organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-(4-Methyl­phen­yl)-2-(phenyl­sulfon­yl)ethanone oxime

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 3 July 2012; accepted 3 July 2012; online 7 July 2012)

The mol­ecule of the title compound, C15H15NO3S, has a twisted U-shaped conformation: the twist occurs at the central C—S(=O)2—C—C—C unit and the benzene ring makes a dihedral angle of 28.74 (7)° with the phenyl ring. The S—C—C=N torsion angle is −88.95 (13)°. In the crystal, inversion dimers linked by pairs of O—H⋯N hydrogen bonds generate R22(6) loops, and C—H⋯O hydrogen bonds connect the dimers into a three-dimensional network.

Related literature

For the biological activity of aryl­sulphones, see: Stephens et al. (2001[Stephens, C. E., Felder, T. M., Sowell, J. W., Andrei, G., Balzarini, J., Snoeck, R. & De Clercq, E. (2001). Bioorg. Med. Chem. 9, 1123-1132.]); Abdel-Aziz et al. (2010[Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152-159.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO3S

  • Mr = 289.34

  • Monoclinic, P 21 /c

  • a = 5.2305 (3) Å

  • b = 17.6073 (11) Å

  • c = 15.6578 (10) Å

  • β = 103.782 (2)°

  • V = 1400.49 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.29 × 0.09 × 0.06 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.985

  • 16727 measured reflections

  • 4349 independent reflections

  • 3578 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.03

  • 4349 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N1i 0.97 (2) 1.88 (2) 2.7819 (15) 153.8 (18)
C2—H2A⋯O2ii 0.93 2.53 3.2413 (18) 134
C3—H3A⋯O1iii 0.93 2.56 3.4720 (17) 169
C7—H7A⋯O1iv 0.97 2.34 3.2313 (14) 153
C15—H15B⋯O2v 0.96 2.54 3.426 (2) 154
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Arylsulphones possess interesting biological activities (Stephens et al., 2001; Abdel-Aziz et al., 2010). As part of our studies in this area, we report herein the crystal structure of the title compound, (Z)-1-(4-methylphenyl)-2-(phenylsulfonyl)ethanone oxime.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts a twisted U-shaped conformation. The twist occurs at the central C6–S1–C7–C8–C9 unit and the C1–C6 benzene ring makes a dihedral angle of 28.74 (7)° with the C9–C14 phenyl ring.

In the crystal (Fig. 2), the molecules are linked by O3—H1O3···N1, C2—H2A···O2, C3—H3A···O1, C7—H7A···O1 and C15—H15B···O2 hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For the biological activity of arylsulphones, see: Stephens et al. (2001); Abdel-Aziz et al. (2010). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 2-(phenylsulfonyl)-1-p-tolylethanone (0.274 g, 1 mmol), hydroxylamine hydrochloride (0.11 g, 1.5 mmol) and anhydrous sodium acetate (0.123 g, 1.5 mmol) in ethanol (50 ml) was refluxed for 1 h, then left to cool. The reaction mixture was poured into cold water and the solid product was filtered off, washed with water, dried and finally recrystallized from ethanol to afford the title compound as yellow needles.

Refinement top

Atom H1O3 was located in a difference fourier map and refined freely [O3—H1O3 = 0.96 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93, 0.96 and 0.97 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

Arylsulphones possess interesting biological activities (Stephens et al., 2001; Abdel-Aziz et al., 2010). As part of our studies in this area, we report herein the crystal structure of the title compound, (Z)-1-(4-methylphenyl)-2-(phenylsulfonyl)ethanone oxime.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts a twisted U-shaped conformation. The twist occurs at the central C6–S1–C7–C8–C9 unit and the C1–C6 benzene ring makes a dihedral angle of 28.74 (7)° with the C9–C14 phenyl ring.

In the crystal (Fig. 2), the molecules are linked by O3—H1O3···N1, C2—H2A···O2, C3—H3A···O1, C7—H7A···O1 and C15—H15B···O2 hydrogen bonds (Table 1) into a three-dimensional network.

For the biological activity of arylsulphones, see: Stephens et al. (2001); Abdel-Aziz et al. (2010). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
(Z)-1-(4-Methylphenyl)-2-(phenylsulfonyl)ethanone oxime top
Crystal data top
C15H15NO3SF(000) = 608
Mr = 289.34Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5520 reflections
a = 5.2305 (3) Åθ = 2.3–30.7°
b = 17.6073 (11) ŵ = 0.24 mm1
c = 15.6578 (10) ÅT = 100 K
β = 103.782 (2)°Needle, yellow
V = 1400.49 (15) Å30.29 × 0.09 × 0.06 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
4349 independent reflections
Radiation source: fine-focus sealed tube3578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.934, Tmax = 0.985k = 2125
16727 measured reflectionsl = 1622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.6281P]
where P = (Fo2 + 2Fc2)/3
4349 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C15H15NO3SV = 1400.49 (15) Å3
Mr = 289.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2305 (3) ŵ = 0.24 mm1
b = 17.6073 (11) ÅT = 100 K
c = 15.6578 (10) Å0.29 × 0.09 × 0.06 mm
β = 103.782 (2)°
Data collection top
Bruker APEX DUO CCD
diffractometer
4349 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3578 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.985Rint = 0.030
16727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.42 e Å3
4349 reflectionsΔρmin = 0.33 e Å3
186 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56144 (5)0.782145 (17)0.384686 (18)0.01353 (8)
O10.83354 (16)0.79802 (6)0.38609 (6)0.01848 (19)
O20.50126 (19)0.71628 (5)0.43065 (6)0.0208 (2)
O30.86263 (19)0.92446 (6)0.52121 (6)0.0218 (2)
N10.7376 (2)0.96756 (6)0.44763 (7)0.0177 (2)
C10.4951 (3)0.81035 (9)0.20998 (9)0.0239 (3)
H1A0.64570.84010.22630.029*
C20.3699 (3)0.80091 (11)0.12183 (9)0.0319 (3)
H2A0.43500.82490.07850.038*
C30.1472 (3)0.75546 (11)0.09865 (10)0.0329 (4)
H3A0.06550.74850.03960.039*
C40.0457 (3)0.72046 (10)0.16220 (10)0.0303 (3)
H4A0.10420.69050.14560.036*
C50.1662 (2)0.72973 (8)0.25099 (9)0.0214 (3)
H5A0.09810.70660.29420.026*
C60.3915 (2)0.77457 (7)0.27336 (8)0.0164 (2)
C70.4295 (2)0.86214 (7)0.43094 (8)0.0154 (2)
H7A0.23880.86050.41300.018*
H7B0.48030.85860.49460.018*
C80.5234 (2)0.93671 (7)0.40293 (8)0.0153 (2)
C90.3773 (2)0.97524 (7)0.32203 (8)0.0168 (2)
C100.4854 (3)1.03660 (9)0.28673 (11)0.0303 (3)
H10A0.64871.05550.31600.036*
C110.3522 (3)1.06969 (10)0.20849 (11)0.0349 (4)
H11A0.42861.11060.18630.042*
C120.1092 (3)1.04366 (8)0.16238 (9)0.0255 (3)
C130.0000 (3)0.98351 (10)0.19822 (11)0.0325 (3)
H13A0.16440.96520.16900.039*
C140.1302 (3)0.94978 (9)0.27687 (10)0.0283 (3)
H14A0.05120.90970.29960.034*
C150.0305 (4)1.07962 (10)0.07609 (11)0.0353 (4)
H15A0.09511.09110.04220.053*
H15B0.11541.12560.08750.053*
H15C0.16001.04500.04390.053*
H1O31.021 (4)0.9523 (12)0.5474 (13)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01289 (12)0.01713 (15)0.00974 (13)0.00179 (9)0.00102 (9)0.00080 (10)
O10.0124 (3)0.0265 (5)0.0157 (4)0.0008 (3)0.0017 (3)0.0018 (4)
O20.0274 (5)0.0191 (5)0.0158 (4)0.0032 (4)0.0050 (3)0.0019 (4)
O30.0217 (4)0.0216 (5)0.0176 (5)0.0041 (4)0.0045 (3)0.0019 (4)
N10.0169 (4)0.0175 (5)0.0162 (5)0.0011 (4)0.0014 (4)0.0007 (4)
C10.0232 (6)0.0341 (8)0.0139 (6)0.0006 (5)0.0036 (5)0.0002 (5)
C20.0334 (7)0.0499 (10)0.0114 (6)0.0084 (7)0.0033 (5)0.0008 (6)
C30.0275 (6)0.0521 (10)0.0142 (6)0.0124 (7)0.0047 (5)0.0123 (7)
C40.0181 (6)0.0409 (9)0.0274 (8)0.0022 (5)0.0037 (5)0.0171 (7)
C50.0159 (5)0.0267 (7)0.0206 (6)0.0008 (5)0.0019 (4)0.0079 (5)
C60.0148 (5)0.0219 (6)0.0113 (5)0.0005 (4)0.0005 (4)0.0032 (5)
C70.0143 (4)0.0191 (6)0.0128 (5)0.0023 (4)0.0033 (4)0.0019 (4)
C80.0140 (5)0.0163 (6)0.0150 (5)0.0008 (4)0.0025 (4)0.0029 (4)
C90.0170 (5)0.0163 (6)0.0161 (6)0.0015 (4)0.0018 (4)0.0025 (5)
C100.0296 (7)0.0260 (8)0.0290 (8)0.0092 (6)0.0057 (6)0.0067 (6)
C110.0402 (8)0.0265 (8)0.0327 (8)0.0056 (6)0.0021 (6)0.0115 (7)
C120.0322 (7)0.0206 (7)0.0201 (6)0.0107 (5)0.0008 (5)0.0014 (5)
C130.0256 (6)0.0333 (8)0.0303 (8)0.0002 (6)0.0099 (5)0.0050 (7)
C140.0209 (6)0.0286 (8)0.0299 (8)0.0052 (5)0.0047 (5)0.0072 (6)
C150.0474 (9)0.0279 (8)0.0243 (8)0.0146 (7)0.0037 (6)0.0014 (6)
Geometric parameters (Å, º) top
S1—O21.4386 (10)C7—C81.5034 (17)
S1—O11.4454 (9)C7—H7A0.9700
S1—C61.7630 (12)C7—H7B0.9700
S1—C71.7951 (13)C8—C91.4791 (17)
O3—N11.4042 (14)C9—C141.3913 (17)
O3—H1O30.96 (2)C9—C101.393 (2)
N1—C81.2910 (15)C10—C111.385 (2)
C1—C21.3896 (19)C10—H10A0.9300
C1—C61.3898 (18)C11—C121.382 (2)
C1—H1A0.9300C11—H11A0.9300
C2—C31.388 (2)C12—C131.384 (2)
C2—H2A0.9300C12—C151.513 (2)
C3—C41.380 (2)C13—C141.390 (2)
C3—H3A0.9300C13—H13A0.9300
C4—C51.3925 (19)C14—H14A0.9300
C4—H4A0.9300C15—H15A0.9600
C5—C61.3918 (17)C15—H15B0.9600
C5—H5A0.9300C15—H15C0.9600
O2—S1—O1118.71 (6)S1—C7—H7B109.1
O2—S1—C6108.34 (6)H7A—C7—H7B107.8
O1—S1—C6107.00 (6)N1—C8—C9118.42 (12)
O2—S1—C7106.24 (6)N1—C8—C7120.73 (11)
O1—S1—C7108.29 (6)C9—C8—C7120.82 (10)
C6—S1—C7107.85 (6)C14—C9—C10117.63 (12)
N1—O3—H1O3105.0 (12)C14—C9—C8121.03 (12)
C8—N1—O3113.06 (11)C10—C9—C8121.31 (11)
C2—C1—C6118.90 (14)C11—C10—C9120.72 (13)
C2—C1—H1A120.6C11—C10—H10A119.6
C6—C1—H1A120.6C9—C10—H10A119.6
C3—C2—C1119.75 (15)C12—C11—C10121.92 (15)
C3—C2—H2A120.1C12—C11—H11A119.0
C1—C2—H2A120.1C10—C11—H11A119.0
C4—C3—C2120.79 (13)C11—C12—C13117.32 (13)
C4—C3—H3A119.6C11—C12—C15121.08 (15)
C2—C3—H3A119.6C13—C12—C15121.60 (14)
C3—C4—C5120.48 (14)C12—C13—C14121.57 (14)
C3—C4—H4A119.8C12—C13—H13A119.2
C5—C4—H4A119.8C14—C13—H13A119.2
C6—C5—C4118.19 (14)C13—C14—C9120.81 (14)
C6—C5—H5A120.9C13—C14—H14A119.6
C4—C5—H5A120.9C9—C14—H14A119.6
C1—C6—C5121.87 (12)C12—C15—H15A109.5
C1—C6—S1118.76 (10)C12—C15—H15B109.5
C5—C6—S1119.27 (10)H15A—C15—H15B109.5
C8—C7—S1112.57 (8)C12—C15—H15C109.5
C8—C7—H7A109.1H15A—C15—H15C109.5
S1—C7—H7A109.1H15B—C15—H15C109.5
C8—C7—H7B109.1
C6—C1—C2—C30.8 (2)O3—N1—C8—C70.08 (16)
C1—C2—C3—C41.1 (2)S1—C7—C8—N188.95 (13)
C2—C3—C4—C50.4 (2)S1—C7—C8—C989.10 (12)
C3—C4—C5—C60.5 (2)N1—C8—C9—C14172.31 (13)
C2—C1—C6—C50.1 (2)C7—C8—C9—C149.59 (19)
C2—C1—C6—S1176.35 (12)N1—C8—C9—C109.84 (19)
C4—C5—C6—C10.7 (2)C7—C8—C9—C10168.25 (13)
C4—C5—C6—S1175.68 (11)C14—C9—C10—C111.3 (2)
O2—S1—C6—C1152.81 (11)C8—C9—C10—C11176.65 (15)
O1—S1—C6—C123.72 (13)C9—C10—C11—C120.1 (3)
C7—S1—C6—C192.59 (11)C10—C11—C12—C131.1 (3)
O2—S1—C6—C523.70 (12)C10—C11—C12—C15178.77 (16)
O1—S1—C6—C5152.79 (10)C11—C12—C13—C140.8 (3)
C7—S1—C6—C590.91 (11)C15—C12—C13—C14179.06 (15)
O2—S1—C7—C8168.32 (8)C12—C13—C14—C90.5 (3)
O1—S1—C7—C839.77 (10)C10—C9—C14—C131.5 (2)
C6—S1—C7—C875.70 (9)C8—C9—C14—C13176.38 (14)
O3—N1—C8—C9178.02 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N1i0.97 (2)1.88 (2)2.7819 (15)153.8 (18)
C2—H2A···O2ii0.932.533.2413 (18)134
C3—H3A···O1iii0.932.563.4720 (17)169
C7—H7A···O1iv0.972.343.2313 (14)153
C15—H15B···O2v0.962.543.426 (2)154
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x1, y+3/2, z1/2; (iv) x1, y, z; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO3S
Mr289.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.2305 (3), 17.6073 (11), 15.6578 (10)
β (°) 103.782 (2)
V3)1400.49 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.29 × 0.09 × 0.06
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.934, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
16727, 4349, 3578
Rint0.030
(sin θ/λ)max1)0.720
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.03
No. of reflections4349
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N1i0.97 (2)1.88 (2)2.7819 (15)153.8 (18)
C2—H2A···O2ii0.932.533.2413 (18)134
C3—H3A···O1iii0.932.563.4720 (17)169
C7—H7A···O1iv0.972.343.2313 (14)153
C15—H15B···O2v0.962.543.426 (2)154
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x1, y+3/2, z1/2; (iv) x1, y, z; (v) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, for financial support and facilities.

References

First citationAbdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephens, C. E., Felder, T. M., Sowell, J. W., Andrei, G., Balzarini, J., Snoeck, R. & De Clercq, E. (2001). Bioorg. Med. Chem. 9, 1123–1132.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds