metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra-μ-benzoato-κ8O:O′-dicopper(II)]-μ-[N-(pyridin-4-yl)nicotin­amide]-κ2N:N′-[dibenzoato-κ2O-copper(II)]-μ-[N-(pyridin-4-yl)nicotin­amide]-κ2N:N′]

aMunster High School, Munster, IN 46321, USA, and bLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 3 July 2012; accepted 3 July 2012; online 10 July 2012)

In the polymeric title compound, [Cu3(C7H5O2)6(C11H9N3O)2]n, square-planar-coordinated CuII ions on crystallographic inversion centres are bound by two monodentate benzoate anions. The resulting [Cu(benzoate)]2 fragments are joined to centrosymmetic [Cu2(benzoate)4] paddlewheel clusters [Cu⋯Cu = 2.6331 (5) Å] by means of bridging N-(pyridin-4-yl)nicotinamide (4-pna) ligands [dihedral angle between the aromatic rings = 39.18 (12)°], thereby forming [Cu3(benzoate)6(4-pna)2]n coordination-polymer chains that are arranged parallel to the [30-1] crystal direction. These polymeric chains are anchored into supra­molecular layers by N—H⋯O hydrogen bonding between neighboring 4-pna ligands. These layers aggregate by crystal packing forces to afford the crystal structure of the title compound.

Related literature

For the preparation of N-(pyridin-4-yl)­nicotinamide, see: Gardner et al. (1954[Gardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem. 19, 753-757.]). For the preparation of other coordination polymers containing N-(pyridin-4-yl)­nicotinamide, see: Kumar (2009[Kumar, D. K. (2009). Inorg. Chim. Acta, 362, 1767-1771.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C7H5O2)6(C11H9N3O)2]

  • Mr = 1315.70

  • Triclinic, [P \overline 1]

  • a = 8.9183 (7) Å

  • b = 11.3348 (9) Å

  • c = 15.5534 (12) Å

  • α = 85.471 (1)°

  • β = 75.804 (1)°

  • γ = 75.007 (1)°

  • V = 1472.1 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.725, Tmax = 0.803

  • 24050 measured reflections

  • 5372 independent reflections

  • 4042 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.081

  • S = 1.02

  • 5372 reflections

  • 397 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9481 (18)
Cu1—N1 2.014 (2)
Cu2—O4i 1.9543 (19)
Cu2—O6i 1.962 (2)
Cu2—O3 1.9727 (19)
Cu2—O5 1.973 (2)
Cu2—N3 2.196 (2)
Symmetry code: (i) -x+3, -y+1, -z-1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2ii 0.86 (2) 2.01 (2) 2.867 (3) 177 (3)
Symmetry code: (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal Maker (Palmer, 2007[Palmer, D. (2007). Crystal Maker. Version 7.2. PO Box 183, Bicester, Oxfordshire OX26 3TA, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In comparison to divalent metal coordination polymers containing rigid rod dipyridine ligands such as 4,4'-bipyridine, related materials containing the kinked dipodal ligand N-(pyridin-4-yl)nicotinamide (4-pna) are much less common (Kumar, 2009). The title compound was obtained as blue crystals through the hydrothermal reaction of copper nitrate, benzoic acid, and 4-pna.

The asymmetric unit of the title compound (Fig. 1) contains two copper atoms, one of which (Cu1) lies on a crystallographic inversion centre, a 4-pna ligand, and three benzoate ligands. Cu1 is square planar coordinated by trans 4-pyridyl N atom donors from two 4-pna ligands and trans O atom donors from monodentate carboxylate groups belonging to two benzoate ligands. The other copper atom (Cu2) is square pyramidally coordinated, with its apical position occupied by a N atom donor from the nicotinamide end of a 4-pna ligand and its basal positions filled by O atom donors from four benzoate ligands.

Pairs of Cu2 atoms are linked into dinuclear [Cu2(benzoate)4] paddlewheel clusters by four syn-syn bridging benzoate ligands, with crystallographic inversion centres at the centroids of the clusters. Within these [Cu2(benzoate)4] clusters, the Cu···Cu through-space distance is 2.633 (2) Å. The 4-pna ligands projecting out of the apical positions of the Cu2 atoms within the dinuclear paddlewheel clusters connect to Cu1 atoms, generating one-dimensional [Cu3(benzoate)6(4-pna)2]n polymer chains along the [3 0 1] crystal direction (Fig. 2).

Each individual chain is anchored to two others via N—H···O hydrogen bonding (Table 1) between amide moieties of neighboring 4-pna ligands. In this manner, supramolecular two-dimensional layers are constructed (Fig. 3); these lie parallel to the ac crystal planes. The three-dimensional structure of the title compound results from crystal packing forces between these layers, which stack along the b crystal direction. (Fig. 4).

Related literature top

For the preparation of N-(pyridin-4-yl)nicotinamide, see: Gardner et al. (1954). For the preparation of other coordination polymers containing N-(pyridin-4-yl)nicotinamide, see: Kumar (2009).

Experimental top

Copper(II) nitrate hydrate and benzoic acid were obtained commercially. N-(Pyridin-4-yl)nicotinamide (4-pna) was prepared via a published procedure (Gardner et al., 1954). A mixture of copper nitrate hydrate (89 mg, 0.37 mmol), benzoic acid (45 mg, 0.37 mmol), 4-pna (74 mg, 0.37 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 24 h. Blue blocks of the title compound were obtained.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atom within the amide group of the 4-pna ligand was found in a difference Fourier map, restrained with N—H = 0.9 Å and refined with Uiso = 1.2Ueq(N).

Structure description top

In comparison to divalent metal coordination polymers containing rigid rod dipyridine ligands such as 4,4'-bipyridine, related materials containing the kinked dipodal ligand N-(pyridin-4-yl)nicotinamide (4-pna) are much less common (Kumar, 2009). The title compound was obtained as blue crystals through the hydrothermal reaction of copper nitrate, benzoic acid, and 4-pna.

The asymmetric unit of the title compound (Fig. 1) contains two copper atoms, one of which (Cu1) lies on a crystallographic inversion centre, a 4-pna ligand, and three benzoate ligands. Cu1 is square planar coordinated by trans 4-pyridyl N atom donors from two 4-pna ligands and trans O atom donors from monodentate carboxylate groups belonging to two benzoate ligands. The other copper atom (Cu2) is square pyramidally coordinated, with its apical position occupied by a N atom donor from the nicotinamide end of a 4-pna ligand and its basal positions filled by O atom donors from four benzoate ligands.

Pairs of Cu2 atoms are linked into dinuclear [Cu2(benzoate)4] paddlewheel clusters by four syn-syn bridging benzoate ligands, with crystallographic inversion centres at the centroids of the clusters. Within these [Cu2(benzoate)4] clusters, the Cu···Cu through-space distance is 2.633 (2) Å. The 4-pna ligands projecting out of the apical positions of the Cu2 atoms within the dinuclear paddlewheel clusters connect to Cu1 atoms, generating one-dimensional [Cu3(benzoate)6(4-pna)2]n polymer chains along the [3 0 1] crystal direction (Fig. 2).

Each individual chain is anchored to two others via N—H···O hydrogen bonding (Table 1) between amide moieties of neighboring 4-pna ligands. In this manner, supramolecular two-dimensional layers are constructed (Fig. 3); these lie parallel to the ac crystal planes. The three-dimensional structure of the title compound results from crystal packing forces between these layers, which stack along the b crystal direction. (Fig. 4).

For the preparation of N-(pyridin-4-yl)nicotinamide, see: Gardner et al. (1954). For the preparation of other coordination polymers containing N-(pyridin-4-yl)nicotinamide, see: Kumar (2009).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability ellipsoids, complete coordination environments, and atom numbering scheme. Hydrogen atom positions are shown as grey sticks with the exception of the amide group hydrogen atom. Color codes: dark blue Cu, red O, light blue N, black C, pink H. Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 3, -y + 1, -z - 1.
[Figure 2] Fig. 2. A single [Cu3(benzoate)6(4-pna)2]n coordination polymer chain.
[Figure 3] Fig. 3. Supramolecular layer of [Cu3(benzoate)6(4-pna)2]n chains. N—H···O hydrogen bonding is shown as dashed lines.
[Figure 4] Fig. 4. Stacking of supramolecular layers within the title compound.
catena-Poly[[tetra-µ-benzoato-κ8O:O'-dicopper(II)]- µ-[N-(pyridin-4-yl)nicotinamide]-κ2N:N'- [dibenzoato-κ2O-copper(II)]-µ-[N- (pyridin-4-yl)nicotinamide]-κ2N:N'] top
Crystal data top
[Cu3(C7H5O2)6(C11H9N3O)2]Z = 1
Mr = 1315.70F(000) = 673
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9183 (7) ÅCell parameters from 24050 reflections
b = 11.3348 (9) Åθ = 1.9–25.4°
c = 15.5534 (12) ŵ = 1.15 mm1
α = 85.471 (1)°T = 173 K
β = 75.804 (1)°Block, blue
γ = 75.007 (1)°0.30 × 0.20 × 0.20 mm
V = 1472.1 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5372 independent reflections
Radiation source: fine-focus sealed tube4042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ωφ scansθmax = 25.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.725, Tmax = 0.803k = 1313
24050 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0281P)2 + 1.0621P]
where P = (Fo2 + 2Fc2)/3
5372 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
[Cu3(C7H5O2)6(C11H9N3O)2]γ = 75.007 (1)°
Mr = 1315.70V = 1472.1 (2) Å3
Triclinic, P1Z = 1
a = 8.9183 (7) ÅMo Kα radiation
b = 11.3348 (9) ŵ = 1.15 mm1
c = 15.5534 (12) ÅT = 173 K
α = 85.471 (1)°0.30 × 0.20 × 0.20 mm
β = 75.804 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5372 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4042 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.803Rint = 0.053
24050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.38 e Å3
5372 reflectionsΔρmin = 0.31 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.02146 (13)
Cu21.36616 (4)0.54604 (3)0.44207 (2)0.02392 (11)
O10.0790 (2)0.35964 (17)0.07773 (12)0.0266 (5)
O20.2143 (3)0.29187 (19)0.02586 (14)0.0394 (5)
O31.4882 (2)0.66396 (18)0.43039 (13)0.0323 (5)
O41.7183 (2)0.58342 (18)0.52675 (13)0.0295 (5)
O51.4691 (2)0.43007 (18)0.35983 (13)0.0284 (5)
O61.7006 (2)0.35647 (18)0.45767 (13)0.0329 (5)
O70.7243 (2)0.5482 (2)0.28967 (13)0.0373 (5)
N10.1981 (3)0.5589 (2)0.05294 (14)0.0218 (5)
N20.6435 (3)0.6367 (2)0.15343 (15)0.0231 (5)
H2N0.684 (3)0.661 (2)0.1152 (16)0.028*
N31.1596 (3)0.6361 (2)0.33950 (14)0.0227 (5)
C10.2737 (3)0.5403 (2)0.13860 (18)0.0244 (6)
H10.22400.50750.17530.029*
C20.2702 (3)0.6069 (2)0.00283 (18)0.0237 (6)
H20.21700.62450.05730.028*
C30.4166 (3)0.6317 (2)0.03425 (18)0.0226 (6)
H30.46450.66310.00410.027*
C40.4948 (3)0.6105 (2)0.12310 (17)0.0207 (6)
C50.4182 (3)0.5656 (2)0.17648 (18)0.0238 (6)
H50.46510.55290.23790.029*
C60.7466 (3)0.6081 (3)0.23565 (18)0.0248 (6)
C70.8914 (3)0.6583 (3)0.25392 (17)0.0222 (6)
C81.0264 (3)0.5974 (3)0.31442 (18)0.0239 (6)
H81.02350.52430.33920.029*
C91.1613 (3)0.7396 (3)0.30381 (18)0.0298 (7)
H91.25580.76810.32070.036*
C101.0331 (3)0.8063 (3)0.2440 (2)0.0327 (7)
H101.03920.87910.22020.039*
C110.8949 (3)0.7656 (3)0.21908 (19)0.0283 (7)
H110.80380.81070.17860.034*
C121.6289 (3)0.6623 (3)0.47145 (19)0.0270 (7)
C131.6959 (4)0.7642 (3)0.45442 (19)0.0306 (7)
C141.8593 (4)0.7500 (3)0.47238 (19)0.0313 (7)
H141.92950.67540.49570.038*
C151.9208 (4)0.8441 (3)0.4565 (2)0.0396 (8)
H152.03320.83360.46880.047*
C161.8214 (5)0.9517 (3)0.4232 (2)0.0566 (11)
H161.86461.01620.41300.068*
C171.6585 (5)0.9670 (4)0.4045 (3)0.0756 (15)
H171.58881.04190.38120.091*
C181.5972 (4)0.8726 (3)0.4199 (3)0.0623 (12)
H181.48480.88290.40650.075*
C191.6096 (3)0.3635 (3)0.38105 (19)0.0271 (7)
C201.6740 (3)0.2846 (3)0.31014 (19)0.0275 (7)
C211.5723 (4)0.2589 (3)0.2323 (2)0.0342 (7)
H211.46030.29160.22350.041*
C221.6334 (4)0.1856 (3)0.1674 (2)0.0453 (9)
H221.56310.16660.11470.054*
C231.7952 (5)0.1399 (3)0.1787 (2)0.0519 (10)
H231.83700.09050.13370.062*
C241.8963 (4)0.1663 (3)0.2558 (3)0.0511 (10)
H242.00840.13500.26390.061*
C251.8364 (4)0.2375 (3)0.3211 (2)0.0402 (8)
H251.90730.25440.37430.048*
C260.1744 (3)0.2772 (3)0.04270 (19)0.0263 (7)
C270.3730 (5)0.0630 (4)0.1756 (3)0.0698 (13)
H270.41930.13850.20530.084*
C280.3120 (5)0.0550 (3)0.0454 (3)0.0555 (10)
H280.31690.06010.01450.067*
C290.2334 (4)0.1471 (3)0.1756 (2)0.0368 (8)
H290.18290.21630.20580.044*
C300.2388 (4)0.1566 (3)0.0885 (2)0.0326 (7)
C310.3782 (6)0.0545 (4)0.0896 (3)0.0787 (14)
H310.42780.12440.05960.094*
C320.3013 (4)0.0368 (3)0.2192 (3)0.0514 (10)
H320.29800.03090.27930.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0145 (2)0.0247 (3)0.0243 (3)0.0074 (2)0.0022 (2)0.0077 (2)
Cu20.01624 (19)0.0281 (2)0.0262 (2)0.00850 (15)0.00295 (14)0.00849 (15)
O10.0183 (10)0.0285 (11)0.0325 (11)0.0079 (9)0.0004 (9)0.0107 (9)
O20.0537 (15)0.0391 (13)0.0320 (12)0.0183 (11)0.0145 (11)0.0026 (10)
O30.0212 (11)0.0328 (12)0.0422 (13)0.0136 (9)0.0051 (9)0.0123 (10)
O40.0211 (11)0.0349 (12)0.0336 (12)0.0133 (9)0.0016 (9)0.0109 (10)
O50.0205 (11)0.0332 (12)0.0298 (11)0.0065 (9)0.0002 (9)0.0082 (9)
O60.0234 (11)0.0386 (13)0.0314 (12)0.0043 (9)0.0019 (9)0.0065 (10)
O70.0288 (12)0.0510 (14)0.0341 (12)0.0216 (11)0.0079 (9)0.0220 (11)
N10.0179 (12)0.0237 (13)0.0232 (12)0.0074 (10)0.0001 (10)0.0051 (10)
N20.0163 (12)0.0310 (14)0.0224 (13)0.0101 (10)0.0012 (10)0.0068 (11)
N30.0182 (12)0.0272 (13)0.0220 (12)0.0088 (10)0.0008 (10)0.0036 (10)
C10.0191 (15)0.0285 (16)0.0260 (16)0.0066 (12)0.0036 (12)0.0060 (12)
C20.0206 (15)0.0227 (15)0.0241 (15)0.0041 (12)0.0020 (12)0.0056 (12)
C30.0176 (14)0.0257 (16)0.0262 (15)0.0086 (12)0.0028 (12)0.0069 (12)
C40.0159 (14)0.0195 (14)0.0250 (15)0.0045 (11)0.0012 (12)0.0013 (12)
C50.0203 (15)0.0299 (16)0.0201 (15)0.0074 (13)0.0006 (12)0.0037 (12)
C60.0205 (15)0.0260 (16)0.0271 (16)0.0085 (12)0.0001 (12)0.0034 (13)
C70.0176 (14)0.0267 (15)0.0207 (14)0.0084 (12)0.0021 (11)0.0024 (12)
C80.0211 (15)0.0246 (15)0.0247 (15)0.0073 (12)0.0004 (12)0.0059 (12)
C90.0242 (16)0.0379 (18)0.0288 (16)0.0156 (14)0.0015 (13)0.0071 (14)
C100.0305 (17)0.0300 (17)0.0364 (18)0.0144 (14)0.0053 (14)0.0122 (14)
C110.0230 (16)0.0306 (17)0.0271 (16)0.0066 (13)0.0043 (13)0.0075 (13)
C120.0228 (16)0.0312 (17)0.0297 (16)0.0137 (13)0.0033 (13)0.0030 (14)
C130.0301 (17)0.0326 (18)0.0309 (17)0.0170 (14)0.0007 (13)0.0061 (14)
C140.0293 (17)0.0373 (18)0.0308 (17)0.0174 (14)0.0030 (13)0.0026 (14)
C150.043 (2)0.052 (2)0.0340 (18)0.0301 (18)0.0080 (15)0.0037 (16)
C160.068 (3)0.052 (2)0.058 (2)0.043 (2)0.003 (2)0.014 (2)
C170.060 (3)0.045 (2)0.116 (4)0.026 (2)0.018 (3)0.046 (2)
C180.036 (2)0.045 (2)0.100 (3)0.0187 (18)0.015 (2)0.032 (2)
C190.0240 (16)0.0270 (16)0.0336 (17)0.0112 (13)0.0044 (14)0.0105 (13)
C200.0265 (16)0.0263 (16)0.0316 (17)0.0066 (13)0.0076 (13)0.0083 (13)
C210.0302 (18)0.0311 (18)0.0398 (19)0.0069 (14)0.0057 (15)0.0022 (15)
C220.049 (2)0.043 (2)0.039 (2)0.0082 (18)0.0059 (17)0.0021 (17)
C230.069 (3)0.045 (2)0.044 (2)0.003 (2)0.028 (2)0.0031 (17)
C240.035 (2)0.061 (3)0.059 (2)0.0002 (18)0.0238 (19)0.011 (2)
C250.0311 (19)0.051 (2)0.041 (2)0.0112 (16)0.0095 (15)0.0088 (17)
C260.0228 (16)0.0294 (17)0.0273 (16)0.0131 (13)0.0015 (13)0.0055 (13)
C270.083 (3)0.037 (2)0.087 (3)0.006 (2)0.030 (3)0.030 (2)
C280.080 (3)0.034 (2)0.052 (2)0.008 (2)0.021 (2)0.0035 (18)
C290.0276 (17)0.0356 (19)0.048 (2)0.0015 (14)0.0128 (15)0.0141 (16)
C300.0291 (17)0.0278 (17)0.0411 (19)0.0067 (14)0.0059 (14)0.0100 (14)
C310.118 (4)0.029 (2)0.088 (3)0.003 (2)0.044 (3)0.004 (2)
C320.047 (2)0.048 (2)0.060 (2)0.0019 (18)0.0214 (19)0.0288 (19)
Geometric parameters (Å, º) top
Cu1—O11.9481 (18)C10—C111.384 (4)
Cu1—O1i1.9481 (18)C10—H100.9500
Cu1—N1i2.014 (2)C11—H110.9500
Cu1—N12.014 (2)C12—C131.497 (4)
Cu2—O4ii1.9543 (19)C13—C181.374 (4)
Cu2—O6ii1.962 (2)C13—C141.384 (4)
Cu2—O31.9727 (19)C14—C151.382 (4)
Cu2—O51.973 (2)C14—H140.9500
Cu2—N32.196 (2)C15—C161.362 (5)
O1—C261.276 (3)C15—H150.9500
O2—C261.239 (3)C16—C171.377 (5)
O3—C121.257 (3)C16—H160.9500
O4—C121.262 (3)C17—C181.382 (5)
O4—Cu2ii1.9543 (18)C17—H170.9500
O5—C191.263 (3)C18—H180.9500
O6—C191.262 (3)C19—C201.495 (4)
O6—Cu2ii1.962 (2)C20—C251.381 (4)
O7—C61.203 (3)C20—C211.384 (4)
N1—C11.343 (3)C21—C221.382 (4)
N1—C21.346 (3)C21—H210.9500
N2—C61.386 (3)C22—C231.372 (5)
N2—C41.394 (3)C22—H220.9500
N2—H2N0.861 (17)C23—C241.376 (5)
N3—C81.331 (3)C23—H230.9500
N3—C91.341 (3)C24—C251.371 (5)
C1—C51.373 (4)C24—H240.9500
C1—H10.9500C25—H250.9500
C2—C31.370 (4)C26—C301.501 (4)
C2—H20.9500C27—C311.362 (6)
C3—C41.395 (4)C27—C321.366 (5)
C3—H30.9500C27—H270.9500
C4—C51.392 (4)C28—C301.381 (5)
C5—H50.9500C28—C311.385 (5)
C6—C71.499 (4)C28—H280.9500
C7—C111.380 (4)C29—C301.380 (4)
C7—C81.389 (4)C29—C321.389 (4)
C8—H80.9500C29—H290.9500
C9—C101.374 (4)C31—H310.9500
C9—H90.9500C32—H320.9500
O1—Cu1—O1i180.0O3—C12—O4125.9 (3)
O1—Cu1—N1i89.20 (8)O3—C12—C13117.2 (3)
O1i—Cu1—N1i90.80 (8)O4—C12—C13116.9 (2)
O1—Cu1—N190.80 (8)C18—C13—C14118.7 (3)
O1i—Cu1—N189.20 (8)C18—C13—C12120.9 (3)
N1i—Cu1—N1180.0C14—C13—C12120.4 (3)
O4ii—Cu2—O6ii88.63 (8)C15—C14—C13120.2 (3)
O4ii—Cu2—O3168.50 (8)C15—C14—H14119.9
O6ii—Cu2—O389.13 (9)C13—C14—H14119.9
O4ii—Cu2—O588.78 (8)C16—C15—C14120.4 (3)
O6ii—Cu2—O5168.47 (8)C16—C15—H15119.8
O3—Cu2—O591.18 (8)C14—C15—H15119.8
O4ii—Cu2—N399.17 (8)C15—C16—C17120.1 (3)
O6ii—Cu2—N396.15 (8)C15—C16—H16120.0
O3—Cu2—N392.29 (8)C17—C16—H16120.0
O5—Cu2—N395.35 (8)C16—C17—C18119.4 (4)
C26—O1—Cu1108.01 (17)C16—C17—H17120.3
C12—O3—Cu2126.41 (18)C18—C17—H17120.3
C12—O4—Cu2ii119.08 (17)C13—C18—C17121.1 (3)
C19—O5—Cu2123.94 (19)C13—C18—H18119.4
C19—O6—Cu2ii121.68 (19)C17—C18—H18119.4
C1—N1—C2116.7 (2)O6—C19—O5125.6 (3)
C1—N1—Cu1121.09 (18)O6—C19—C20116.7 (3)
C2—N1—Cu1121.88 (18)O5—C19—C20117.7 (3)
C6—N2—C4126.4 (2)C25—C20—C21119.0 (3)
C6—N2—H2N115.0 (19)C25—C20—C19120.3 (3)
C4—N2—H2N117.6 (19)C21—C20—C19120.7 (3)
C8—N3—C9117.4 (2)C22—C21—C20120.1 (3)
C8—N3—Cu2123.03 (18)C22—C21—H21120.0
C9—N3—Cu2119.43 (18)C20—C21—H21120.0
N1—C1—C5124.1 (3)C23—C22—C21120.4 (3)
N1—C1—H1117.9C23—C22—H22119.8
C5—C1—H1117.9C21—C22—H22119.8
N1—C2—C3123.3 (3)C22—C23—C24119.5 (3)
N1—C2—H2118.4C22—C23—H23120.2
C3—C2—H2118.4C24—C23—H23120.2
C2—C3—C4119.4 (2)C25—C24—C23120.4 (3)
C2—C3—H3120.3C25—C24—H24119.8
C4—C3—H3120.3C23—C24—H24119.8
C5—C4—N2123.9 (2)C24—C25—C20120.6 (3)
C5—C4—C3117.8 (2)C24—C25—H25119.7
N2—C4—C3118.3 (2)C20—C25—H25119.7
C1—C5—C4118.7 (3)O2—C26—O1123.7 (3)
C1—C5—H5120.7O2—C26—C30119.6 (3)
C4—C5—H5120.7O1—C26—C30116.7 (3)
O7—C6—N2123.9 (3)C31—C27—C32120.1 (4)
O7—C6—C7121.2 (2)C31—C27—H27120.0
N2—C6—C7114.9 (2)C32—C27—H27120.0
C11—C7—C8118.2 (2)C30—C28—C31119.8 (4)
C11—C7—C6124.0 (2)C30—C28—H28120.1
C8—C7—C6117.7 (2)C31—C28—H28120.1
N3—C8—C7123.4 (3)C30—C29—C32120.3 (3)
N3—C8—H8118.3C30—C29—H29119.8
C7—C8—H8118.3C32—C29—H29119.8
N3—C9—C10123.2 (3)C29—C30—C28119.1 (3)
N3—C9—H9118.4C29—C30—C26120.6 (3)
C10—C9—H9118.4C28—C30—C26120.2 (3)
C9—C10—C11118.8 (3)C27—C31—C28120.7 (4)
C9—C10—H10120.6C27—C31—H31119.6
C11—C10—H10120.6C28—C31—H31119.6
C7—C11—C10118.9 (3)C27—C32—C29119.9 (3)
C7—C11—H11120.5C27—C32—H32120.1
C10—C11—H11120.5C29—C32—H32120.1
N1i—Cu1—O1—C2697.42 (18)C6—C7—C11—C10176.8 (3)
N1—Cu1—O1—C2682.58 (18)C9—C10—C11—C71.1 (5)
O4ii—Cu2—O3—C127.5 (6)Cu2—O3—C12—O41.2 (4)
O6ii—Cu2—O3—C1286.3 (2)Cu2—O3—C12—C13177.83 (19)
O5—Cu2—O3—C1282.2 (2)Cu2ii—O4—C12—O32.9 (4)
N3—Cu2—O3—C12177.6 (2)Cu2ii—O4—C12—C13176.08 (19)
O4ii—Cu2—O5—C1991.6 (2)O3—C12—C13—C1820.6 (5)
O6ii—Cu2—O5—C1914.5 (5)O4—C12—C13—C18158.5 (3)
O3—Cu2—O5—C1976.9 (2)O3—C12—C13—C14158.7 (3)
N3—Cu2—O5—C19169.4 (2)O4—C12—C13—C1422.2 (4)
O1—Cu1—N1—C132.9 (2)C18—C13—C14—C150.6 (5)
O1i—Cu1—N1—C1147.1 (2)C12—C13—C14—C15179.9 (3)
O1—Cu1—N1—C2140.1 (2)C13—C14—C15—C160.2 (5)
O1i—Cu1—N1—C239.9 (2)C14—C15—C16—C170.6 (6)
O4ii—Cu2—N3—C80.9 (2)C15—C16—C17—C180.2 (7)
O6ii—Cu2—N3—C890.5 (2)C14—C13—C18—C171.0 (6)
O3—Cu2—N3—C8179.9 (2)C12—C13—C18—C17179.7 (4)
O5—Cu2—N3—C888.7 (2)C16—C17—C18—C130.6 (7)
O4ii—Cu2—N3—C9174.6 (2)Cu2ii—O6—C19—O50.8 (4)
O6ii—Cu2—N3—C985.0 (2)Cu2ii—O6—C19—C20179.98 (17)
O3—Cu2—N3—C94.4 (2)Cu2—O5—C19—O63.9 (4)
O5—Cu2—N3—C995.8 (2)Cu2—O5—C19—C20176.99 (17)
C2—N1—C1—C50.8 (4)O6—C19—C20—C2519.3 (4)
Cu1—N1—C1—C5172.5 (2)O5—C19—C20—C25161.5 (3)
C1—N1—C2—C32.8 (4)O6—C19—C20—C21161.4 (3)
Cu1—N1—C2—C3170.4 (2)O5—C19—C20—C2117.8 (4)
N1—C2—C3—C42.1 (4)C25—C20—C21—C220.8 (4)
C6—N2—C4—C59.2 (4)C19—C20—C21—C22179.8 (3)
C6—N2—C4—C3171.6 (3)C20—C21—C22—C231.4 (5)
C2—C3—C4—C50.6 (4)C21—C22—C23—C240.9 (5)
C2—C3—C4—N2179.9 (2)C22—C23—C24—C250.1 (5)
N1—C1—C5—C41.8 (4)C23—C24—C25—C200.6 (5)
N2—C4—C5—C1178.3 (3)C21—C20—C25—C240.1 (5)
C3—C4—C5—C12.5 (4)C19—C20—C25—C24179.2 (3)
C4—N2—C6—O75.6 (5)Cu1—O1—C26—O24.5 (3)
C4—N2—C6—C7174.1 (2)Cu1—O1—C26—C30175.13 (19)
O7—C6—C7—C11149.7 (3)C32—C29—C30—C280.3 (5)
N2—C6—C7—C1130.0 (4)C32—C29—C30—C26176.3 (3)
O7—C6—C7—C825.7 (4)C31—C28—C30—C290.1 (6)
N2—C6—C7—C8154.6 (3)C31—C28—C30—C26176.8 (4)
C9—N3—C8—C70.0 (4)O2—C26—C30—C29162.1 (3)
Cu2—N3—C8—C7175.6 (2)O1—C26—C30—C2918.2 (4)
C11—C7—C8—N31.0 (4)O2—C26—C30—C2814.5 (4)
C6—C7—C8—N3176.6 (3)O1—C26—C30—C28165.1 (3)
C8—N3—C9—C100.5 (4)C32—C27—C31—C280.3 (8)
Cu2—N3—C9—C10175.3 (2)C30—C28—C31—C270.4 (7)
N3—C9—C10—C110.1 (5)C31—C27—C32—C290.1 (7)
C8—C7—C11—C101.5 (4)C30—C29—C32—C270.5 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+3, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2iii0.86 (2)2.01 (2)2.867 (3)177 (3)
Symmetry code: (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu3(C7H5O2)6(C11H9N3O)2]
Mr1315.70
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.9183 (7), 11.3348 (9), 15.5534 (12)
α, β, γ (°)85.471 (1), 75.804 (1), 75.007 (1)
V3)1472.1 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.725, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
24050, 5372, 4042
Rint0.053
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.02
No. of reflections5372
No. of parameters397
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.31

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Crystal Maker (Palmer, 2007).

Selected bond lengths (Å) top
Cu1—O11.9481 (18)Cu2—O31.9727 (19)
Cu1—N12.014 (2)Cu2—O51.973 (2)
Cu2—O4i1.9543 (19)Cu2—N32.196 (2)
Cu2—O6i1.962 (2)
Symmetry code: (i) x+3, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2ii0.861 (17)2.007 (18)2.867 (3)177 (3)
Symmetry code: (ii) x+1, y+1, z.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for supporting this work. PEK thanks the Michigan State University High School Honors Science Program for his participation in this research project.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem. 19, 753–757.  CrossRef CAS Web of Science Google Scholar
First citationKumar, D. K. (2009). Inorg. Chim. Acta, 362, 1767–1771.  Web of Science CSD CrossRef Google Scholar
First citationPalmer, D. (2007). Crystal Maker. Version 7.2. PO Box 183, Bicester, Oxfordshire OX26 3TA, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds