organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-2-(naphthalen-1-yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 July 2012; accepted 11 July 2012; online 18 July 2012)

In the title compound, C18H14ClNO, the naphthalene ring system [maximum deviation = 0.014 (9) Å] forms a dihedral angle of 74.8 (2)° with the benzene ring. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds into chains propagating along [010].

Related literature

For general background to and related structures of the title compound, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29-o30.], 2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1385.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14ClNO

  • Mr = 295.75

  • Monoclinic, P 21 /c

  • a = 19.163 (6) Å

  • b = 5.0458 (11) Å

  • c = 17.252 (4) Å

  • β = 116.365 (5)°

  • V = 1494.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.978

  • 9206 measured reflections

  • 2611 independent reflections

  • 1185 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.208

  • S = 1.01

  • 2611 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.98 (5) 1.98 (5) 2.942 (4) 166 (4)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of amides (Fun et al., 2010, 2011a,b, 2012), we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths are comparable to related structures (Fun et al., 2010, 2011a,b, 2012). The naphthalene ring system (C1–C10, maximum deviation of 0.014 (9) Å at atom C5) forms a dihedral angle of 74.8 (2)° with the benzene ring (C13–C18).

In the crystal structure, Fig. 2, molecules are linked via N1—H1N1···O1 hydrogen bonds (Table 1) into one-dimensional chains along [010].

Related literature top

For general background to and related structures of the title compound, see: Fun et al. (2010, 2011a,b, 2012).

Experimental top

1-Naphthalene acetic acid (0.186 g, 1 mmol), 4-chloroaniline (0.127 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Colourless blocks were grown from acetone and toluene (1:1) mixture by the slow evaporation method (m.p. 449–451 K).

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely with N1—H1N1 = 0.98 (5) Å. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

In continuation of our work on synthesis of amides (Fun et al., 2010, 2011a,b, 2012), we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths are comparable to related structures (Fun et al., 2010, 2011a,b, 2012). The naphthalene ring system (C1–C10, maximum deviation of 0.014 (9) Å at atom C5) forms a dihedral angle of 74.8 (2)° with the benzene ring (C13–C18).

In the crystal structure, Fig. 2, molecules are linked via N1—H1N1···O1 hydrogen bonds (Table 1) into one-dimensional chains along [010].

For general background to and related structures of the title compound, see: Fun et al. (2010, 2011a,b, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N-(4-Chlorophenyl)-2-(naphthalen-1-yl)acetamide top
Crystal data top
C18H14ClNOF(000) = 616
Mr = 295.75Dx = 1.314 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1386 reflections
a = 19.163 (6) Åθ = 2.4–21.5°
b = 5.0458 (11) ŵ = 0.25 mm1
c = 17.252 (4) ÅT = 296 K
β = 116.365 (5)°Block, colourless
V = 1494.6 (7) Å30.35 × 0.14 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
2611 independent reflections
Radiation source: fine-focus sealed tube1185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.916, Tmax = 0.978k = 53
9206 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.0913P)2 + 0.5172P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2611 reflectionsΔρmax = 0.32 e Å3
195 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (3)
Crystal data top
C18H14ClNOV = 1494.6 (7) Å3
Mr = 295.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.163 (6) ŵ = 0.25 mm1
b = 5.0458 (11) ÅT = 296 K
c = 17.252 (4) Å0.35 × 0.14 × 0.09 mm
β = 116.365 (5)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
2611 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1185 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.978Rint = 0.050
9206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.32 e Å3
2611 reflectionsΔρmin = 0.18 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30184 (7)0.9142 (3)0.11979 (9)0.1183 (7)
O10.64245 (16)0.5769 (5)0.1247 (2)0.0885 (10)
N10.6142 (2)1.0067 (7)0.1325 (2)0.0681 (10)
C10.8073 (3)0.5845 (12)0.0810 (4)0.1051 (16)
H1A0.77830.65650.02630.126*
C20.8600 (4)0.3825 (15)0.0897 (6)0.130 (2)
H2A0.86500.31940.04180.156*
C30.9041 (4)0.2791 (13)0.1703 (7)0.138 (3)
H3A0.94020.14600.17800.166*
C40.8942 (3)0.3771 (11)0.2422 (5)0.1032 (17)
C50.9390 (4)0.2649 (14)0.3251 (8)0.147 (3)
H5A0.97390.12760.33280.176*
C60.9296 (5)0.363 (2)0.3916 (7)0.166 (3)
H6A0.95980.29250.44630.199*
C80.8326 (3)0.6693 (12)0.3047 (5)0.1102 (17)
H8A0.79720.80250.29940.132*
C70.8779 (4)0.5606 (17)0.3840 (5)0.133 (2)
H7A0.87370.62090.43260.160*
C90.8398 (3)0.5767 (9)0.2290 (4)0.0863 (14)
C100.7961 (3)0.6808 (9)0.1472 (4)0.0880 (14)
C110.7373 (2)0.9033 (9)0.1340 (3)0.0958 (14)
H11A0.76061.02970.18100.115*
H11B0.72660.99550.08060.115*
C120.6607 (2)0.8082 (8)0.1304 (3)0.0723 (11)
C130.5384 (2)0.9812 (7)0.1258 (2)0.0589 (10)
C140.4866 (2)0.7824 (7)0.0781 (2)0.0666 (11)
H14A0.50130.65980.04790.080*
C150.4140 (3)0.7658 (8)0.0751 (3)0.0710 (11)
H15A0.38010.63120.04360.085*
C160.3914 (2)0.9466 (9)0.1184 (3)0.0748 (12)
C170.4414 (3)1.1482 (8)0.1643 (3)0.0794 (13)
H17A0.42591.27350.19310.095*
C180.5136 (3)1.1623 (8)0.1672 (2)0.0717 (11)
H18B0.54691.29890.19820.086*
H1N10.630 (3)1.193 (10)0.140 (3)0.115 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0979 (10)0.1515 (14)0.1228 (12)0.0188 (9)0.0646 (9)0.0142 (10)
O10.0811 (19)0.0456 (17)0.144 (3)0.0048 (15)0.0547 (19)0.0001 (17)
N10.077 (2)0.0456 (19)0.080 (2)0.0074 (18)0.0337 (19)0.0019 (17)
C10.102 (4)0.106 (4)0.128 (5)0.025 (3)0.069 (4)0.014 (4)
C20.111 (5)0.121 (5)0.196 (7)0.027 (4)0.102 (5)0.054 (5)
C30.083 (4)0.085 (4)0.261 (10)0.017 (3)0.090 (6)0.022 (6)
C40.052 (3)0.076 (3)0.175 (6)0.002 (3)0.045 (4)0.020 (4)
C50.077 (4)0.095 (5)0.247 (10)0.004 (3)0.053 (6)0.030 (6)
C60.105 (6)0.170 (9)0.208 (10)0.025 (6)0.056 (6)0.021 (8)
C80.094 (4)0.114 (4)0.128 (5)0.027 (3)0.054 (4)0.001 (4)
C70.105 (5)0.166 (7)0.129 (6)0.022 (5)0.052 (4)0.011 (5)
C90.067 (3)0.062 (3)0.133 (5)0.015 (2)0.048 (3)0.001 (3)
C100.079 (3)0.066 (3)0.128 (5)0.019 (3)0.054 (3)0.003 (3)
C110.078 (3)0.065 (3)0.143 (4)0.006 (3)0.049 (3)0.020 (3)
C120.077 (3)0.046 (2)0.093 (3)0.000 (2)0.037 (2)0.008 (2)
C130.087 (3)0.040 (2)0.052 (2)0.004 (2)0.032 (2)0.0031 (17)
C140.080 (3)0.051 (2)0.070 (3)0.003 (2)0.035 (2)0.0098 (19)
C150.076 (3)0.065 (3)0.067 (3)0.005 (2)0.026 (2)0.006 (2)
C160.077 (3)0.092 (3)0.064 (3)0.016 (3)0.039 (2)0.015 (3)
C170.119 (4)0.061 (3)0.068 (3)0.010 (3)0.051 (3)0.003 (2)
C180.098 (3)0.053 (2)0.065 (3)0.002 (2)0.038 (2)0.001 (2)
Geometric parameters (Å, º) top
Cl1—C161.736 (4)C8—C91.451 (7)
O1—C121.210 (4)C8—H8A0.9300
N1—C121.352 (5)C7—H7A0.9300
N1—C131.411 (5)C9—C101.386 (6)
N1—H1N10.98 (5)C10—C111.535 (6)
C1—C101.344 (7)C11—C121.518 (6)
C1—C21.394 (8)C11—H11A0.9700
C1—H1A0.9300C11—H11B0.9700
C2—C31.371 (9)C13—C181.368 (5)
C2—H2A0.9300C13—C141.395 (5)
C3—C41.423 (9)C14—C151.371 (5)
C3—H3A0.9300C14—H14A0.9300
C4—C91.394 (7)C15—C161.365 (5)
C4—C51.420 (10)C15—H15A0.9300
C5—C61.331 (10)C16—C171.380 (6)
C5—H5A0.9300C17—C181.365 (6)
C6—C71.372 (10)C17—H17A0.9300
C6—H6A0.9300C18—H18B0.9300
C8—C71.367 (8)
C12—N1—C13126.7 (3)C1—C10—C9118.4 (5)
C12—N1—H1N1123 (3)C1—C10—C11121.6 (6)
C13—N1—H1N1111 (3)C9—C10—C11120.0 (5)
C10—C1—C2123.6 (6)C12—C11—C10114.0 (3)
C10—C1—H1A118.2C12—C11—H11A108.7
C2—C1—H1A118.2C10—C11—H11A108.7
C3—C2—C1118.6 (7)C12—C11—H11B108.7
C3—C2—H2A120.7C10—C11—H11B108.7
C1—C2—H2A120.7H11A—C11—H11B107.6
C2—C3—C4119.4 (7)O1—C12—N1123.1 (4)
C2—C3—H3A120.3O1—C12—C11123.3 (4)
C4—C3—H3A120.3N1—C12—C11113.7 (4)
C9—C4—C5121.8 (7)C18—C13—C14117.8 (4)
C9—C4—C3119.2 (7)C18—C13—N1118.7 (4)
C5—C4—C3119.0 (7)C14—C13—N1123.4 (3)
C6—C5—C4117.9 (8)C15—C14—C13120.7 (4)
C6—C5—H5A121.0C15—C14—H14A119.7
C4—C5—H5A121.0C13—C14—H14A119.7
C5—C6—C7123.7 (10)C16—C15—C14120.1 (4)
C5—C6—H6A118.2C16—C15—H15A119.9
C7—C6—H6A118.2C14—C15—H15A119.9
C7—C8—C9119.9 (6)C15—C16—C17120.0 (4)
C7—C8—H8A120.0C15—C16—Cl1120.0 (4)
C9—C8—H8A120.0C17—C16—Cl1119.9 (4)
C8—C7—C6120.0 (8)C18—C17—C16119.5 (4)
C8—C7—H7A120.0C18—C17—H17A120.2
C6—C7—H7A120.0C16—C17—H17A120.2
C10—C9—C4120.7 (6)C17—C18—C13121.9 (4)
C10—C9—C8122.6 (5)C17—C18—H18B119.1
C4—C9—C8116.7 (6)C13—C18—H18B119.1
C10—C1—C2—C31.4 (8)C8—C9—C10—C110.0 (6)
C1—C2—C3—C40.9 (9)C1—C10—C11—C12101.4 (5)
C2—C3—C4—C90.0 (8)C9—C10—C11—C1279.4 (5)
C2—C3—C4—C5178.7 (5)C13—N1—C12—O12.2 (7)
C9—C4—C5—C62.3 (9)C13—N1—C12—C11176.7 (4)
C3—C4—C5—C6179.0 (6)C10—C11—C12—O110.9 (7)
C4—C5—C6—C71.6 (12)C10—C11—C12—N1170.2 (4)
C9—C8—C7—C60.6 (8)C12—N1—C13—C18149.8 (4)
C5—C6—C7—C80.2 (11)C12—N1—C13—C1431.2 (6)
C5—C4—C9—C10179.2 (4)C18—C13—C14—C151.9 (5)
C3—C4—C9—C100.5 (6)N1—C13—C14—C15179.0 (4)
C5—C4—C9—C81.6 (6)C13—C14—C15—C160.8 (6)
C3—C4—C9—C8179.7 (4)C14—C15—C16—C170.7 (6)
C7—C8—C9—C10179.3 (4)C14—C15—C16—Cl1176.3 (3)
C7—C8—C9—C40.2 (7)C15—C16—C17—C181.0 (6)
C2—C1—C10—C90.8 (7)Cl1—C16—C17—C18176.0 (3)
C2—C1—C10—C11179.9 (4)C16—C17—C18—C130.2 (6)
C4—C9—C10—C10.2 (6)C14—C13—C18—C171.6 (5)
C8—C9—C10—C1179.3 (4)N1—C13—C18—C17179.3 (3)
C4—C9—C10—C11179.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.98 (5)1.98 (5)2.942 (4)166 (4)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H14ClNO
Mr295.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)19.163 (6), 5.0458 (11), 17.252 (4)
β (°) 116.365 (5)
V3)1494.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.916, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
9206, 2611, 1185
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.208, 1.01
No. of reflections2611
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.98 (5)1.98 (5)2.942 (4)166 (4)
Symmetry code: (i) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). BN also thanks UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1385.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds