30.0242 (3)0.0162 (2)0.0131 (2)0.0013 (2)0.00347 (19)0.00439 (18)
O40.0146 (2)0.0138 (2)0.0126 (2)0.00304 (16)0.00192 (16)0.00182 (17)
O50.0119 (2)0.0149 (2)0.0124 (2)0.00174 (16)0.00052 (16)0.00358 (16)
C10.0258 (4)0.0206 (3)0.0086 (3)0.0017 (3)0.0007 (2)0.0008 (2)
C20.0138 (3)0.0127 (3)0.0085 (2)0.0004 (2)0.00115 (19)0.00019 (19)
C30.0145 (3)0.0166 (3)0.0101 (2)0.0037 (2)0.0003 (2)0.0000 (2)
C40.0137 (3)0.0161 (3)0.0092 (2)0.0031 (2)0.0005 (2)0.0003 (2)
C50.0116 (2)0.0115 (2)0.0089 (2)0.00015 (19)0.00017 (19)0.00024 (19)
C60.0130 (3)0.0134 (3)0.0103 (2)0.0016 (2)0.00051 (19)0.0007 (2)
C70.0144 (3)0.0146 (3)0.0092 (2)0.0012 (2)0.0010 (2)0.0008 (2)
C80.0113 (2)0.0122 (2)0.0095 (2)0.00026 (19)0.00045 (19)0.00068 (19)
C90.0119 (2)0.0110 (2)0.0093 (2)0.00007 (19)0.00030 (19)0.00021 (19)
C100.0143 (3)0.0119 (2)0.0106 (2)0.0004 (2)0.0003 (2)0.0001 (2)
C110.0182 (3)0.0133 (3)0.0145 (3)0.0032 (2)0.0021 (2)0.0012 (2)
C120.0130 (3)0.0175 (3)0.0164 (3)0.0025 (2)0.0017 (2)0.0023 (2)
C130.0128 (3)0.0165 (3)0.0119 (3)0.0010 (2)0.0021 (2)0.0016 (2)
C140.0110 (2)0.0116 (2)0.0107 (2)0.00030 (19)0.00070 (19)0.00083 (19)
C150.0111 (3)0.0117 (2)0.0114 (2)0.00005 (19)0.00047 (19)0.0001 (2)
C160.0159 (3)0.0133 (3)0.0143 (3)0.0013 (2)0.0031 (2)0.0016 (2)
C170.0165 (3)0.0179 (3)0.0173 (3)0.0049 (2)0.0041 (2)0.0010 (2)
C180.0232 (3)0.0223 (3)0.0176 (3)0.0103 (3)0.0031 (3)0.0032 (3)
C190.0157 (3)0.0199 (3)0.0133 (3)0.0047 (2)0.0021 (2)0.0039 (2)
C200.0130 (3)0.0132 (3)0.0103 (2)0.0011 (2)0.0019 (2)0.0011 (2)
Geometric parameters (Å, º) top
O1—C21.3724 (8)C9—C141.3595 (9)
O1—C11.4240 (9)C9—C101.4590 (9)
O2—C191.2121 (10)C10—C111.5102 (10)
O3—C101.2366 (8)C11—C121.5220 (10)
O4—C151.3914 (8)C11—H11A0.9900
O4—H1O40.887 (17)C11—H11B0.9900
O5—C141.3561 (8)C12—C131.5225 (10)
O5—C151.4552 (8)C12—H12A0.9900
C1—H1A0.9800C12—H12B0.9900
C1—H1B0.9800C13—C141.4940 (10)
C1—H1C0.9800C13—H13A0.9900
C2—C71.3919 (10)C13—H13B0.9900
C2—C31.3963 (9)C15—C161.5201 (10)
C3—C41.3876 (9)C15—C201.5241 (9)
C3—H3A0.9500C16—C171.5306 (11)
C4—C51.3986 (9)C16—H16A0.9900
C4—H4A0.9500C16—H16B0.9900
C5—C61.3872 (9)C17—C181.5395 (11)
C5—C81.5223 (9)C17—H17A0.9900
C6—C71.3961 (9)C17—H17B0.9900
C6—H6A0.9500C18—C191.5124 (11)
C7—H7A0.9500C18—H18A0.9900
C8—C91.5120 (9)C18—H18B0.9900
C8—C201.5383 (9)C19—C201.5250 (10)
C8—H8A1.0000C20—H20A1.0000
C2—O1—C1116.20 (6)C13—C12—H12A109.7
C15—O4—H1O4108.5 (11)C11—C12—H12B109.7
C14—O5—C15115.53 (5)C13—C12—H12B109.7
O1—C1—H1A109.5H12A—C12—H12B108.2
O1—C1—H1B109.5C14—C13—C12111.78 (6)
H1A—C1—H1B109.5C14—C13—H13A109.3
O1—C1—H1C109.5C12—C13—H13A109.3
H1A—C1—H1C109.5C14—C13—H13B109.3
H1B—C1—H1C109.5C12—C13—H13B109.3
O1—C2—C7124.19 (6)H13A—C13—H13B107.9
O1—C2—C3115.68 (6)O5—C14—C9123.23 (6)
C7—C2—C3120.13 (6)O5—C14—C13112.08 (6)
C4—C3—C2119.60 (6)C9—C14—C13124.67 (6)
C4—C3—H3A120.2O4—C15—O5109.43 (5)
C2—C3—H3A120.2O4—C15—C16112.80 (6)
C3—C4—C5121.28 (6)O5—C15—C16106.51 (5)
C3—C4—H4A119.4O4—C15—C20106.96 (5)
C5—C4—H4A119.4O5—C15—C20108.57 (5)
C6—C5—C4118.13 (6)C16—C15—C20112.50 (6)
C6—C5—C8121.31 (6)C15—C16—C17110.21 (6)
C4—C5—C8120.53 (6)C15—C16—H16A109.6
C5—C6—C7121.69 (6)C17—C16—H16A109.6
C5—C6—H6A119.2C15—C16—H16B109.6
C7—C6—H6A119.2C17—C16—H16B109.6
C2—C7—C6119.17 (6)H16A—C16—H16B108.1
C2—C7—H7A120.4C16—C17—C18111.97 (6)
C6—C7—H7A120.4C16—C17—H17A109.2
C9—C8—C5111.58 (5)C18—C17—H17A109.2
C9—C8—C20110.23 (5)C16—C17—H17B109.2
C5—C8—C20108.97 (5)C18—C17—H17B109.2
C9—C8—H8A108.7H17A—C17—H17B107.9
C5—C8—H8A108.7C19—C18—C17111.03 (6)
C20—C8—H8A108.7C19—C18—H18A109.4
C14—C9—C10118.45 (6)C17—C18—H18A109.4
C14—C9—C8122.42 (6)C19—C18—H18B109.4
C10—C9—C8118.81 (6)C17—C18—H18B109.4
O3—C10—C9121.41 (6)H18A—C18—H18B108.0
O3—C10—C11119.98 (6)O2—C19—C18123.23 (7)
C9—C10—C11118.47 (6)O2—C19—C20122.49 (7)
C10—C11—C12112.31 (6)C18—C19—C20114.28 (6)
C10—C11—H11A109.1C15—C20—C19109.02 (5)
C12—C11—H11A109.1C15—C20—C8111.99 (5)
C10—C11—H11B109.1C19—C20—C8113.16 (6)
C12—C11—H11B109.1C15—C20—H20A107.5
H11A—C11—H11B107.9C19—C20—H20A107.5
C11—C12—C13109.76 (6)C8—C20—H20A107.5
C11—C12—H12A109.7
C1—O1—C2—C75.83 (10)C10—C9—C14—O5165.29 (6)
C1—O1—C2—C3173.89 (6)C8—C9—C14—O58.13 (10)
O1—C2—C3—C4179.92 (6)C10—C9—C14—C1313.68 (10)
C7—C2—C3—C40.35 (11)C8—C9—C14—C13172.89 (6)
C2—C3—C4—C50.24 (11)C12—C13—C14—O5166.48 (6)
C3—C4—C5—C60.28 (10)C12—C13—C14—C914.45 (10)
C3—C4—C5—C8177.51 (6)C14—O5—C15—O464.53 (7)
C4—C5—C6—C70.28 (10)C14—O5—C15—C16173.25 (6)
C8—C5—C6—C7178.05 (6)C14—O5—C15—C2051.88 (7)
O1—C2—C7—C6179.41 (6)O4—C15—C16—C1763.35 (7)
C3—C2—C7—C60.89 (10)O5—C15—C16—C17176.59 (5)
C5—C6—C7—C20.86 (10)C20—C15—C16—C1757.76 (8)
C6—C5—C8—C9128.25 (7)C15—C16—C17—C1854.64 (8)
C4—C5—C8—C954.04 (8)C16—C17—C18—C1951.97 (9)
C6—C5—C8—C20109.80 (7)C17—C18—C19—O2127.53 (8)
C4—C5—C8—C2067.91 (8)C17—C18—C19—C2052.57 (9)
C5—C8—C9—C14122.43 (7)O4—C15—C20—C1967.95 (7)
C20—C8—C9—C141.21 (9)O5—C15—C20—C19174.06 (5)
C5—C8—C9—C1064.17 (8)C16—C15—C20—C1956.44 (7)
C20—C8—C9—C10174.62 (6)O4—C15—C20—C858.05 (7)
C14—C9—C10—O3169.77 (7)O5—C15—C20—C859.94 (7)
C8—C9—C10—O33.90 (10)C16—C15—C20—C8177.56 (6)
C14—C9—C10—C116.00 (9)O2—C19—C20—C15125.90 (8)
C8—C9—C10—C11179.66 (6)C18—C19—C20—C1554.19 (8)
O3—C10—C11—C12155.40 (7)O2—C19—C20—C80.58 (10)
C9—C10—C11—C1228.78 (9)C18—C19—C20—C8179.51 (6)
C10—C11—C12—C1355.12 (8)C9—C8—C20—C1534.60 (7)
C11—C12—C13—C1447.83 (8)C5—C8—C20—C15157.37 (5)
C15—O5—C14—C918.89 (9)C9—C8—C20—C19158.31 (6)
C15—O5—C14—C13160.19 (6)C5—C8—C20—C1978.92 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O3i0.886 (17)1.935 (17)2.8156 (8)172.0 (16)
C12—H12B···O4ii0.992.503.1879 (9)126
C12—H12A···Cg1iii0.992.783.6557 (8)147
C16—H16A···Cg1iv0.992.783.7467 (8)165
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+3/2, y+1/2, z; (iv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H22O5
Mr342.38
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)15.7611 (9), 18.0089 (11), 11.6451 (7)
V3)3305.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.23 × 0.11
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
97212, 7190, 6068
Rint0.045
(sin θ/λ)max1)0.804
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.05
No. of reflections7190
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O3i0.886 (17)1.935 (17)2.8156 (8)172.0 (16)
C12—H12B···O4ii0.992.503.1879 (9)126.3
C12—H12A···Cg1iii0.992.783.6557 (8)147
C16—H16A···Cg1iv0.992.783.7467 (8)165
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+3/2, y+1/2, z; (iv) x1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160. VV, SS and BPR are grateful to VIT University for providing facilities to carry out research work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKnight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–689.  CAS PubMed Web of Science Google Scholar
First citationLoh, W.-S., Fun, H.-K., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o35–o36.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, J. Y. L., Sun, W., Rosenblum, D., Khan, B. B. & Taing, S. H. (2003). US Patent No. 6583168.  Google Scholar
First citationPalakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806–o2807.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds