organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Adamantan-1-yl)-3-[(2-meth­­oxy­eth­yl)sulfan­yl]-4-phenyl-4H-1,2,4-triazole

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 27 June 2012; accepted 28 June 2012; online 4 July 2012)

In the title adamantyl derivative, C21H27N3OS, the terminal meth­oxy­ethyl unit is disordered over two orientations with a refined site-occupancy ratio of 0.846 (6):0.154 (6). The 1,2,4-triazole ring is statistically planar [r.m.s. deviation = 0.002 (2) Å] and the phenyl substituent is almost perpendicular to its mean plane [dihedral angle = 83.57 (11)°]. No directional inter­molecular inter­actions were observed in the crystal structure.

Related literature

For the biological activity of adamantane derivatives, see: Kadi et al. (2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.]); Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); El-Emam et al. (2012[El-Emam, A. A., Lahsasni, S., Asiri, H. H., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1356.]). For substituted sulfanyl-1,2,4-triazole structures, see: Fun et al. (2011[Fun, H.-K., Asik, S. I. J., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3422-o3423.]); Wang et al. (2011[Wang, W., Liu, Q., Xu, C., Wu, W. & Gao, Y. (2011). Acta Cryst. E67, o2236.]).

[Scheme 1]

Experimental

Crystal data
  • C21H27N3OS

  • Mr = 369.53

  • Monoclinic, C 2/c

  • a = 22.5107 (5) Å

  • b = 9.7642 (2) Å

  • c = 19.5594 (3) Å

  • β = 116.679 (1)°

  • V = 3841.43 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.60 mm−1

  • T = 296 K

  • 0.59 × 0.56 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.453, Tmax = 0.761

  • 12922 measured reflections

  • 3499 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.05

  • 3499 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives (Kadi et al., 2010), we synthesized the title compound (I) as a potential chemotherapeutic agent and herein its crystal structure is reported.

In the molecule of the title adamantyl derivative, C21H27N3OS, (Fig. 1) the terminal methoxyethyl unit is disordered over two orientations with the refined site-occupancy ratio of 0.845 (6):0.155 (6). The 1,2,4-triazole ring is planar with an r.m.s. deviation of 0.002 (2) Å. The phenyl substituent is almost perpendicular to the mean plane of the 1,2,4-triazole ring with the dihedral angle of 83.57 (11)°. The adamantyl group is planarly attached to the 1,2,4-triazole ring at atom position 5 or atom C2. The 2-(methoxyethyl)sulfanyl substituent is planarly attached to this five-membered ring with the torsion angle C1–S1–C19–C20 = 179.61 (15)°. The orientation of the terminal disordered methoxyethyl unit can be indicated by the torsion angles C21–O1–C20–C19 = -176.1 (2)° for the major component (A) and 127.7 (7)° for the minor component (B). The bond distances in (I) are comparable with those in related structures (Al-Abdullah et al., 2012; Almutairi et al., 2012; El-Emam et al., 2012; Fun et al., 2011 and Wang et al., 2011).

Even though no intermolecular hydrogen bond was observed in the crystal packing of (I), however the crystal packing was shown in Fig. 2 to illustrate the arrangement of the molecules.

Related literature top

For the biological activity of adamantane derivatives, see: Kadi et al. (2010). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2012); Almutairi et al. (2012); El-Emam et al. (2012). For substituted sulfanyl-1,2,4-triazole structures, see: Fun et al. (2011); Wang et al. (2011).

Experimental top

A mixture of 3-(adamantan-1-yl)-4-phenyl-4H-1,2,4-triazole-5-thiol (623 mg, 2 mmol), 1-bromo-2-methoxyethane (278 mg, 2 mmol) and anhydrous potassium carbonate (276 mg, 2 mmol) in N,N-dimethylformamide (5 ml) was stirred at room temperature for 24 h. Water (15 ml) was added and the mixture was stirred for 30 min. The separated crude product was filtered, washed with water, dried and crystallized from aqueous ethanol to yield 196 gm (53 %) of the title compound as colorless plate-shaped crystals, M.p. 428-430 K.

Refinement top

All H atoms were placed in calculated positions with d(C-H) = 0.93 Å for aromatic (phenyl), 0.98 Å for aromatic (adamantyl), 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. The terminal methoxyethyl unit is disordered over two sites with refined site occupancies of 0.846 (6) and 0.154 (6).

Structure description top

In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives (Kadi et al., 2010), we synthesized the title compound (I) as a potential chemotherapeutic agent and herein its crystal structure is reported.

In the molecule of the title adamantyl derivative, C21H27N3OS, (Fig. 1) the terminal methoxyethyl unit is disordered over two orientations with the refined site-occupancy ratio of 0.845 (6):0.155 (6). The 1,2,4-triazole ring is planar with an r.m.s. deviation of 0.002 (2) Å. The phenyl substituent is almost perpendicular to the mean plane of the 1,2,4-triazole ring with the dihedral angle of 83.57 (11)°. The adamantyl group is planarly attached to the 1,2,4-triazole ring at atom position 5 or atom C2. The 2-(methoxyethyl)sulfanyl substituent is planarly attached to this five-membered ring with the torsion angle C1–S1–C19–C20 = 179.61 (15)°. The orientation of the terminal disordered methoxyethyl unit can be indicated by the torsion angles C21–O1–C20–C19 = -176.1 (2)° for the major component (A) and 127.7 (7)° for the minor component (B). The bond distances in (I) are comparable with those in related structures (Al-Abdullah et al., 2012; Almutairi et al., 2012; El-Emam et al., 2012; Fun et al., 2011 and Wang et al., 2011).

Even though no intermolecular hydrogen bond was observed in the crystal packing of (I), however the crystal packing was shown in Fig. 2 to illustrate the arrangement of the molecules.

For the biological activity of adamantane derivatives, see: Kadi et al. (2010). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2012); Almutairi et al. (2012); El-Emam et al. (2012). For substituted sulfanyl-1,2,4-triazole structures, see: Fun et al. (2011); Wang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Open bonds show the minor disorder component.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Only the major component was shown.
5-(Adamantan-1-yl)-3-[(2-methoxyethyl)sulfanyl]-4-phenyl-4H-1,2,4- triazole top
Crystal data top
C21H27N3OSF(000) = 1584
Mr = 369.53Dx = 1.278 Mg m3
Monoclinic, C2/cMelting point = 428–430 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54178 Å
a = 22.5107 (5) ÅCell parameters from 3499 reflections
b = 9.7642 (2) Åθ = 5.0–69.0°
c = 19.5594 (3) ŵ = 1.60 mm1
β = 116.679 (1)°T = 296 K
V = 3841.43 (13) Å3Plate, colorless
Z = 80.59 × 0.56 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3499 independent reflections
Radiation source: fine-focus sealed tube3075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 69.0°, θmin = 5.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2726
Tmin = 0.453, Tmax = 0.761k = 1111
12922 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0809P)2 + 1.3248P]
where P = (Fo2 + 2Fc2)/3
3499 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H27N3OSV = 3841.43 (13) Å3
Mr = 369.53Z = 8
Monoclinic, C2/cCu Kα radiation
a = 22.5107 (5) ŵ = 1.60 mm1
b = 9.7642 (2) ÅT = 296 K
c = 19.5594 (3) Å0.59 × 0.56 × 0.18 mm
β = 116.679 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3499 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3075 reflections with I > 2σ(I)
Tmin = 0.453, Tmax = 0.761Rint = 0.028
12922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
3499 reflectionsΔρmin = 0.30 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.08715 (2)0.28171 (4)0.23891 (2)0.05409 (17)
N10.11945 (7)0.33435 (13)0.38845 (7)0.0413 (3)
N20.10327 (8)0.11543 (14)0.35822 (9)0.0532 (4)
N30.11921 (8)0.13061 (14)0.43546 (9)0.0526 (4)
O1A0.10717 (11)0.1555 (2)0.10375 (10)0.0672 (7)0.846 (6)
O1B0.0543 (8)0.1948 (10)0.0738 (6)0.076 (5)0.154 (6)
C10.10350 (8)0.23789 (17)0.33203 (9)0.0444 (4)
C20.12860 (8)0.26011 (16)0.45299 (9)0.0424 (3)
C30.14495 (8)0.31590 (16)0.53129 (9)0.0417 (3)
C40.13939 (12)0.19832 (18)0.58035 (11)0.0593 (5)
H4A0.09460.16160.55650.071*
H4B0.16980.12540.58350.071*
C50.15593 (12)0.2492 (2)0.66116 (11)0.0655 (5)
H5A0.15240.17270.69160.079*
C60.10653 (11)0.3612 (2)0.65583 (11)0.0627 (5)
H6A0.06160.32490.63200.075*
H6B0.11610.39310.70670.075*
C70.11237 (9)0.47934 (19)0.60849 (10)0.0529 (4)
H7A0.08120.55200.60530.063*
C80.09607 (8)0.42908 (18)0.52755 (9)0.0463 (4)
H8A0.09900.50500.49720.056*
H8B0.05100.39380.50300.056*
C90.21600 (9)0.3739 (2)0.57084 (11)0.0568 (4)
H9A0.24750.30350.57380.068*
H9B0.22010.44960.54110.068*
C100.23171 (9)0.4233 (2)0.65161 (11)0.0649 (5)
H10A0.27700.46040.67620.078*
C110.18282 (10)0.5350 (2)0.64632 (11)0.0629 (5)
H11A0.19320.56810.69720.076*
H11B0.18660.61130.61670.076*
C120.22647 (12)0.3049 (3)0.69881 (11)0.0755 (6)
H12A0.23750.33590.75020.091*
H12B0.25750.23330.70220.091*
C130.12558 (8)0.47952 (16)0.37871 (9)0.0433 (4)
C140.18701 (10)0.5351 (2)0.39749 (12)0.0607 (5)
H14A0.22470.48000.41520.073*
C150.19180 (14)0.6760 (2)0.38947 (15)0.0795 (7)
H15A0.23310.71540.40220.095*
C160.13615 (16)0.7570 (2)0.36300 (13)0.0793 (7)
H16A0.13990.85110.35890.095*
C170.07556 (13)0.6996 (2)0.34282 (12)0.0694 (6)
H17A0.03790.75490.32410.083*
C180.06922 (10)0.55996 (19)0.34984 (10)0.0544 (4)
H18A0.02760.52100.33530.065*
C190.07046 (11)0.1108 (2)0.19793 (11)0.0597 (5)
H19A0.10920.05330.22480.072*
H19B0.03370.07080.20400.072*
C200.05380 (13)0.1161 (3)0.11512 (13)0.0738 (6)
H20A0.03890.02630.09260.089*0.846 (6)
H20B0.01750.18000.08940.089*0.846 (6)
H20C0.07970.04240.10980.089*0.154 (6)
H20D0.00870.08370.09110.089*0.154 (6)
C210.08943 (16)0.1691 (3)0.02410 (14)0.0851 (7)
H21A0.12780.19670.01830.128*0.846 (6)
H21B0.05520.23700.00170.128*0.846 (6)
H21C0.07350.08290.00110.128*0.846 (6)
H21D0.08380.24770.00770.128*0.154 (6)
H21E0.13590.15470.05650.128*0.154 (6)
H21F0.07110.08990.00750.128*0.154 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0784 (3)0.0442 (3)0.0448 (3)0.00191 (19)0.0322 (2)0.00132 (15)
N10.0540 (7)0.0328 (6)0.0422 (7)0.0010 (5)0.0260 (6)0.0000 (5)
N20.0774 (10)0.0377 (7)0.0523 (8)0.0018 (6)0.0360 (8)0.0030 (6)
N30.0776 (10)0.0362 (7)0.0533 (8)0.0003 (6)0.0376 (8)0.0005 (6)
O1A0.0721 (14)0.0758 (13)0.0534 (10)0.0075 (10)0.0280 (10)0.0151 (8)
O1B0.123 (13)0.055 (5)0.065 (6)0.010 (6)0.056 (7)0.022 (5)
C10.0529 (8)0.0404 (8)0.0449 (8)0.0008 (6)0.0263 (7)0.0019 (6)
C20.0520 (8)0.0356 (8)0.0456 (8)0.0027 (6)0.0272 (7)0.0032 (6)
C30.0490 (8)0.0377 (8)0.0413 (8)0.0026 (6)0.0228 (7)0.0023 (6)
C40.0881 (13)0.0434 (9)0.0560 (10)0.0048 (9)0.0408 (10)0.0079 (8)
C50.0989 (16)0.0556 (11)0.0519 (10)0.0053 (10)0.0425 (11)0.0125 (8)
C60.0718 (12)0.0775 (13)0.0489 (10)0.0054 (10)0.0360 (9)0.0048 (9)
C70.0591 (10)0.0553 (10)0.0441 (9)0.0095 (8)0.0232 (8)0.0048 (7)
C80.0502 (8)0.0471 (9)0.0409 (8)0.0059 (7)0.0198 (7)0.0012 (6)
C90.0474 (9)0.0705 (12)0.0529 (10)0.0028 (8)0.0229 (8)0.0019 (8)
C100.0480 (9)0.0863 (14)0.0494 (10)0.0035 (9)0.0120 (8)0.0056 (9)
C110.0776 (12)0.0604 (11)0.0467 (10)0.0109 (9)0.0242 (9)0.0126 (8)
C120.0768 (13)0.0928 (16)0.0453 (10)0.0270 (12)0.0172 (10)0.0131 (10)
C130.0617 (9)0.0335 (8)0.0406 (8)0.0006 (6)0.0282 (7)0.0013 (6)
C140.0665 (11)0.0519 (10)0.0701 (12)0.0058 (8)0.0365 (10)0.0029 (8)
C150.1005 (17)0.0571 (13)0.0889 (16)0.0289 (12)0.0497 (14)0.0048 (11)
C160.141 (2)0.0356 (9)0.0696 (13)0.0053 (12)0.0546 (15)0.0023 (9)
C170.1080 (17)0.0449 (10)0.0599 (11)0.0206 (11)0.0419 (12)0.0118 (8)
C180.0689 (11)0.0469 (9)0.0502 (9)0.0084 (8)0.0292 (8)0.0051 (7)
C190.0726 (12)0.0502 (10)0.0541 (10)0.0017 (8)0.0264 (9)0.0092 (8)
C200.0829 (15)0.0723 (15)0.0653 (13)0.0105 (11)0.0325 (11)0.0228 (11)
C210.132 (2)0.0667 (14)0.0634 (13)0.0083 (14)0.0501 (14)0.0103 (10)
Geometric parameters (Å, º) top
S1—C11.7418 (17)C9—H9B0.9700
S1—C191.8161 (19)C10—C121.517 (3)
N1—C11.370 (2)C10—C111.519 (3)
N1—C21.389 (2)C10—H10A0.9800
N1—C131.4450 (19)C11—H11A0.9700
N2—C11.302 (2)C11—H11B0.9700
N2—N31.395 (2)C12—H12A0.9700
N3—C21.302 (2)C12—H12B0.9700
O1A—C201.371 (3)C13—C141.374 (3)
O1A—C211.430 (3)C13—C181.379 (2)
O1B—C201.119 (9)C14—C151.394 (3)
O1B—C211.524 (11)C14—H14A0.9300
C2—C31.507 (2)C15—C161.371 (4)
C3—C41.537 (2)C15—H15A0.9300
C3—C81.538 (2)C16—C171.359 (4)
C3—C91.538 (2)C16—H16A0.9300
C4—C51.534 (3)C17—C181.384 (3)
C4—H4A0.9700C17—H17A0.9300
C4—H4B0.9700C18—H18A0.9300
C5—C121.520 (3)C19—C201.491 (3)
C5—C61.530 (3)C19—H19A0.9700
C5—H5A0.9800C19—H19B0.9700
C6—C71.522 (3)C20—H20A0.9700
C6—H6A0.9700C20—H20B0.9700
C6—H6B0.9700C20—H20C0.9601
C7—C111.518 (3)C20—H20D0.9599
C7—C81.536 (2)C21—H21A0.9599
C7—H7A0.9800C21—H21B0.9600
C8—H8A0.9700C21—H21C0.9600
C8—H8B0.9700C21—H21D0.9600
C9—C101.534 (3)C21—H21E0.9598
C9—H9A0.9700C21—H21F0.9600
C1—S1—C1998.08 (9)C10—C12—H12B109.9
C1—N1—C2104.57 (13)C5—C12—H12B109.9
C1—N1—C13125.03 (13)H12A—C12—H12B108.3
C2—N1—C13130.39 (13)C14—C13—C18120.99 (16)
C1—N2—N3106.50 (13)C14—C13—N1119.80 (15)
C2—N3—N2108.70 (13)C18—C13—N1119.21 (15)
C20—O1A—C21111.5 (2)C13—C14—C15118.7 (2)
C21—O1A—H20C105.5C13—C14—H14A120.7
C20—O1A—H21E146.8C15—C14—H14A120.7
H20C—O1A—H21E117.0C16—C15—C14120.5 (2)
C20—O1B—C21121.6 (9)C16—C15—H15A119.7
C20—O1B—H21B152.8C14—C15—H15A119.7
N2—C1—N1111.12 (14)C17—C16—C15120.0 (2)
N2—C1—S1126.93 (13)C17—C16—H16A120.0
N1—C1—S1121.95 (12)C15—C16—H16A120.0
N3—C2—N1109.10 (14)C16—C17—C18120.8 (2)
N3—C2—C3123.72 (14)C16—C17—H17A119.6
N1—C2—C3127.16 (14)C18—C17—H17A119.6
C2—C3—C4108.26 (13)C13—C18—C17119.01 (19)
C2—C3—C8111.61 (13)C13—C18—H18A120.5
C4—C3—C8108.03 (14)C17—C18—H18A120.5
C2—C3—C9111.62 (13)C20—C19—S1110.44 (15)
C4—C3—C9108.59 (15)C20—C19—H19A109.6
C8—C3—C9108.64 (14)S1—C19—H19A109.6
C5—C4—C3110.57 (15)C20—C19—H19B109.6
C5—C4—H4A109.5S1—C19—H19B109.6
C3—C4—H4A109.5H19A—C19—H19B108.1
C5—C4—H4B109.5O1B—C20—O1A52.9 (7)
C3—C4—H4B109.5O1B—C20—C19136.8 (6)
H4A—C4—H4B108.1O1A—C20—C19112.00 (19)
C12—C5—C6110.26 (19)O1B—C20—H20A114.0
C12—C5—C4109.43 (18)O1A—C20—H20A109.2
C6—C5—C4109.17 (17)C19—C20—H20A109.2
C12—C5—H5A109.3O1B—C20—H20B57.4
C6—C5—H5A109.3O1A—C20—H20B109.2
C4—C5—H5A109.3C19—C20—H20B109.2
C7—C6—C5108.95 (15)H20A—C20—H20B107.9
C7—C6—H6A109.9O1B—C20—H20C103.5
C5—C6—H6A109.9O1A—C20—H20C64.8
C7—C6—H6B109.9C19—C20—H20C102.9
C5—C6—H6B109.9H20A—C20—H20C51.4
H6A—C6—H6B108.3H20B—C20—H20C146.7
C11—C7—C6109.37 (16)O1B—C20—H20D103.0
C11—C7—C8109.30 (15)O1A—C20—H20D145.4
C6—C7—C8109.82 (15)C19—C20—H20D102.4
C11—C7—H7A109.4H20A—C20—H20D53.6
C6—C7—H7A109.4H20B—C20—H20D60.0
C8—C7—H7A109.4H20C—C20—H20D105.0
C7—C8—C3110.23 (13)O1A—C21—H21A109.3
C7—C8—H8A109.6O1B—C21—H21A141.5
C3—C8—H8A109.6O1A—C21—H21B109.6
C7—C8—H8B109.6O1B—C21—H21B68.7
C3—C8—H8B109.6H21A—C21—H21B109.5
H8A—C8—H8B108.1O1A—C21—H21C109.6
C10—C9—C3109.92 (15)O1B—C21—H21C106.9
C10—C9—H9A109.7H21A—C21—H21C109.5
C3—C9—H9A109.7H21B—C21—H21C109.5
C10—C9—H9B109.7O1A—C21—H21D132.2
C3—C9—H9B109.7O1B—C21—H21D109.1
H9A—C9—H9B108.2H21A—C21—H21D64.1
C12—C10—C11109.68 (18)H21B—C21—H21D46.1
C12—C10—C9109.98 (19)H21C—C21—H21D117.2
C11—C10—C9109.32 (15)O1A—C21—H21E65.1
C12—C10—H10A109.3O1B—C21—H21E109.0
C11—C10—H10A109.3H21A—C21—H21E49.2
C9—C10—H10A109.3H21B—C21—H21E144.7
C7—C11—C10110.02 (16)H21C—C21—H21E104.8
C7—C11—H11A109.7H21D—C21—H21E109.5
C10—C11—H11A109.7O1A—C21—H21F117.1
C7—C11—H11B109.7O1B—C21—H21F110.3
C10—C11—H11B109.7H21A—C21—H21F107.4
H11A—C11—H11B108.2H21B—C21—H21F103.8
C10—C12—C5109.14 (16)H21D—C21—H21F109.5
C10—C12—H12A109.9H21E—C21—H21F109.5
C5—C12—H12A109.9
C1—N2—N3—C20.2 (2)C2—C3—C9—C10177.38 (15)
N3—N2—C1—N10.5 (2)C4—C3—C9—C1058.1 (2)
N3—N2—C1—S1179.88 (13)C8—C3—C9—C1059.14 (19)
C2—N1—C1—N20.63 (18)C3—C9—C10—C1260.3 (2)
C13—N1—C1—N2178.41 (15)C3—C9—C10—C1160.2 (2)
C2—N1—C1—S1179.98 (12)C6—C7—C11—C1060.1 (2)
C13—N1—C1—S11.0 (2)C8—C7—C11—C1060.1 (2)
C19—S1—C1—N20.81 (19)C12—C10—C11—C760.1 (2)
C19—S1—C1—N1179.90 (14)C9—C10—C11—C760.6 (2)
N2—N3—C2—N10.18 (19)C11—C10—C12—C559.3 (2)
N2—N3—C2—C3178.35 (15)C9—C10—C12—C560.9 (2)
C1—N1—C2—N30.48 (17)C6—C5—C12—C1059.7 (2)
C13—N1—C2—N3178.49 (16)C4—C5—C12—C1060.4 (2)
C1—N1—C2—C3177.99 (15)C1—N1—C13—C1495.7 (2)
C13—N1—C2—C33.0 (3)C2—N1—C13—C1483.1 (2)
N3—C2—C3—C47.1 (2)C1—N1—C13—C1883.7 (2)
N1—C2—C3—C4171.18 (16)C2—N1—C13—C1897.5 (2)
N3—C2—C3—C8125.84 (17)C18—C13—C14—C152.3 (3)
N1—C2—C3—C852.4 (2)N1—C13—C14—C15178.32 (18)
N3—C2—C3—C9112.38 (18)C13—C14—C15—C160.3 (3)
N1—C2—C3—C969.4 (2)C14—C15—C16—C171.4 (4)
C2—C3—C4—C5179.69 (16)C15—C16—C17—C181.1 (3)
C8—C3—C4—C559.3 (2)C14—C13—C18—C172.6 (3)
C9—C3—C4—C558.3 (2)N1—C13—C18—C17178.02 (15)
C3—C4—C5—C1260.0 (2)C16—C17—C18—C130.9 (3)
C3—C4—C5—C660.8 (2)C1—S1—C19—C20179.61 (15)
C12—C5—C6—C759.8 (2)C21—O1B—C20—O1A44.6 (9)
C4—C5—C6—C760.4 (2)C21—O1B—C20—C19127.7 (7)
C5—C6—C7—C1159.5 (2)C21—O1A—C20—O1B43.2 (7)
C5—C6—C7—C860.5 (2)C21—O1A—C20—C19176.1 (2)
C11—C7—C8—C359.56 (19)S1—C19—C20—O1B8.4 (12)
C6—C7—C8—C360.43 (19)S1—C19—C20—O1A67.0 (2)
C2—C3—C8—C7177.63 (14)C20—O1A—C21—O1B34.6 (6)
C4—C3—C8—C758.74 (19)C20—O1B—C21—O1A49.5 (9)
C9—C3—C8—C758.88 (18)

Experimental details

Crystal data
Chemical formulaC21H27N3OS
Mr369.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)22.5107 (5), 9.7642 (2), 19.5594 (3)
β (°) 116.679 (1)
V3)3841.43 (13)
Z8
Radiation typeCu Kα
µ (mm1)1.60
Crystal size (mm)0.59 × 0.56 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.453, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
12922, 3499, 3075
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.05
No. of reflections3499
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. HKF and SC thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Lahsasni, S., Asiri, H. H., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1356.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Asik, S. I. J., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3422–o3423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Liu, Q., Xu, C., Wu, W. & Gao, Y. (2011). Acta Cryst. E67, o2236.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds