organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Bromo­phen­yl)thio­urea

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 July 2012; accepted 11 July 2012; online 18 July 2012)

In the title compound, C7H7BrN2S, the thio­urea moiety is nearly planar (r.m.s. deviation = 0.004 Å) and it forms a dihedral angle of 66.72 (15)° with the benzene ring. The C—N—C—N2 torsion angle is 15.1 (4)°. In the crystal, mol­ecules are linked via N—H⋯S and N—H⋯N hydrogen bonds into sheets lying parallel to (101).

Related literature

For general background to and related structures of the title compound, see: Fun et al. (2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2423.]); Sarojini et al. (2007[Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3754.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7BrN2S

  • Mr = 231.12

  • Triclinic, [P \overline 1]

  • a = 5.5308 (8) Å

  • b = 8.5316 (12) Å

  • c = 9.4249 (14) Å

  • α = 103.500 (3)°

  • β = 90.878 (3)°

  • γ = 97.232 (4)°

  • V = 428.54 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.97 mm−1

  • T = 100 K

  • 0.23 × 0.16 × 0.07 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.396, Tmax = 0.716

  • 5292 measured reflections

  • 1481 independent reflections

  • 1354 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.067

  • S = 1.09

  • 1481 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S1i 1.05 2.28 3.307 (3) 166
N2—H1N2⋯S1ii 0.96 2.40 3.349 (3) 168
N2—H2N2⋯Br1iii 0.92 2.71 3.468 (2) 141
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of thiourea derivatives (Fun et al., 2012; Sarojini et al., 2007), the title compound was prepared and its crystal structure is reported here.

In the title molecule (Fig. 1), the thiourea moiety (S1/N1/N2/C7) is nearly planar (r.m.s. deviation = 0.004 Å) and it forms a dihedral angle of 66.72 (15)° with the benzene ring (C1–C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2012; Sarojini et al., 2007).

In the crystal structure, Fig. 2, molecules are linked via N1—H1N1···S1, N2—H1N2···S1 and N2—H2N2···Br1 hydrogen bonds (Table 1) into two-dimensional sheets parallel to (101).

Related literature top

For general background to and related structures of the title compound, see: Fun et al. (2012); Sarojini et al. (2007). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

3-Bromoaniline (1.39 g, 0.0081 mol) was refluxed with potassium thiocyanate (1.4 g, 0.0142 mol) in 20 ml of water and 1.6 ml of conc. HCl for 3 h. The reaction mixture was then cooled to room temperature and stirred overnight. The precipitated product was then filtered, washed with water, dried and recrystallised from ethyl acetate as colourless plates (m.p. = 389–391 K).

Refinement top

N-bound hydrogen atoms were located in a difference Fourier map and refined using a riding model with Uiso(H) = 1.2Ueq(N) [N—H = 0.9156–1.0468 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

In continuation of our work on synthesis of thiourea derivatives (Fun et al., 2012; Sarojini et al., 2007), the title compound was prepared and its crystal structure is reported here.

In the title molecule (Fig. 1), the thiourea moiety (S1/N1/N2/C7) is nearly planar (r.m.s. deviation = 0.004 Å) and it forms a dihedral angle of 66.72 (15)° with the benzene ring (C1–C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2012; Sarojini et al., 2007).

In the crystal structure, Fig. 2, molecules are linked via N1—H1N1···S1, N2—H1N2···S1 and N2—H2N2···Br1 hydrogen bonds (Table 1) into two-dimensional sheets parallel to (101).

For general background to and related structures of the title compound, see: Fun et al. (2012); Sarojini et al. (2007). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1-(3-Bromophenyl)thiourea top
Crystal data top
C7H7BrN2SZ = 2
Mr = 231.12F(000) = 228
Triclinic, P1Dx = 1.791 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5308 (8) ÅCell parameters from 3285 reflections
b = 8.5316 (12) Åθ = 2.9–29.6°
c = 9.4249 (14) ŵ = 4.97 mm1
α = 103.500 (3)°T = 100 K
β = 90.878 (3)°Plate, colourless
γ = 97.232 (4)°0.23 × 0.16 × 0.07 mm
V = 428.54 (11) Å3
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
1481 independent reflections
Radiation source: fine-focus sealed tube1354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.396, Tmax = 0.716k = 1010
5292 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.1495P]
where P = (Fo2 + 2Fc2)/3
1481 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C7H7BrN2Sγ = 97.232 (4)°
Mr = 231.12V = 428.54 (11) Å3
Triclinic, P1Z = 2
a = 5.5308 (8) ÅMo Kα radiation
b = 8.5316 (12) ŵ = 4.97 mm1
c = 9.4249 (14) ÅT = 100 K
α = 103.500 (3)°0.23 × 0.16 × 0.07 mm
β = 90.878 (3)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
1481 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1354 reflections with I > 2σ(I)
Tmin = 0.396, Tmax = 0.716Rint = 0.034
5292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.09Δρmax = 0.44 e Å3
1481 reflectionsΔρmin = 0.48 e Å3
100 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.80456 (5)0.08100 (4)0.30695 (3)0.02513 (13)
S10.39118 (12)0.25378 (9)1.02969 (8)0.01925 (18)
N10.7109 (4)0.3643 (3)0.8568 (3)0.0188 (5)
H1N10.64780.47670.89450.023*
N20.7347 (4)0.1050 (3)0.8821 (3)0.0201 (5)
H1N20.67630.00040.89900.024*
H2N20.87460.11120.83180.024*
C11.0878 (5)0.4459 (4)0.7452 (3)0.0208 (6)
H1A1.14260.52200.83400.025*
C21.2308 (5)0.4300 (4)0.6236 (3)0.0241 (7)
H2A1.38360.49660.62970.029*
C31.1532 (5)0.3180 (4)0.4929 (3)0.0220 (6)
H3A1.25290.30570.41080.026*
C40.9281 (5)0.2254 (4)0.4859 (3)0.0185 (6)
C50.7812 (5)0.2390 (3)0.6044 (3)0.0174 (6)
H5A0.62650.17440.59720.021*
C60.8650 (5)0.3495 (4)0.7348 (3)0.0183 (6)
C70.6287 (5)0.2392 (3)0.9158 (3)0.0164 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02112 (19)0.0317 (2)0.01968 (19)0.00583 (13)0.00184 (11)0.00064 (13)
S10.0192 (4)0.0159 (4)0.0237 (4)0.0044 (3)0.0047 (3)0.0055 (3)
N10.0211 (12)0.0164 (13)0.0189 (13)0.0044 (10)0.0024 (10)0.0029 (10)
N20.0210 (12)0.0149 (13)0.0256 (13)0.0053 (10)0.0052 (10)0.0057 (10)
C10.0207 (15)0.0199 (16)0.0220 (15)0.0030 (12)0.0053 (12)0.0055 (12)
C20.0155 (15)0.0282 (18)0.0283 (17)0.0024 (13)0.0029 (13)0.0092 (14)
C30.0163 (15)0.0281 (17)0.0224 (15)0.0058 (13)0.0008 (12)0.0061 (13)
C40.0181 (14)0.0192 (16)0.0185 (14)0.0064 (12)0.0030 (11)0.0036 (12)
C50.0161 (14)0.0140 (15)0.0230 (15)0.0033 (11)0.0007 (11)0.0052 (11)
C60.0194 (14)0.0198 (15)0.0179 (15)0.0065 (12)0.0011 (11)0.0069 (12)
C70.0169 (14)0.0135 (14)0.0176 (14)0.0007 (11)0.0044 (11)0.0025 (11)
Geometric parameters (Å, º) top
Br1—C41.900 (3)C1—C21.393 (4)
S1—C71.707 (3)C1—H1A0.9500
N1—C71.348 (4)C2—C31.395 (4)
N1—C61.433 (4)C2—H2A0.9500
N1—H1N11.0468C3—C41.380 (4)
N2—C71.327 (4)C3—H3A0.9500
N2—H1N20.9608C4—C51.383 (4)
N2—H2N20.9156C5—C61.395 (4)
C1—C61.381 (4)C5—H5A0.9500
C7—N1—C6123.6 (2)C2—C3—H3A120.9
C7—N1—H1N1119.2C3—C4—C5122.0 (3)
C6—N1—H1N1116.9C3—C4—Br1120.0 (2)
C7—N2—H1N2127.4C5—C4—Br1117.9 (2)
C7—N2—H2N2116.3C4—C5—C6118.6 (3)
H1N2—N2—H2N2116.2C4—C5—H5A120.7
C6—C1—C2119.0 (3)C6—C5—H5A120.7
C6—C1—H1A120.5C1—C6—C5121.0 (3)
C2—C1—H1A120.5C1—C6—N1120.6 (3)
C1—C2—C3121.1 (3)C5—C6—N1118.3 (3)
C1—C2—H2A119.5N2—C7—N1118.5 (3)
C3—C2—H2A119.5N2—C7—S1121.2 (2)
C4—C3—C2118.3 (3)N1—C7—S1120.3 (2)
C4—C3—H3A120.9
C6—C1—C2—C30.5 (4)C2—C1—C6—N1178.9 (2)
C1—C2—C3—C41.4 (4)C4—C5—C6—C11.3 (4)
C2—C3—C4—C51.0 (4)C4—C5—C6—N1179.3 (2)
C2—C3—C4—Br1176.0 (2)C7—N1—C6—C1123.6 (3)
C3—C4—C5—C60.3 (4)C7—N1—C6—C558.4 (4)
Br1—C4—C5—C6177.34 (19)C6—N1—C7—N215.1 (4)
C2—C1—C6—C50.9 (4)C6—N1—C7—S1164.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i1.052.283.307 (3)166
N2—H1N2···S1ii0.962.403.349 (3)168
N2—H2N2···Br1iii0.922.713.468 (2)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H7BrN2S
Mr231.12
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.5308 (8), 8.5316 (12), 9.4249 (14)
α, β, γ (°)103.500 (3), 90.878 (3), 97.232 (4)
V3)428.54 (11)
Z2
Radiation typeMo Kα
µ (mm1)4.97
Crystal size (mm)0.23 × 0.16 × 0.07
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.396, 0.716
No. of measured, independent and
observed [I > 2σ(I)] reflections
5292, 1481, 1354
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.09
No. of reflections1481
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i1.052.283.307 (3)166
N2—H1N2···S1ii0.962.403.349 (3)168
N2—H2N2···Br1iii0.922.713.468 (2)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+2, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC for financial assistance through SAP and a BSR one-time grant for the purchase of chemicals.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2423.  CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds