organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[7-(Tri­fluoro­meth­yl)quinolin-4-yl]amino}­benzene­sulfonamide–ethanol–methanol (1/0.47/0.53)

aMedicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 June 2012; accepted 29 June 2012; online 10 July 2012)

In the title compound, C16H12F3N3O2S·0.47C2H5OH·0.53CH3OH, the quinoline ring system is approximately planar, with a maximum deviation of 0.035 (3) Å, and makes a dihedral angle of 52.67 (9)° with the benzene ring. The F atoms of the –CF3 group are disordered over two orientations, with refined site occupancies of 0.56 (2) and 0.44 (2). A single solvate site is occupied at random by ethanol or methanol, with refined site occupancies of 0.470 (6) and 0.530 (6), respectively. In the crystal, mol­ecules are linked via N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thereby forming sheets lying parallel to (010).

Related literature

For background to the biological and pharmacological activity of quinolines, see: Ghorab et al. (2011[Ghorab, M. M., Ragab, F. A., Heiba, H. I., El-Gazzar, M. G. & El-Gazzar, M. G. (2011). Acta Pharm. 61, 415-425.], 2012[Ghorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El- Gazzar, M. G. (2012). Med. Chem. Res. 21, 1376-1383.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12F3N3O2S·0.47C2H6O·0.53CH4O

  • Mr = 405.98

  • Triclinic, [P \overline 1]

  • a = 8.6037 (1) Å

  • b = 9.3146 (2) Å

  • c = 11.4590 (2) Å

  • α = 92.463 (1)°

  • β = 91.544 (1)°

  • γ = 92.969 (1)°

  • V = 915.85 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.07 mm−1

  • T = 296 K

  • 0.83 × 0.43 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.279, Tmax = 0.801

  • 9433 measured reflections

  • 2845 independent reflections

  • 2631 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.05

  • 2845 reflections

  • 309 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3 0.87 2.21 3.016 (6) 153
N3—H2N3⋯N1i 0.85 (3) 2.08 (3) 2.924 (3) 169 (3)
N3—H1N3⋯O1ii 0.87 (3) 2.26 (3) 3.107 (3) 163 (3)
O3—H1O3⋯O1iii 0.96 2.49 3.387 (6) 155
O3—H1O3⋯O2iii 0.96 2.59 3.425 (6) 146
C5—H5A⋯O1iii 0.93 2.50 3.343 (3) 151
C16—H16A⋯O3 0.93 2.51 3.287 (6) 141
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a continuation of our efforts towards synthesizing biologically active heterocyclic compounds (Ghorab et al., 2011, 2012), we have prepared the title quinoline carrying a sulfonamide moiety to evaluate its anticancer activity, which will be reported later.

In the title molecule, Fig. 1, the quinoline ring system (N1/C1-C9) is nearly planar with a maximum deviation of 0.035 (3) Å at atom C1 and it makes a dihedral angle of 52.67 (9)° with the benzene ring (C11-C16). The F atoms (F1/F2/F3) are each disordered over two positions with refined site-occupancies of 0.56 (2) and 0.44 (2). A single solvate site is occupied at random by ethanol or methanol with refined site-occupancies of 0.470 (6) and 0.530 (6) respectively.

In the crystal (Fig.2), molecules are linked via N2–H1N2···O3, N3–H1N3···O1, N3–H2N3···N1, O3–H1O3···O1, O3–H1O3···O2, C5–H5A···O1 and C16–H16A···O3 hydrogen bonds (Table 1) forming two-dimensional networks parallel to (010).

Related literature top

For background to the biological and pharmacological activity of quinolines, see: Ghorab et al. (2011, 2012).

Experimental top

A mixture of 4- chloro-7- trifluoromethylquinoline (0.01 mole) and sulfanilamide (0.01 mole) in absolute ethanol (30 ml) was refluxed for 8h. The solid obtained was recrystallized from ethanol to give the title compound. Colourless plates were obtained by slow evaporation from a methanol/ethanol solvent mixture at room temperature.

Refinement top

Atoms H1N3 and H2N3 were located in a difference Fourier map and refined freely with N-H = 0.86 (3) and 0.88 (3) Å. Atom H1N2 was located in a difference Fourier map and was refined using a riding model, with Uiso(H) = 1.3 Ueq(N) [N-H = 0.8727]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å, O–H = 0.95 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C,O). Trifluoro atoms (F1/F2/F3) are disordered over two positions with refined site-occupancies of 0.56 (2) and 0.44 (2). A single solvate site is occupied at random by ethanol or methanol with refined site-occupancies of 0.470 (6) and 0.530 (6) respectively.

Structure description top

As a continuation of our efforts towards synthesizing biologically active heterocyclic compounds (Ghorab et al., 2011, 2012), we have prepared the title quinoline carrying a sulfonamide moiety to evaluate its anticancer activity, which will be reported later.

In the title molecule, Fig. 1, the quinoline ring system (N1/C1-C9) is nearly planar with a maximum deviation of 0.035 (3) Å at atom C1 and it makes a dihedral angle of 52.67 (9)° with the benzene ring (C11-C16). The F atoms (F1/F2/F3) are each disordered over two positions with refined site-occupancies of 0.56 (2) and 0.44 (2). A single solvate site is occupied at random by ethanol or methanol with refined site-occupancies of 0.470 (6) and 0.530 (6) respectively.

In the crystal (Fig.2), molecules are linked via N2–H1N2···O3, N3–H1N3···O1, N3–H2N3···N1, O3–H1O3···O1, O3–H1O3···O2, C5–H5A···O1 and C16–H16A···O3 hydrogen bonds (Table 1) forming two-dimensional networks parallel to (010).

For background to the biological and pharmacological activity of quinolines, see: Ghorab et al. (2011, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Both major and minor components of disorder are shown.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.
4-{[7-(Trifluoromethyl)quinolin-4-yl]amino}benzenesulfonamide–ethanol– methanol (1/0.47/0.53) top
Crystal data top
C16H12F3N3O2S·0.47C2H6O·0.53CH4OZ = 2
Mr = 405.98F(000) = 420
Triclinic, P1Dx = 1.472 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 8.6037 (1) ÅCell parameters from 2059 reflections
b = 9.3146 (2) Åθ = 3.9–70.4°
c = 11.4590 (2) ŵ = 2.07 mm1
α = 92.463 (1)°T = 296 K
β = 91.544 (1)°Plate, colorless
γ = 92.969 (1)°0.83 × 0.43 × 0.11 mm
V = 915.85 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2845 independent reflections
Radiation source: fine-focus sealed tube2631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 63.0°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.279, Tmax = 0.801k = 1010
9433 measured reflectionsl = 1210
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.2909P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2845 reflectionsΔρmax = 0.34 e Å3
309 parametersΔρmin = 0.41 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (7)
Crystal data top
C16H12F3N3O2S·0.47C2H6O·0.53CH4Oγ = 92.969 (1)°
Mr = 405.98V = 915.85 (3) Å3
Triclinic, P1Z = 2
a = 8.6037 (1) ÅCu Kα radiation
b = 9.3146 (2) ŵ = 2.07 mm1
c = 11.4590 (2) ÅT = 296 K
α = 92.463 (1)°0.83 × 0.43 × 0.11 mm
β = 91.544 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2845 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2631 reflections with I > 2σ(I)
Tmin = 0.279, Tmax = 0.801Rint = 0.026
9433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
2845 reflectionsΔρmin = 0.41 e Å3
309 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.13678 (6)1.19048 (6)0.59873 (4)0.0525 (2)
F1A1.3524 (19)0.588 (2)1.0571 (10)0.172 (6)0.56 (2)
F2A1.2936 (12)0.4416 (8)0.9214 (12)0.116 (4)0.56 (2)
F3A1.4169 (11)0.630 (2)0.887 (2)0.165 (5)0.56 (2)
F1B1.321 (2)0.470 (2)0.8836 (18)0.154 (7)0.44 (2)
F2B1.2955 (16)0.5212 (19)1.0590 (12)0.137 (5)0.44 (2)
F3B1.4139 (11)0.6569 (10)0.961 (2)0.118 (4)0.44 (2)
N10.8884 (2)0.8734 (2)1.08416 (15)0.0558 (5)
N20.6928 (3)0.8826 (3)0.74398 (17)0.0723 (6)
H1N20.70940.80680.69960.094*
N30.0014 (2)1.1225 (3)0.67275 (19)0.0607 (5)
O10.0977 (2)1.15432 (19)0.47846 (13)0.0640 (4)
O20.1626 (2)1.33775 (18)0.63484 (16)0.0724 (5)
C10.7685 (3)0.9498 (3)1.05917 (19)0.0577 (6)
H1A0.72671.00261.12030.069*
C20.6992 (2)0.9581 (3)0.94910 (19)0.0545 (5)
H2A0.61431.01450.93880.065*
C30.7565 (2)0.8827 (2)0.85519 (18)0.0512 (5)
C40.8899 (2)0.8004 (2)0.87623 (18)0.0499 (5)
C50.9674 (3)0.7244 (3)0.7879 (2)0.0648 (6)
H5A0.93000.72500.71100.078*
C61.0946 (3)0.6508 (3)0.8123 (2)0.0680 (7)
H6A1.14380.60160.75270.082*
C71.1524 (3)0.6487 (3)0.9279 (2)0.0606 (6)
C81.0800 (3)0.7194 (2)1.0154 (2)0.0564 (5)
H8A1.11780.71551.09190.068*
C90.9493 (2)0.7981 (2)0.99220 (18)0.0489 (5)
C101.3000 (3)0.5751 (3)0.9526 (3)0.0769 (8)
C110.5640 (3)0.9600 (3)0.70824 (19)0.0596 (6)
C120.5560 (3)1.1052 (3)0.7346 (2)0.0616 (6)
H12A0.63801.15540.77560.074*
C130.4265 (3)1.1765 (3)0.7003 (2)0.0578 (6)
H13A0.41991.27380.72030.069*
C140.3073 (2)1.1028 (2)0.63654 (18)0.0504 (5)
C150.3168 (3)0.9587 (3)0.6061 (2)0.0671 (7)
H15A0.23770.91020.56090.081*
C160.4443 (3)0.8871 (3)0.6433 (2)0.0718 (7)
H16A0.44990.78930.62460.086*
H2N30.020 (3)1.130 (3)0.746 (3)0.061 (7)*
H1N30.034 (3)1.037 (3)0.645 (3)0.075 (9)*
O30.6404 (7)0.5947 (6)0.6144 (5)0.120 (2)0.530 (6)
H1O30.71870.64220.56950.181*0.530 (6)
C170.7032 (11)0.4787 (8)0.6295 (13)0.148 (4)0.530 (6)
H17A0.79840.49490.67490.223*0.530 (6)
H17B0.63110.41930.67120.223*0.530 (6)
H17C0.72430.43130.55600.223*0.530 (6)
C180.3657 (7)0.5101 (10)0.4490 (6)0.084 (2)0.470 (6)
H18A0.41980.51620.37700.100*0.470 (6)
H18B0.33550.41030.45620.100*0.470 (6)
C190.2268 (12)0.5869 (11)0.4363 (12)0.131 (4)0.470 (6)
H19A0.16980.54350.36950.196*0.470 (6)
H19B0.16490.57860.50430.196*0.470 (6)
H19C0.25080.68670.42350.196*0.470 (6)
O40.4659 (8)0.5410 (5)0.5282 (6)0.130 (3)0.470 (6)
H1O40.56590.50730.51280.195*0.470 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0516 (3)0.0669 (4)0.0399 (3)0.0193 (2)0.0105 (2)0.0026 (2)
F1A0.138 (8)0.260 (12)0.120 (7)0.136 (8)0.081 (6)0.078 (7)
F2A0.087 (3)0.065 (3)0.196 (12)0.027 (3)0.023 (4)0.014 (5)
F3A0.059 (3)0.210 (10)0.243 (12)0.052 (4)0.031 (5)0.124 (9)
F1B0.152 (11)0.182 (13)0.128 (8)0.127 (10)0.068 (7)0.080 (8)
F2B0.103 (6)0.187 (9)0.132 (9)0.069 (6)0.014 (5)0.083 (9)
F3B0.044 (3)0.105 (4)0.205 (12)0.005 (3)0.022 (6)0.029 (6)
N10.0571 (11)0.0718 (11)0.0393 (10)0.0096 (9)0.0032 (8)0.0045 (8)
N20.0639 (12)0.1111 (17)0.0443 (11)0.0455 (12)0.0132 (9)0.0094 (10)
N30.0517 (11)0.0880 (16)0.0435 (12)0.0193 (10)0.0071 (8)0.0019 (10)
O10.0681 (10)0.0856 (11)0.0397 (9)0.0222 (8)0.0117 (7)0.0052 (7)
O20.0794 (12)0.0654 (10)0.0728 (11)0.0213 (8)0.0194 (9)0.0012 (8)
C10.0546 (13)0.0764 (14)0.0431 (12)0.0127 (10)0.0047 (9)0.0018 (10)
C20.0429 (11)0.0743 (14)0.0478 (12)0.0140 (9)0.0029 (8)0.0068 (10)
C30.0403 (10)0.0718 (13)0.0424 (11)0.0126 (9)0.0032 (8)0.0047 (9)
C40.0434 (11)0.0641 (12)0.0428 (11)0.0090 (9)0.0035 (8)0.0037 (9)
C50.0629 (14)0.0883 (17)0.0447 (13)0.0271 (12)0.0072 (10)0.0008 (11)
C60.0639 (15)0.0850 (16)0.0571 (14)0.0314 (12)0.0046 (11)0.0039 (11)
C70.0502 (12)0.0637 (13)0.0683 (15)0.0145 (10)0.0126 (10)0.0030 (11)
C80.0536 (12)0.0642 (13)0.0510 (13)0.0072 (10)0.0156 (10)0.0052 (10)
C90.0448 (11)0.0595 (11)0.0423 (11)0.0032 (9)0.0060 (8)0.0065 (8)
C100.0619 (17)0.0797 (18)0.090 (2)0.0252 (14)0.0209 (14)0.0023 (15)
C110.0482 (12)0.0918 (17)0.0405 (12)0.0249 (11)0.0059 (9)0.0021 (10)
C120.0479 (12)0.0813 (16)0.0554 (14)0.0065 (10)0.0125 (10)0.0054 (11)
C130.0528 (12)0.0680 (13)0.0529 (13)0.0087 (10)0.0089 (9)0.0061 (10)
C140.0463 (11)0.0670 (13)0.0391 (11)0.0158 (9)0.0059 (8)0.0046 (9)
C150.0599 (14)0.0769 (16)0.0637 (15)0.0210 (11)0.0241 (11)0.0112 (12)
C160.0725 (16)0.0784 (16)0.0649 (16)0.0330 (13)0.0241 (12)0.0127 (12)
O30.144 (5)0.093 (3)0.119 (4)0.004 (3)0.041 (3)0.016 (3)
C170.111 (8)0.139 (10)0.191 (13)0.020 (7)0.039 (8)0.017 (8)
C180.068 (4)0.124 (7)0.065 (4)0.050 (4)0.002 (3)0.026 (4)
C190.104 (7)0.090 (6)0.203 (12)0.024 (5)0.006 (7)0.034 (6)
O40.160 (6)0.071 (3)0.159 (7)0.004 (3)0.039 (5)0.022 (3)
Geometric parameters (Å, º) top
S1—O21.4202 (18)C7—C101.500 (3)
S1—O11.4314 (16)C8—C91.399 (3)
S1—N31.599 (2)C8—H8A0.9300
S1—C141.768 (2)C11—C121.379 (4)
F1A—C101.266 (8)C11—C161.385 (4)
F2A—C101.277 (8)C12—C131.383 (3)
F3A—C101.362 (9)C12—H12A0.9300
F1B—C101.258 (10)C13—C141.379 (3)
F2B—C101.339 (10)C13—H13A0.9300
F3B—C101.209 (9)C14—C151.379 (3)
N1—C11.316 (3)C15—C161.381 (3)
N1—C91.371 (3)C15—H15A0.9300
N2—C31.373 (3)C16—H16A0.9300
N2—C111.414 (3)O3—C171.2497 (11)
N2—H1N20.8727O3—H1O30.9600
N3—H2N30.86 (3)C17—H17A0.9600
N3—H1N30.88 (3)C17—H17B0.9600
C1—C21.387 (3)C17—H17C0.9600
C1—H1A0.9300C18—O41.2485 (11)
C2—C31.376 (3)C18—C191.432 (11)
C2—H2A0.9300C18—O4i1.567 (11)
C3—C41.434 (3)C18—H18A0.9600
C4—C51.412 (3)C18—H18B0.9600
C4—C91.412 (3)C19—H19A0.9600
C5—C61.350 (3)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—C71.404 (3)O4—O4i1.171 (11)
C6—H6A0.9300O4—C18i1.567 (11)
C7—C81.359 (4)O4—H1O40.9500
O2—S1—O1118.81 (11)F3B—C10—C7113.3 (5)
O2—S1—N3108.50 (13)F1B—C10—C7114.0 (6)
O1—S1—N3106.49 (12)F1A—C10—C7115.9 (4)
O2—S1—C14107.14 (11)F2A—C10—C7114.0 (5)
O1—S1—C14108.12 (10)F2B—C10—C7109.6 (5)
N3—S1—C14107.28 (10)F3A—C10—C7110.3 (4)
C1—N1—C9116.18 (18)C12—C11—C16119.6 (2)
C3—N2—C11126.10 (19)C12—C11—N2121.9 (2)
C3—N2—H1N2115.2C16—C11—N2118.5 (2)
C11—N2—H1N2114.7C11—C12—C13120.2 (2)
S1—N3—H2N3111.6 (17)C11—C12—H12A119.9
S1—N3—H1N3112 (2)C13—C12—H12A119.9
H2N3—N3—H1N3116 (3)C14—C13—C12119.8 (2)
N1—C1—C2125.4 (2)C14—C13—H13A120.1
N1—C1—H1A117.3C12—C13—H13A120.1
C2—C1—H1A117.3C13—C14—C15120.4 (2)
C3—C2—C1119.9 (2)C13—C14—S1120.16 (17)
C3—C2—H2A120.0C15—C14—S1119.35 (17)
C1—C2—H2A120.0C14—C15—C16119.6 (2)
N2—C3—C2123.6 (2)C14—C15—H15A120.2
N2—C3—C4119.04 (19)C16—C15—H15A120.2
C2—C3—C4117.38 (19)C15—C16—C11120.3 (2)
C5—C4—C9118.1 (2)C15—C16—H16A119.8
C5—C4—C3124.07 (19)C11—C16—H16A119.8
C9—C4—C3117.80 (19)C17—O3—H1O399.6
C6—C5—C4121.6 (2)O3—C17—H17A110.6
C6—C5—H5A119.2O3—C17—H17B106.9
C4—C5—H5A119.2H17A—C17—H17B109.5
C5—C6—C7119.9 (2)O3—C17—H17C110.9
C5—C6—H6A120.1H17A—C17—H17C109.5
C7—C6—H6A120.1H17B—C17—H17C109.5
C8—C7—C6120.2 (2)O4—C18—C19122.6 (9)
C8—C7—C10120.4 (2)O4—C18—O4i47.5 (5)
C6—C7—C10119.3 (2)C19—C18—O4i167.5 (9)
C7—C8—C9121.1 (2)O4—C18—H18A105.7
C7—C8—H8A119.5C19—C18—H18A107.2
C9—C8—H8A119.5O4i—C18—H18A72.6
N1—C9—C8117.50 (19)O4—C18—H18B106.1
N1—C9—C4123.32 (19)C19—C18—H18B107.9
C8—C9—C4119.1 (2)O4i—C18—H18B83.8
F3B—C10—F1B111.2 (9)H18A—C18—H18B106.3
F3B—C10—F1A69.1 (7)C18—C19—H19A106.8
F1B—C10—F1A124.4 (7)C18—C19—H19B110.5
F3B—C10—F2A127.6 (7)H19A—C19—H19B109.5
F1A—C10—F2A107.9 (8)C18—C19—H19C111.1
F3B—C10—F2B102.5 (7)H19A—C19—H19C109.5
F1B—C10—F2B105.4 (9)H19B—C19—H19C109.5
F2A—C10—F2B81.8 (8)O4i—O4—C1880.7 (6)
F1B—C10—F3A78.6 (8)O4i—O4—C18i51.8 (4)
F1A—C10—F3A105.2 (7)C18—O4—C18i132.5 (5)
F2A—C10—F3A102.4 (9)C18—O4—H1O4114.4
F2B—C10—F3A133.7 (6)
C9—N1—C1—C20.9 (3)C8—C7—C10—F1A2.1 (15)
N1—C1—C2—C30.2 (4)C6—C7—C10—F1A174.3 (14)
C11—N2—C3—C21.4 (4)C8—C7—C10—F2A124.1 (7)
C11—N2—C3—C4178.6 (2)C6—C7—C10—F2A59.5 (7)
C1—C2—C3—N2178.6 (2)C8—C7—C10—F2B34.5 (10)
C1—C2—C3—C41.4 (3)C6—C7—C10—F2B149.1 (10)
N2—C3—C4—C53.9 (4)C8—C7—C10—F3A121.4 (13)
C2—C3—C4—C5176.1 (2)C6—C7—C10—F3A55.0 (13)
N2—C3—C4—C9177.6 (2)C3—N2—C11—C1250.6 (4)
C2—C3—C4—C92.3 (3)C3—N2—C11—C16130.4 (3)
C9—C4—C5—C60.2 (4)C16—C11—C12—C132.5 (4)
C3—C4—C5—C6178.7 (2)N2—C11—C12—C13178.6 (2)
C4—C5—C6—C70.1 (4)C11—C12—C13—C142.0 (4)
C5—C6—C7—C80.6 (4)C12—C13—C14—C150.4 (4)
C5—C6—C7—C10175.8 (3)C12—C13—C14—S1176.73 (17)
C6—C7—C8—C91.5 (4)O2—S1—C14—C135.9 (2)
C10—C7—C8—C9174.9 (2)O1—S1—C14—C13135.11 (19)
C1—N1—C9—C8178.0 (2)N3—S1—C14—C13110.4 (2)
C1—N1—C9—C40.2 (3)O2—S1—C14—C15176.9 (2)
C7—C8—C9—N1176.2 (2)O1—S1—C14—C1547.8 (2)
C7—C8—C9—C41.7 (3)N3—S1—C14—C1566.7 (2)
C5—C4—C9—N1176.8 (2)C13—C14—C15—C162.2 (4)
C3—C4—C9—N11.8 (3)S1—C14—C15—C16175.0 (2)
C5—C4—C9—C81.0 (3)C14—C15—C16—C111.6 (4)
C3—C4—C9—C8179.6 (2)C12—C11—C16—C150.7 (4)
C8—C7—C10—F3B79.2 (13)N2—C11—C16—C15179.7 (2)
C6—C7—C10—F3B97.2 (13)C19—C18—O4—O4i170.3 (9)
C8—C7—C10—F1B152.4 (15)C19—C18—O4—C18i170.3 (9)
C6—C7—C10—F1B31.2 (16)O4i—C18—O4—C18i0.003 (1)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O30.872.213.016 (6)153
N3—H2N3···N1ii0.85 (3)2.08 (3)2.924 (3)169 (3)
N3—H1N3···O1iii0.87 (3)2.26 (3)3.107 (3)163 (3)
O3—H1O3···O1iv0.962.493.387 (6)155
O3—H1O3···O2iv0.962.593.425 (6)146
C5—H5A···O1iv0.932.503.343 (3)151
C16—H16A···O30.932.513.287 (6)141
Symmetry codes: (ii) x+1, y+2, z+2; (iii) x, y+2, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H12F3N3O2S·0.47C2H6O·0.53CH4O
Mr405.98
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.6037 (1), 9.3146 (2), 11.4590 (2)
α, β, γ (°)92.463 (1), 91.544 (1), 92.969 (1)
V3)915.85 (3)
Z2
Radiation typeCu Kα
µ (mm1)2.07
Crystal size (mm)0.83 × 0.43 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.279, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
9433, 2845, 2631
Rint0.026
(sin θ/λ)max1)0.578
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.05
No. of reflections2845
No. of parameters309
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O30.872.213.016 (6)153
N3—H2N3···N1i0.85 (3)2.08 (3)2.924 (3)169 (3)
N3—H1N3···O1ii0.87 (3)2.26 (3)3.107 (3)163 (3)
O3—H1O3···O1iii0.962.493.387 (6)155
O3—H1O3···O2iii0.962.593.425 (6)146
C5—H5A···O1iii0.932.503.343 (3)151
C16—H16A···O30.932.513.287 (6)141
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+1; (iii) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. HKF and CKQ also thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., El-Gazzar, M. G. & El-Gazzar, M. G. (2011). Acta Pharm. 61, 415–425.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El- Gazzar, M. G. (2012). Med. Chem. Res. 21, 1376–1383.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds