organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Meth­­oxy­phen­yl)benzo[d]thia­zolo[3,2-a]imidazol-9-ium hydrogen sulfate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, Salman Bin Abdulaziz University, PO Box 173, Alkharj 11942, Saudi Arabia, and cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 3 July 2012; accepted 4 July 2012; online 10 July 2012)

In the title mol­ecular salt, C16H13N2OS+·HSO4, the thia­zolo[3,2-a]benzimidazolium ring system is roughly planar [maximum deviation = 0.046 (3) Å] and makes a dihedral angle of 58.22 (11)° with the benzene ring. The meth­oxy group is almost coplanar with its attached benzene ring [Cmeth­yl—O—C—C = −1.6 (5)°]. In the crystal, the cation is linked to the anion by a bifurcated N—H⋯(O,O) hydrogen bond, generating an R12(4) ring motif. The ion pairs are then connected by a C—H⋯O hydrogen bond into inversion dimers and these dimers are further linked by O—H⋯O hydrogen bonds into an infinite tape along [100]. A ππ stacking inter­action [centroid-to-centroid distance = 3.5738 (18) Å] and a short inter­molecular contact [S⋯O = 2.830 (3) Å] are also observed.

Related literature

For the biological activities of thia­zolo[3,2-a]benzimidazoles, see: Chimirri et al. (1988[Chimirri, A., Grasso, S., Romeo, G. & Zappala, M. (1988). Heterocycles, 27, 1975-2003.]); Al-Rashood & Abdel-Aziz (2010[Al-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775-3815.]); Hamdy et al. (2007[Hamdy, N. A., Abdel-Aziz, H. A., Farag, A. M. & Fakhr, I. M. I. (2007). Monatsh. Chem. 138, 1001-1010.]); Abdel-Aziz et al. (2007[Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573-1582.], 2008[Abdel-Aziz, H. A., Hamdy, N. A., Fakhr, I. M. I. & Farag, A. M. (2008). J. Heterocycl. Chem. 45, 1033-1037.]); Farag et al. (2011[Farag, A. M., Dawood, K. M., Abdel-Aziz, H. A., Hamdy, N. A. & Fakhr, I. M. I. (2011). J. Heterocycl. Chem. 48, 355-360.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N2OS+·HSO4

  • Mr = 378.41

  • Monoclinic, P 21 /c

  • a = 4.5428 (8) Å

  • b = 20.096 (4) Å

  • c = 17.788 (3) Å

  • β = 93.003 (4)°

  • V = 1621.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.31 × 0.15 × 0.12 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.959

  • 12491 measured reflections

  • 3699 independent reflections

  • 2904 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.170

  • S = 1.04

  • 3699 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3 0.94 (4) 1.85 (4) 2.750 (3) 160 (3)
N1—H1N1⋯O4 0.94 (4) 2.50 (4) 3.199 (4) 132 (3)
O2—H1O2⋯O3i 0.97 1.60 2.531 (4) 158
C11—H11A⋯O5ii 0.93 2.32 3.237 (4) 170
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Various biological properties of thiazolo[3,2-a]benzimidazole derivatives have been reported, including antibacterial, antifungal, anti-inflammatory, antiulcer, antiviral, anthelmintic and anticancer activities (Chimirri et al., 1988; Al-Rashood & Abdel-Aziz, 2010). In continuation of our interest in this area (Hamdy et al., 2007; Abdel-Aziz et al., 2007, 2008; Farag et al., 2011), we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound, C16H13N2OS+, HSO4-, contains a 3-(3-methoxyphenyl)benzo[d]thiazolo[3,2-a]imidazol-9-ium cation and a hydrogen sulfate anion. The thiazolo[3,2-a]benzimidazole ring system is roughly planar [S1/N1/N2/C1–C9; maximum deviation = 0.046 (3) Å at atom C8] and makes a dihedral angle of 58.22 (11)° with the C10–C15 benzene ring. The O1—C16 methoxy group is almost coplanar with the C10–C15 benzene ring as indicated by the C16—O1—C12—C11 torsion angle of -1.6 (5)°.

In the crystal (Fig. 2), the cation and anion are linked to each other by bifurcated N1—H1N1···(O3,O4) hydrogen bonds, generating an R12(4) ring motif (Bernstein et al., 1995). The asymmetric units are then connected by C11—H11A···O5 hydrogen bond into inversion dimers and the dimers are further linked by O2—H1O2···O3 hydrogen bond into an infinite tape, propagating along the a-axis. A ππ interaction [Cg1···Cg2 = 3.5738 (18) Å; Cg1 and Cg2 are the centroids of N1/C6/C1/N2/C7 and C1–C6 rings, respectively; symmetry code = -1 + x, y, z] and a short intermolecular contact [S1···O4 = 2.830 (3) Å; symmetry code = -x, 1 - y, 1 - z] are also observed.

Related literature top

For the biological activities of thiazolo[3,2-a]benzimidazoles, see: Chimirri et al. (1988); Al-Rashood & Abdel-Aziz (2010); Hamdy et al. (2007); Abdel-Aziz et al. (2007, 2008); Farag et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 2-mercaptobenzimidazole (1.52 g, 10 mmol) and 3-methoxyacetophenone (1.52 g, 10 mmol) in boiling AcOH/H2SO4 (50 ml; 10:1, v/v) was refluxed for 5 h. The reaction mixture was then left to cool at room temperature. The colourless blocks formed were filtered off, washed with ethanol and dried to afford the title compound.

Refinement top

Atoms H1O2 and H1N1 were located in a difference Fourier map and the atom H1O2 was then fixed at its found location [O2—H1O2 = 0.9734 Å] and refined using a riding model with Uiso(H) = 1.5Ueq(O), whereas the atom H1N1 was refined freely [N1—H1N1 = 0.93 (4) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 and 0.96 Å] and refined with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

Various biological properties of thiazolo[3,2-a]benzimidazole derivatives have been reported, including antibacterial, antifungal, anti-inflammatory, antiulcer, antiviral, anthelmintic and anticancer activities (Chimirri et al., 1988; Al-Rashood & Abdel-Aziz, 2010). In continuation of our interest in this area (Hamdy et al., 2007; Abdel-Aziz et al., 2007, 2008; Farag et al., 2011), we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound, C16H13N2OS+, HSO4-, contains a 3-(3-methoxyphenyl)benzo[d]thiazolo[3,2-a]imidazol-9-ium cation and a hydrogen sulfate anion. The thiazolo[3,2-a]benzimidazole ring system is roughly planar [S1/N1/N2/C1–C9; maximum deviation = 0.046 (3) Å at atom C8] and makes a dihedral angle of 58.22 (11)° with the C10–C15 benzene ring. The O1—C16 methoxy group is almost coplanar with the C10–C15 benzene ring as indicated by the C16—O1—C12—C11 torsion angle of -1.6 (5)°.

In the crystal (Fig. 2), the cation and anion are linked to each other by bifurcated N1—H1N1···(O3,O4) hydrogen bonds, generating an R12(4) ring motif (Bernstein et al., 1995). The asymmetric units are then connected by C11—H11A···O5 hydrogen bond into inversion dimers and the dimers are further linked by O2—H1O2···O3 hydrogen bond into an infinite tape, propagating along the a-axis. A ππ interaction [Cg1···Cg2 = 3.5738 (18) Å; Cg1 and Cg2 are the centroids of N1/C6/C1/N2/C7 and C1–C6 rings, respectively; symmetry code = -1 + x, y, z] and a short intermolecular contact [S1···O4 = 2.830 (3) Å; symmetry code = -x, 1 - y, 1 - z] are also observed.

For the biological activities of thiazolo[3,2-a]benzimidazoles, see: Chimirri et al. (1988); Al-Rashood & Abdel-Aziz (2010); Hamdy et al. (2007); Abdel-Aziz et al. (2007, 2008); Farag et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
3-(3-Methoxyphenyl)benzo[d]thiazolo[3,2-a]imidazol-9-ium hydrogen sulfate top
Crystal data top
C16H13N2OS+·HSO4F(000) = 784
Mr = 378.41Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4717 reflections
a = 4.5428 (8) Åθ = 2.3–29.3°
b = 20.096 (4) ŵ = 0.36 mm1
c = 17.788 (3) ÅT = 100 K
β = 93.003 (4)°Block, colourless
V = 1621.6 (5) Å30.31 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
3699 independent reflections
Radiation source: fine-focus sealed tube2904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.898, Tmax = 0.959k = 2624
12491 measured reflectionsl = 1923
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0882P)2 + 3.0462P]
where P = (Fo2 + 2Fc2)/3
3699 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C16H13N2OS+·HSO4V = 1621.6 (5) Å3
Mr = 378.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5428 (8) ŵ = 0.36 mm1
b = 20.096 (4) ÅT = 100 K
c = 17.788 (3) Å0.31 × 0.15 × 0.12 mm
β = 93.003 (4)°
Data collection top
Bruker APEX DUO CCD
diffractometer
3699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2904 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.959Rint = 0.050
12491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.99 e Å3
3699 reflectionsΔρmin = 0.68 e Å3
231 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21267 (17)0.46487 (4)0.42583 (4)0.0192 (2)
S20.24639 (17)0.37855 (4)0.66173 (4)0.0214 (2)
O10.7757 (6)0.47885 (11)0.06026 (13)0.0313 (6)
O20.0440 (5)0.31645 (11)0.67548 (13)0.0281 (5)
H1O20.16400.32830.67410.042*
O30.5152 (6)0.34615 (13)0.63785 (13)0.0325 (6)
O40.1087 (6)0.41582 (12)0.59898 (14)0.0315 (6)
O50.2805 (7)0.41374 (13)0.73091 (15)0.0416 (7)
N10.5806 (6)0.36239 (12)0.48611 (14)0.0176 (5)
N20.5187 (5)0.37532 (11)0.36286 (13)0.0154 (5)
C10.7199 (6)0.32219 (14)0.37436 (16)0.0162 (6)
C20.8648 (7)0.28056 (14)0.32574 (16)0.0185 (6)
H2A0.84060.28490.27370.022*
C31.0472 (7)0.23229 (15)0.35886 (17)0.0217 (6)
H3A1.14770.20350.32820.026*
C41.0841 (7)0.22567 (15)0.43704 (17)0.0209 (6)
H4A1.20930.19270.45690.025*
C50.9397 (7)0.26676 (14)0.48591 (17)0.0195 (6)
H5A0.96540.26240.53790.023*
C60.7538 (6)0.31496 (14)0.45269 (16)0.0173 (6)
C70.4426 (6)0.39749 (14)0.43096 (16)0.0168 (6)
C80.2254 (7)0.46239 (14)0.32772 (16)0.0198 (6)
H8A0.12490.49260.29610.024*
C90.3934 (6)0.41295 (14)0.30187 (15)0.0167 (6)
C100.4589 (6)0.39786 (14)0.22327 (16)0.0171 (6)
C110.5788 (7)0.44837 (14)0.18026 (16)0.0186 (6)
H11A0.61040.49060.20060.022*
C120.6502 (7)0.43475 (15)0.10674 (16)0.0212 (6)
C130.6007 (7)0.37120 (15)0.07654 (17)0.0226 (6)
H13A0.65000.36210.02750.027*
C140.4790 (7)0.32211 (15)0.11920 (17)0.0212 (6)
H14A0.44600.28010.09860.025*
C150.4049 (6)0.33474 (14)0.19277 (16)0.0188 (6)
H15A0.32070.30160.22120.023*
C160.8306 (10)0.54428 (17)0.0891 (2)0.0367 (9)
H16A0.91770.57090.05130.055*
H16B0.96280.54180.13290.055*
H16C0.64810.56410.10230.055*
H1N10.540 (8)0.3670 (18)0.537 (2)0.022 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0257 (4)0.0124 (4)0.0195 (4)0.0041 (3)0.0020 (3)0.0003 (3)
S20.0273 (4)0.0140 (4)0.0233 (4)0.0020 (3)0.0053 (3)0.0002 (3)
O10.0577 (17)0.0144 (11)0.0228 (11)0.0097 (10)0.0120 (11)0.0003 (9)
O20.0312 (13)0.0176 (11)0.0352 (13)0.0015 (9)0.0016 (10)0.0050 (9)
O30.0345 (14)0.0369 (15)0.0262 (12)0.0089 (10)0.0037 (10)0.0035 (10)
O40.0381 (14)0.0203 (12)0.0365 (13)0.0082 (10)0.0046 (10)0.0096 (10)
O50.067 (2)0.0288 (14)0.0294 (13)0.0083 (12)0.0063 (12)0.0110 (11)
N10.0243 (13)0.0119 (12)0.0165 (12)0.0029 (9)0.0011 (9)0.0007 (9)
N20.0198 (12)0.0094 (11)0.0169 (11)0.0001 (8)0.0001 (9)0.0004 (9)
C10.0178 (14)0.0089 (13)0.0219 (14)0.0009 (10)0.0012 (10)0.0031 (10)
C20.0228 (15)0.0137 (14)0.0190 (13)0.0015 (11)0.0013 (11)0.0008 (11)
C30.0260 (16)0.0132 (14)0.0262 (15)0.0016 (11)0.0047 (12)0.0031 (12)
C40.0249 (16)0.0125 (14)0.0252 (15)0.0027 (11)0.0014 (11)0.0020 (11)
C50.0242 (16)0.0138 (14)0.0203 (14)0.0003 (11)0.0001 (11)0.0020 (11)
C60.0224 (15)0.0123 (13)0.0172 (13)0.0009 (10)0.0024 (10)0.0005 (11)
C70.0190 (14)0.0119 (13)0.0196 (14)0.0017 (10)0.0011 (10)0.0004 (10)
C80.0269 (16)0.0105 (14)0.0218 (14)0.0022 (11)0.0005 (11)0.0022 (11)
C90.0217 (15)0.0102 (13)0.0179 (14)0.0007 (10)0.0015 (10)0.0029 (10)
C100.0204 (15)0.0114 (13)0.0192 (13)0.0005 (10)0.0011 (10)0.0012 (11)
C110.0254 (16)0.0093 (13)0.0209 (14)0.0018 (10)0.0005 (11)0.0000 (11)
C120.0312 (17)0.0132 (14)0.0194 (14)0.0026 (11)0.0024 (11)0.0028 (11)
C130.0334 (18)0.0165 (15)0.0181 (14)0.0027 (12)0.0027 (12)0.0036 (11)
C140.0261 (16)0.0116 (14)0.0256 (15)0.0029 (11)0.0021 (12)0.0018 (11)
C150.0236 (15)0.0114 (13)0.0214 (14)0.0038 (10)0.0001 (11)0.0000 (11)
C160.066 (3)0.0121 (16)0.0334 (19)0.0074 (15)0.0170 (17)0.0012 (13)
Geometric parameters (Å, º) top
S1—C71.710 (3)C4—C51.388 (4)
S1—C81.750 (3)C4—H4A0.9300
S2—O51.421 (3)C5—C61.396 (4)
S2—O41.458 (2)C5—H5A0.9300
S2—O31.466 (3)C8—C91.348 (4)
S2—O21.577 (2)C8—H8A0.9300
O1—C121.358 (4)C9—C101.476 (4)
O1—C161.428 (4)C10—C151.396 (4)
O2—H1O20.9734C10—C111.399 (4)
N1—C71.337 (4)C11—C121.391 (4)
N1—C61.389 (4)C11—H11A0.9300
N1—H1N10.93 (4)C12—C131.399 (4)
N2—C71.353 (4)C13—C141.378 (4)
N2—C11.413 (4)C13—H13A0.9300
N2—C91.417 (3)C14—C151.392 (4)
C1—C21.393 (4)C14—H14A0.9300
C1—C61.401 (4)C15—H15A0.9300
C2—C31.387 (4)C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.398 (4)C16—H16C0.9600
C3—H3A0.9300
C7—S1—C888.78 (14)N1—C7—N2110.6 (2)
O5—S2—O4115.49 (16)N1—C7—S1135.9 (2)
O5—S2—O3114.67 (17)N2—C7—S1113.4 (2)
O4—S2—O3109.68 (14)C9—C8—S1114.2 (2)
O5—S2—O2107.32 (15)C9—C8—H8A122.9
O4—S2—O2107.17 (14)S1—C8—H8A122.9
O3—S2—O2101.22 (15)C8—C9—N2110.1 (2)
C12—O1—C16117.0 (2)C8—C9—C10128.3 (3)
S2—O2—H1O2112.1N2—C9—C10121.5 (2)
C7—N1—C6107.6 (2)C15—C10—C11120.8 (3)
C7—N1—H1N1123 (2)C15—C10—C9121.0 (3)
C6—N1—H1N1129 (2)C11—C10—C9118.2 (3)
C7—N2—C1108.2 (2)C12—C11—C10119.2 (3)
C7—N2—C9113.5 (2)C12—C11—H11A120.4
C1—N2—C9138.1 (2)C10—C11—H11A120.4
C2—C1—C6121.6 (3)O1—C12—C11124.8 (3)
C2—C1—N2133.4 (3)O1—C12—C13115.2 (3)
C6—C1—N2105.0 (2)C11—C12—C13120.0 (3)
C3—C2—C1116.6 (3)C14—C13—C12120.2 (3)
C3—C2—H2A121.7C14—C13—H13A119.9
C1—C2—H2A121.7C12—C13—H13A119.9
C2—C3—C4121.8 (3)C13—C14—C15120.7 (3)
C2—C3—H3A119.1C13—C14—H14A119.6
C4—C3—H3A119.1C15—C14—H14A119.6
C5—C4—C3122.0 (3)C14—C15—C10119.0 (3)
C5—C4—H4A119.0C14—C15—H15A120.5
C3—C4—H4A119.0C10—C15—H15A120.5
C4—C5—C6116.3 (3)O1—C16—H16A109.5
C4—C5—H5A121.9O1—C16—H16B109.5
C6—C5—H5A121.9H16A—C16—H16B109.5
N1—C6—C5129.7 (3)O1—C16—H16C109.5
N1—C6—C1108.6 (2)H16A—C16—H16C109.5
C5—C6—C1121.7 (3)H16B—C16—H16C109.5
C7—N2—C1—C2178.7 (3)C8—S1—C7—N20.4 (2)
C9—N2—C1—C26.0 (6)C7—S1—C8—C90.3 (2)
C7—N2—C1—C60.2 (3)S1—C8—C9—N20.1 (3)
C9—N2—C1—C6175.4 (3)S1—C8—C9—C10178.0 (2)
C6—C1—C2—C30.8 (4)C7—N2—C9—C80.2 (3)
N2—C1—C2—C3179.2 (3)C1—N2—C9—C8175.2 (3)
C1—C2—C3—C40.0 (4)C7—N2—C9—C10177.9 (3)
C2—C3—C4—C50.3 (5)C1—N2—C9—C102.8 (5)
C3—C4—C5—C60.3 (4)C8—C9—C10—C15125.6 (3)
C7—N1—C6—C5179.7 (3)N2—C9—C10—C1556.7 (4)
C7—N1—C6—C10.4 (3)C8—C9—C10—C1154.9 (4)
C4—C5—C6—N1179.6 (3)N2—C9—C10—C11122.8 (3)
C4—C5—C6—C11.2 (4)C15—C10—C11—C121.3 (4)
C2—C1—C6—N1179.1 (3)C9—C10—C11—C12178.2 (3)
N2—C1—C6—N10.4 (3)C16—O1—C12—C111.6 (5)
C2—C1—C6—C51.5 (4)C16—O1—C12—C13179.9 (3)
N2—C1—C6—C5179.8 (3)C10—C11—C12—O1177.9 (3)
C6—N1—C7—N20.3 (3)C10—C11—C12—C130.3 (5)
C6—N1—C7—S1176.2 (3)O1—C12—C13—C14178.9 (3)
C1—N2—C7—N10.0 (3)C11—C12—C13—C140.5 (5)
C9—N2—C7—N1176.5 (2)C12—C13—C14—C150.3 (5)
C1—N2—C7—S1176.94 (19)C13—C14—C15—C100.8 (5)
C9—N2—C7—S10.4 (3)C11—C10—C15—C141.6 (4)
C8—S1—C7—N1175.4 (3)C9—C10—C15—C14177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O30.94 (4)1.85 (4)2.750 (3)160 (3)
N1—H1N1···O40.94 (4)2.50 (4)3.199 (4)132 (3)
O2—H1O2···O3i0.971.602.531 (4)158
C11—H11A···O5ii0.932.323.237 (4)170
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H13N2OS+·HSO4
Mr378.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)4.5428 (8), 20.096 (4), 17.788 (3)
β (°) 93.003 (4)
V3)1621.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.31 × 0.15 × 0.12
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.898, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
12491, 3699, 2904
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.170, 1.04
No. of reflections3699
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.99, 0.68

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O30.94 (4)1.85 (4)2.750 (3)160 (3)
N1—H1N1···O40.94 (4)2.50 (4)3.199 (4)132 (3)
O2—H1O2···O3i0.971.602.531 (4)158
C11—H11A···O5ii0.932.323.237 (4)170
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank the Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, for support.

References

First citationAbdel-Aziz, H. A., Hamdy, N. A., Fakhr, I. M. I. & Farag, A. M. (2008). J. Heterocycl. Chem. 45, 1033–1037.  CAS Google Scholar
First citationAbdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573–1582.  CAS Google Scholar
First citationAl-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775–3815.  Web of Science CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimirri, A., Grasso, S., Romeo, G. & Zappala, M. (1988). Heterocycles, 27, 1975–2003.  CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarag, A. M., Dawood, K. M., Abdel-Aziz, H. A., Hamdy, N. A. & Fakhr, I. M. I. (2011). J. Heterocycl. Chem. 48, 355–360.  Web of Science CrossRef CAS Google Scholar
First citationHamdy, N. A., Abdel-Aziz, H. A., Farag, A. M. & Fakhr, I. M. I. (2007). Monatsh. Chem. 138, 1001–1010.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds