organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium 1,3-di­methyl-5-(2,4,6-tri­nitro­phenyl)barbiturate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 1 July 2012; accepted 4 July 2012; online 10 July 2012)

In the title mol­ecular salt [systematic name: triethyl­ammonium 1,3-dimethyl-2,6-dioxo-5-(2,4,6-trinitro­phen­yl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate], C6H16N+·C12H8N5O9, the dihedral angle between the aromatic rings in the anion is 46.88 (8)°. The nitro group para to the ring junction is almost coplanar with its attached ring [dihedral angle = 0.76 (3)°], but the two ortho-nitro groups are substanti­ally twisted from the ring plane, by 47.91 (2) and 42.90 (1)°. In the crystal, the cation and anion are linked by an N—H⋯O=C hydrogen bond; these dimeric associations are further connected by weak C—H⋯O bonds to form linear supra­molecular chains extending in the [001] direction.

Related literature

For background to barbiturates, see: Tripathi (2009[Tripathi, K. D. (2009). Essentials of Medical Pharmacology, 6th ed. Chennai: Jaypee Brothers.]). For our recent work in this area, see: Kalaivani & Buvaneswari, 2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255-260. Cambridge, UK: WSEAS Publications.]); Kalaivani & Malarvizhi (2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]); Buvaneswari & Kalaivani (2011[Buvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433-o1434.]); Babykala & Kalaivani (2012[Babykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C12H8N5O9

  • Mr = 468.43

  • Monoclinic, P 21 /n

  • a = 10.967 (5) Å

  • b = 20.301 (5) Å

  • c = 11.072 (5) Å

  • β = 119.268 (5)°

  • V = 2150.4 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.988

  • 18535 measured reflections

  • 3785 independent reflections

  • 2955 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.108

  • S = 1.01

  • 3785 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O9 0.91 2.09 2.903 (2) 148
C13—H13B⋯O7i 0.97 2.37 3.195 (3) 143
C14—H14B⋯O3ii 0.96 2.55 3.301 (3) 136
C15—H15A⋯O8iii 0.97 2.52 3.275 (3) 134
C15—H15B⋯O8iv 0.97 2.49 3.437 (3) 165
Symmetry codes: (i) x, y, z-1; (ii) x-1, y, z-1; (iii) x+1, y, z; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Barbiturates are pyrimidine derivatives and many of them are anticonvulsant agents (Tripathi, 2009). The crystalline barbiturate (Triethylammonium 5-(2,4,6-trinitrophenyl)barbiturate) reported by us (Kalaivani & Buvaneswari, 2010) also exhibits anticovulsant activity and is soluble in water.An attempt has now been made to increase the lipophilicity of the above mentioned barbiturate by introducing methyl groups to the nitrogen atoms of barbiturate anion (Scheme). Since the N—H protons of barbiturate residue are replaced by methyl groups, R22(8) motifs which have been normally observed in reported barbiturates (Kalaivani & Malarvizhi, 2009; Buvaneswari & Kalaivani, 2011; Babykala & Kalaivani, 2012), are absent in the crystal structure of the title barbiturate. The ORTEP view of the asymmetric unit of title molecule showing 40% probability displacement ellipsoids is shown in Fig.1. Weak N—H···O and C—H···O hydrogen bonds are noticed in the crystal structure which lead to supramolecular chains and these chains run along [001]direction [Fig.2]. In the title molecule, the two rings present in the anion moiety are not planar and the dihedral angle between them is 46.88 (8)°. The phenyl ring constituted by C1, C2, C3, C4, C5 and C6 carbon atoms and the nitro group with N2, O3 and O4 atoms are almost planar [dihedral angle 0.76 (3)°] which facilitates the delocalization of negative charge and thus the title molecular salt appears red in colour. The other two nitro groups (O1—N1—O2 and O5—N3—O6) make the dihedral angle 47.91 (2)° and 42.90 (1)° respectively with the aromatic ring.

Related literature top

For background to barbiturates, see: Tripathi (2009). For our recent work in this area, see: Kalaivani & Buvaneswari, 2010); Kalaivani & Malarvizhi (2009); Buvaneswari & Kalaivani (2011); Babykala & Kalaivani (2012).

Experimental top

Picrylchloride (1.3 g, 0.005 mol) was dissolved in 15 ml of absolute alcohol. 1,3-Dimethylbarbituric acid (0.8 g, 0.005 mol) was also dissolved in 15 ml of absolute alcohol.These two solution were mixed and to this 3 ml(0.03 mol) of analar grade triethylamine was added and shaken well for 6hrs. On standing maroon red crystals come out from this solution after 15 days. The crystals were filterded,powder well and washed with 30 ml of dry ether and recrystallized from absolute alcohol (yield of pure crystals 75%; m.pt; 458 K). Red block like single crystals suitable for X-ray studies were obtained by slow evapouration of ethanol at room temperature. The crystals obtained were non-hygroscopic and extraordinarly stable at room temperature. Solubility at 298 K: 19 g / dm3 (H2O); 46 g / dm3 (EtOH); 131 g / dm3 (DMSO);6 g /dm3 (n-Octanol).

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Structure description top

Barbiturates are pyrimidine derivatives and many of them are anticonvulsant agents (Tripathi, 2009). The crystalline barbiturate (Triethylammonium 5-(2,4,6-trinitrophenyl)barbiturate) reported by us (Kalaivani & Buvaneswari, 2010) also exhibits anticovulsant activity and is soluble in water.An attempt has now been made to increase the lipophilicity of the above mentioned barbiturate by introducing methyl groups to the nitrogen atoms of barbiturate anion (Scheme). Since the N—H protons of barbiturate residue are replaced by methyl groups, R22(8) motifs which have been normally observed in reported barbiturates (Kalaivani & Malarvizhi, 2009; Buvaneswari & Kalaivani, 2011; Babykala & Kalaivani, 2012), are absent in the crystal structure of the title barbiturate. The ORTEP view of the asymmetric unit of title molecule showing 40% probability displacement ellipsoids is shown in Fig.1. Weak N—H···O and C—H···O hydrogen bonds are noticed in the crystal structure which lead to supramolecular chains and these chains run along [001]direction [Fig.2]. In the title molecule, the two rings present in the anion moiety are not planar and the dihedral angle between them is 46.88 (8)°. The phenyl ring constituted by C1, C2, C3, C4, C5 and C6 carbon atoms and the nitro group with N2, O3 and O4 atoms are almost planar [dihedral angle 0.76 (3)°] which facilitates the delocalization of negative charge and thus the title molecular salt appears red in colour. The other two nitro groups (O1—N1—O2 and O5—N3—O6) make the dihedral angle 47.91 (2)° and 42.90 (1)° respectively with the aromatic ring.

For background to barbiturates, see: Tripathi (2009). For our recent work in this area, see: Kalaivani & Buvaneswari, 2010); Kalaivani & Malarvizhi (2009); Buvaneswari & Kalaivani (2011); Babykala & Kalaivani (2012).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing view of title compound.
Triethylammonium 1,3-dimethyl-2,6-dioxo-5-(2,4,6-trinitrophenyl)- 1,2,3,6-tetrahydropyrimidin-4-olate top
Crystal data top
C6H16N+·C12H8N5O9F(000) = 984
Mr = 468.43Dx = 1.447 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.967 (5) ÅCell parameters from 6627 reflections
b = 20.301 (5) Åθ = 2.9–26.1°
c = 11.072 (5) ŵ = 0.12 mm1
β = 119.268 (5)°T = 293 K
V = 2150.4 (15) Å3Block, red
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3785 independent reflections
Radiation source: fine-focus sealed tube2955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1312
Tmin = 0.941, Tmax = 0.988k = 2424
18535 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.6716P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3785 reflectionsΔρmax = 0.28 e Å3
304 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (6)
Crystal data top
C6H16N+·C12H8N5O9V = 2150.4 (15) Å3
Mr = 468.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.967 (5) ŵ = 0.12 mm1
b = 20.301 (5) ÅT = 293 K
c = 11.072 (5) Å0.30 × 0.20 × 0.20 mm
β = 119.268 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2955 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.988Rint = 0.029
18535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
3785 reflectionsΔρmin = 0.16 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88311 (17)0.10654 (8)0.91121 (17)0.0341 (4)
C21.02255 (18)0.12113 (9)0.98506 (17)0.0362 (4)
H21.08760.09780.97100.043*
C31.06380 (16)0.17129 (9)1.08071 (16)0.0335 (4)
C40.96883 (17)0.20600 (9)1.10282 (17)0.0354 (4)
H40.99790.23881.17000.042*
C50.82951 (17)0.19082 (8)1.02269 (16)0.0330 (4)
C60.77688 (17)0.14087 (8)0.92164 (16)0.0318 (4)
C70.62923 (17)0.12556 (9)0.83656 (16)0.0345 (4)
C80.54703 (18)0.11973 (9)0.90224 (17)0.0378 (4)
C90.34306 (18)0.09753 (9)0.67628 (17)0.0369 (4)
C100.57272 (17)0.11594 (8)0.69361 (17)0.0344 (4)
C110.3184 (2)0.09483 (14)0.8813 (2)0.0681 (7)
H11A0.28850.13680.89710.102*
H11B0.37120.07230.96790.102*
H11C0.23810.06890.82110.102*
C120.3617 (2)0.09733 (12)0.46746 (19)0.0578 (6)
H12A0.37380.05280.44580.087*
H12B0.40410.12710.43130.087*
H12C0.26380.10700.42660.087*
C130.63642 (18)0.12726 (9)0.33536 (18)0.0409 (4)
H13A0.57430.15580.35060.049*
H13B0.64560.14530.25910.049*
C140.5725 (2)0.06017 (10)0.2963 (2)0.0527 (5)
H14A0.62190.03450.26120.079*
H14B0.47620.06410.22630.079*
H14C0.57830.03880.37630.079*
C150.87815 (18)0.07822 (9)0.45773 (18)0.0420 (4)
H15A0.96550.08000.54440.050*
H15B0.84020.03420.44870.050*
C160.9074 (2)0.09033 (12)0.3404 (2)0.0554 (5)
H16A0.82160.08800.25410.083*
H16B0.97100.05750.34180.083*
H16C0.94810.13320.35040.083*
C170.8343 (2)0.19556 (10)0.4964 (2)0.0514 (5)
H17A0.85650.21000.42590.062*
H17B0.76250.22460.49300.062*
C180.9621 (2)0.20199 (12)0.6351 (2)0.0648 (6)
H18A0.94270.18540.70520.097*
H18B0.98850.24750.65300.097*
H18C1.03710.17720.63600.097*
N10.85117 (16)0.04632 (8)0.82617 (16)0.0453 (4)
N21.21193 (15)0.18730 (8)1.16185 (15)0.0395 (4)
N30.73551 (15)0.23498 (7)1.04510 (15)0.0397 (4)
N40.40581 (14)0.10460 (8)0.81685 (14)0.0403 (4)
N50.42801 (14)0.10512 (7)0.61771 (14)0.0373 (4)
N60.77754 (14)0.12699 (7)0.46335 (14)0.0370 (3)
H60.76340.11410.53430.044*
O10.77641 (16)0.00505 (7)0.83646 (16)0.0609 (4)
O20.90781 (17)0.03998 (8)0.75520 (16)0.0690 (5)
O31.29408 (13)0.15560 (8)1.14104 (15)0.0588 (4)
O41.24725 (14)0.23153 (8)1.24621 (15)0.0605 (4)
O50.77284 (14)0.25027 (7)1.16504 (13)0.0534 (4)
O60.63133 (14)0.25617 (7)0.94531 (14)0.0532 (4)
O70.59132 (14)0.12529 (8)1.02758 (13)0.0545 (4)
O80.21962 (12)0.08442 (7)0.60642 (13)0.0507 (4)
O90.63886 (13)0.11793 (7)0.62877 (12)0.0470 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0351 (9)0.0377 (9)0.0296 (9)0.0007 (7)0.0159 (7)0.0015 (7)
C20.0339 (9)0.0426 (10)0.0369 (9)0.0050 (7)0.0209 (8)0.0019 (8)
C30.0277 (8)0.0425 (10)0.0299 (8)0.0000 (7)0.0137 (7)0.0021 (7)
C40.0359 (9)0.0407 (10)0.0294 (9)0.0018 (7)0.0160 (7)0.0026 (7)
C50.0326 (9)0.0397 (10)0.0303 (9)0.0024 (7)0.0183 (7)0.0007 (7)
C60.0331 (9)0.0404 (9)0.0245 (8)0.0003 (7)0.0160 (7)0.0039 (7)
C70.0305 (9)0.0446 (10)0.0288 (9)0.0012 (7)0.0147 (7)0.0001 (7)
C80.0336 (9)0.0498 (11)0.0305 (9)0.0024 (8)0.0161 (8)0.0021 (7)
C90.0310 (10)0.0413 (10)0.0356 (9)0.0009 (7)0.0143 (8)0.0021 (7)
C100.0328 (9)0.0406 (10)0.0301 (9)0.0002 (7)0.0157 (8)0.0008 (7)
C110.0449 (12)0.119 (2)0.0525 (13)0.0154 (12)0.0337 (11)0.0137 (12)
C120.0460 (12)0.0905 (17)0.0299 (10)0.0027 (11)0.0132 (9)0.0005 (10)
C130.0357 (10)0.0494 (11)0.0360 (10)0.0086 (8)0.0162 (8)0.0042 (8)
C140.0371 (10)0.0581 (13)0.0529 (12)0.0011 (9)0.0142 (9)0.0018 (10)
C150.0344 (10)0.0454 (11)0.0410 (10)0.0055 (8)0.0145 (8)0.0017 (8)
C160.0458 (12)0.0736 (15)0.0521 (12)0.0104 (10)0.0281 (10)0.0039 (10)
C170.0601 (13)0.0454 (11)0.0546 (12)0.0036 (9)0.0327 (11)0.0063 (9)
C180.0546 (13)0.0687 (15)0.0713 (15)0.0167 (11)0.0310 (12)0.0205 (12)
N10.0412 (9)0.0464 (10)0.0439 (9)0.0012 (7)0.0173 (8)0.0074 (7)
N20.0323 (8)0.0496 (9)0.0372 (8)0.0013 (7)0.0176 (7)0.0010 (7)
N30.0360 (8)0.0470 (9)0.0385 (9)0.0034 (7)0.0202 (7)0.0026 (7)
N40.0307 (8)0.0596 (10)0.0345 (8)0.0039 (7)0.0190 (7)0.0033 (7)
N50.0305 (8)0.0527 (9)0.0261 (7)0.0019 (6)0.0118 (6)0.0007 (6)
N60.0377 (8)0.0433 (8)0.0336 (8)0.0024 (6)0.0203 (7)0.0031 (6)
O10.0591 (9)0.0453 (8)0.0744 (10)0.0100 (7)0.0295 (8)0.0083 (7)
O20.0717 (10)0.0792 (11)0.0714 (10)0.0022 (8)0.0470 (9)0.0295 (8)
O30.0326 (7)0.0740 (10)0.0692 (10)0.0027 (7)0.0244 (7)0.0134 (8)
O40.0431 (8)0.0759 (10)0.0599 (9)0.0148 (7)0.0232 (7)0.0280 (8)
O50.0512 (8)0.0702 (10)0.0411 (8)0.0074 (7)0.0244 (6)0.0139 (7)
O60.0412 (8)0.0656 (9)0.0472 (8)0.0187 (6)0.0172 (7)0.0046 (7)
O70.0452 (8)0.0924 (11)0.0289 (7)0.0134 (7)0.0205 (6)0.0051 (6)
O80.0282 (7)0.0692 (9)0.0474 (8)0.0049 (6)0.0127 (6)0.0074 (6)
O90.0398 (7)0.0745 (9)0.0324 (7)0.0049 (6)0.0220 (6)0.0027 (6)
Geometric parameters (Å, º) top
C1—C21.368 (2)C13—C141.496 (3)
C1—C61.410 (2)C13—N61.503 (2)
C1—N11.477 (2)C13—H13A0.9700
C2—C31.376 (2)C13—H13B0.9700
C2—H20.9300C14—H14A0.9600
C3—C41.375 (2)C14—H14B0.9600
C3—N21.458 (2)C14—H14C0.9600
C4—C51.375 (2)C15—C161.502 (3)
C4—H40.9300C15—N61.506 (2)
C5—C61.408 (2)C15—H15A0.9700
C5—N31.476 (2)C15—H15B0.9700
C6—C71.454 (2)C16—H16A0.9600
C7—C101.403 (2)C16—H16B0.9600
C7—C81.413 (2)C16—H16C0.9600
C8—O71.231 (2)C17—C181.494 (3)
C8—N41.398 (2)C17—N61.496 (2)
C9—O81.216 (2)C17—H17A0.9700
C9—N41.367 (2)C17—H17B0.9700
C9—N51.379 (2)C18—H18A0.9600
C10—O91.246 (2)C18—H18B0.9600
C10—N51.403 (2)C18—H18C0.9600
C11—N41.461 (2)N1—O11.216 (2)
C11—H11A0.9600N1—O21.224 (2)
C11—H11B0.9600N2—O41.214 (2)
C11—H11C0.9600N2—O31.2174 (19)
C12—N51.462 (2)N3—O61.2153 (19)
C12—H12A0.9600N3—O51.2231 (19)
C12—H12B0.9600N6—H60.9100
C12—H12C0.9600
C2—C1—C6124.81 (16)H14A—C14—H14B109.5
C2—C1—N1114.05 (15)C13—C14—H14C109.5
C6—C1—N1120.89 (15)H14A—C14—H14C109.5
C1—C2—C3118.09 (15)H14B—C14—H14C109.5
C1—C2—H2121.0C16—C15—N6113.47 (15)
C3—C2—H2121.0C16—C15—H15A108.9
C4—C3—C2121.56 (15)N6—C15—H15A108.9
C4—C3—N2119.27 (15)C16—C15—H15B108.9
C2—C3—N2119.16 (15)N6—C15—H15B108.9
C3—C4—C5118.02 (16)H15A—C15—H15B107.7
C3—C4—H4121.0C15—C16—H16A109.5
C5—C4—H4121.0C15—C16—H16B109.5
C4—C5—C6124.66 (15)H16A—C16—H16B109.5
C4—C5—N3113.74 (15)C15—C16—H16C109.5
C6—C5—N3121.49 (14)H16A—C16—H16C109.5
C5—C6—C1112.77 (15)H16B—C16—H16C109.5
C5—C6—C7124.26 (15)C18—C17—N6113.69 (18)
C1—C6—C7122.98 (15)C18—C17—H17A108.8
C10—C7—C8121.86 (15)N6—C17—H17A108.8
C10—C7—C6119.90 (15)C18—C17—H17B108.8
C8—C7—C6118.23 (15)N6—C17—H17B108.8
O7—C8—N4118.59 (15)H17A—C17—H17B107.7
O7—C8—C7124.97 (16)C17—C18—H18A109.5
N4—C8—C7116.41 (15)C17—C18—H18B109.5
O8—C9—N4122.11 (16)H18A—C18—H18B109.5
O8—C9—N5121.55 (16)C17—C18—H18C109.5
N4—C9—N5116.33 (15)H18A—C18—H18C109.5
O9—C10—C7125.81 (16)H18B—C18—H18C109.5
O9—C10—N5117.82 (15)O1—N1—O2124.41 (17)
C7—C10—N5116.35 (15)O1—N1—C1118.11 (16)
N4—C11—H11A109.5O2—N1—C1117.37 (16)
N4—C11—H11B109.5O4—N2—O3123.31 (15)
H11A—C11—H11B109.5O4—N2—C3118.63 (15)
N4—C11—H11C109.5O3—N2—C3118.05 (15)
H11A—C11—H11C109.5O6—N3—O5124.33 (15)
H11B—C11—H11C109.5O6—N3—C5119.06 (14)
N5—C12—H12A109.5O5—N3—C5116.51 (14)
N5—C12—H12B109.5C9—N4—C8124.58 (14)
H12A—C12—H12B109.5C9—N4—C11117.14 (15)
N5—C12—H12C109.5C8—N4—C11118.28 (15)
H12A—C12—H12C109.5C9—N5—C10124.20 (14)
H12B—C12—H12C109.5C9—N5—C12116.65 (15)
C14—C13—N6112.98 (15)C10—N5—C12119.06 (15)
C14—C13—H13A109.0C17—N6—C13109.94 (14)
N6—C13—H13A109.0C17—N6—C15113.33 (14)
C14—C13—H13B109.0C13—N6—C15113.64 (14)
N6—C13—H13B109.0C17—N6—H6106.5
H13A—C13—H13B107.8C13—N6—H6106.5
C13—C14—H14A109.5C15—N6—H6106.5
C13—C14—H14B109.5
C6—C1—C2—C32.7 (3)C6—C1—N1—O2138.16 (18)
N1—C1—C2—C3171.73 (15)C4—C3—N2—O40.7 (2)
C1—C2—C3—C40.2 (3)C2—C3—N2—O4179.81 (16)
C1—C2—C3—N2179.31 (15)C4—C3—N2—O3179.52 (16)
C2—C3—C4—C52.3 (3)C2—C3—N2—O30.4 (2)
N2—C3—C4—C5178.59 (15)C4—C5—N3—O6135.01 (17)
C3—C4—C5—C61.8 (3)C6—C5—N3—O641.4 (2)
C3—C4—C5—N3174.45 (15)C4—C5—N3—O541.5 (2)
C4—C5—C6—C10.7 (2)C6—C5—N3—O5142.10 (16)
N3—C5—C6—C1176.70 (14)O8—C9—N4—C8179.90 (17)
C4—C5—C6—C7179.45 (16)N5—C9—N4—C81.0 (3)
N3—C5—C6—C73.4 (2)O8—C9—N4—C110.8 (3)
C2—C1—C6—C53.0 (2)N5—C9—N4—C11178.25 (18)
N1—C1—C6—C5171.01 (15)O7—C8—N4—C9179.50 (17)
C2—C1—C6—C7177.13 (16)C7—C8—N4—C92.3 (3)
N1—C1—C6—C78.8 (2)O7—C8—N4—C111.2 (3)
C5—C6—C7—C10134.21 (17)C7—C8—N4—C11176.98 (18)
C1—C6—C7—C1046.0 (2)O8—C9—N5—C10175.62 (17)
C5—C6—C7—C846.9 (2)N4—C9—N5—C103.4 (2)
C1—C6—C7—C8132.98 (18)O8—C9—N5—C120.7 (3)
C10—C7—C8—O7177.32 (18)N4—C9—N5—C12179.73 (17)
C6—C7—C8—O71.6 (3)O9—C10—N5—C9175.68 (16)
C10—C7—C8—N40.7 (3)C7—C10—N5—C96.2 (2)
C6—C7—C8—N4179.65 (16)O9—C10—N5—C120.5 (2)
C8—C7—C10—O9177.38 (17)C7—C10—N5—C12177.61 (17)
C6—C7—C10—O91.5 (3)C18—C17—N6—C13169.79 (16)
C8—C7—C10—N54.7 (2)C18—C17—N6—C1561.8 (2)
C6—C7—C10—N5176.45 (15)C14—C13—N6—C17179.66 (16)
C2—C1—N1—O1129.19 (17)C14—C13—N6—C1552.1 (2)
C6—C1—N1—O145.4 (2)C16—C15—N6—C1766.4 (2)
C2—C1—N1—O247.2 (2)C16—C15—N6—C1360.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O90.912.092.903 (2)148
C13—H13B···O7i0.972.373.195 (3)143
C14—H14B···O3ii0.962.553.301 (3)136
C15—H15A···O8iii0.972.523.275 (3)134
C15—H15B···O8iv0.972.493.437 (3)165
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x+1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H16N+·C12H8N5O9
Mr468.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.967 (5), 20.301 (5), 11.072 (5)
β (°) 119.268 (5)
V3)2150.4 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.941, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
18535, 3785, 2955
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.108, 1.01
No. of reflections3785
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O90.912.092.903 (2)148.2
C13—H13B···O7i0.972.373.195 (3)143
C14—H14B···O3ii0.962.553.301 (3)136
C15—H15A···O8iii0.972.523.275 (3)134
C15—H15B···O8iv0.972.493.437 (3)165
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x+1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433–o1434.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255–260. Cambridge, UK: WSEAS Publications.  Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTripathi, K. D. (2009). Essentials of Medical Pharmacology, 6th ed. Chennai: Jaypee Brothers.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds