organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Naphthalen-1-yl)-N-(1,3-thia­zol-2-yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 July 2012; accepted 11 July 2012; online 18 July 2012)

In the title compound, C15H12N2OS, the naphthalene ring system [maximum deviation = 0.026 (1) Å] forms a dihedral angle of 85.69 (6)° with the thia­zole ring [maximum deviation = 0.010 (1) Å]. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops. The dimers are linked by C—H⋯O hydrogen bonds into chains propagating along [110].

Related literature

For general background to and the related structures of the title compound, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29-o30.], 2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1385.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2OS

  • Mr = 268.33

  • Monoclinic, P 21 /c

  • a = 5.2668 (1) Å

  • b = 13.0861 (2) Å

  • c = 18.5373 (3) Å

  • β = 105.640 (1)°

  • V = 1230.32 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.39 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 0.956

  • 17425 measured reflections

  • 4470 independent reflections

  • 3657 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.108

  • S = 1.06

  • 4470 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N1i 0.85 2.07 2.9099 (16) 172
C13—H13A⋯O1ii 0.95 2.52 3.1929 (19) 128
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of amides (Fun et al., 2010, 2011a, 2011b, 2012), we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths are comparable to related structures (Fun et al., 2010, 2011a, 2011b, 2012). The naphthalene ring system (C6-C15, maximum deviation of 0.026 (1) Å at atom C6) forms a dihedral angle of 85.69 (6)° with the thiazol-2-yl ring (S1/N1/C1-C3, maximum deviation of 0.010 (1) Å at atom C3).

In the crystal structure, Fig. 2, molecules are linked via N2–H1···N1 and C13–H13A···O1 hydrogen bonds (Table 1) into one-dimensional chains along [110].

Related literature top

For general background to and the related structures of the title compound, see: Fun et al. (2010, 2011a,b, 2012). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

1-Naphthalene acetic acid (0.186 g, 1 mmol), 2-aminothiazole (0.1 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 mL of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Brown blocks were grown from methanol and dichloromethane (1:1) mixture by the slow evaporation method (m. p. : 475-477 K).

Refinement top

The N-bound hydrogen atoms was located in a difference Fourier map and refined using a riding model Uiso(H) = 1.2 Ueq(N) [N–H = 0.8458 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.99 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

In continuation of our work on synthesis of amides (Fun et al., 2010, 2011a, 2011b, 2012), we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths are comparable to related structures (Fun et al., 2010, 2011a, 2011b, 2012). The naphthalene ring system (C6-C15, maximum deviation of 0.026 (1) Å at atom C6) forms a dihedral angle of 85.69 (6)° with the thiazol-2-yl ring (S1/N1/C1-C3, maximum deviation of 0.010 (1) Å at atom C3).

In the crystal structure, Fig. 2, molecules are linked via N2–H1···N1 and C13–H13A···O1 hydrogen bonds (Table 1) into one-dimensional chains along [110].

For general background to and the related structures of the title compound, see: Fun et al. (2010, 2011a,b, 2012). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-(Naphthalen-1-yl)-N-(1,3-thiazol-2-yl)acetamide top
Crystal data top
C15H12N2OSF(000) = 560
Mr = 268.33Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5904 reflections
a = 5.2668 (1) Åθ = 2.3–32.5°
b = 13.0861 (2) ŵ = 0.26 mm1
c = 18.5373 (3) ÅT = 100 K
β = 105.640 (1)°Block, brown
V = 1230.32 (4) Å30.39 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4470 independent reflections
Radiation source: fine-focus sealed tube3657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 32.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.907, Tmax = 0.956k = 1919
17425 measured reflectionsl = 2628
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.749P]
where P = (Fo2 + 2Fc2)/3
4470 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H12N2OSV = 1230.32 (4) Å3
Mr = 268.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2668 (1) ŵ = 0.26 mm1
b = 13.0861 (2) ÅT = 100 K
c = 18.5373 (3) Å0.39 × 0.22 × 0.18 mm
β = 105.640 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4470 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3657 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.956Rint = 0.036
17425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.48 e Å3
4470 reflectionsΔρmin = 0.28 e Å3
172 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40765 (6)0.66213 (3)0.105525 (19)0.01874 (9)
O10.7884 (2)0.80307 (8)0.04709 (6)0.0259 (2)
N10.6697 (2)0.49519 (9)0.06570 (6)0.0169 (2)
N20.9062 (2)0.64044 (8)0.01161 (6)0.0163 (2)
H11.02200.60040.01400.020*
C10.2553 (3)0.54707 (11)0.13559 (8)0.0199 (3)
H1A0.07930.53990.16590.024*
C20.4222 (3)0.46858 (11)0.10991 (8)0.0189 (3)
H2A0.37260.39940.12150.023*
C30.6867 (2)0.59466 (10)0.05809 (7)0.0154 (2)
C40.9383 (3)0.74460 (10)0.00491 (8)0.0178 (2)
C51.1574 (3)0.77925 (11)0.06208 (8)0.0190 (3)
H5A1.21880.84830.05290.023*
H5B1.30870.73160.07050.023*
C61.0495 (2)0.78093 (10)0.13046 (8)0.0174 (2)
C71.1084 (3)0.70263 (11)0.18172 (8)0.0191 (3)
H7A1.22830.65090.17610.023*
C80.9946 (3)0.69737 (11)0.24260 (8)0.0211 (3)
H8A1.03950.64280.27750.025*
C90.8202 (3)0.77057 (11)0.25133 (8)0.0210 (3)
H9A0.74050.76550.29150.025*
C100.7573 (2)0.85443 (10)0.20059 (8)0.0178 (2)
C110.5793 (3)0.93187 (11)0.20968 (8)0.0220 (3)
H11A0.50050.92760.25000.026*
C120.5200 (3)1.01268 (11)0.16105 (8)0.0226 (3)
H12A0.39921.06360.16740.027*
C130.6382 (3)1.02017 (11)0.10154 (8)0.0218 (3)
H13A0.59871.07690.06840.026*
C140.8101 (3)0.94631 (10)0.09084 (8)0.0199 (3)
H14A0.88750.95250.05030.024*
C150.8737 (2)0.86059 (10)0.13969 (7)0.0168 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01559 (14)0.01887 (16)0.02027 (16)0.00490 (11)0.00230 (11)0.00192 (12)
O10.0310 (6)0.0161 (5)0.0268 (5)0.0046 (4)0.0013 (4)0.0015 (4)
N10.0141 (5)0.0160 (5)0.0192 (5)0.0005 (4)0.0021 (4)0.0008 (4)
N20.0140 (5)0.0131 (5)0.0203 (5)0.0017 (4)0.0018 (4)0.0008 (4)
C10.0138 (5)0.0244 (7)0.0196 (6)0.0000 (5)0.0013 (4)0.0008 (5)
C20.0146 (5)0.0209 (6)0.0197 (6)0.0015 (5)0.0020 (4)0.0016 (5)
C30.0132 (5)0.0161 (6)0.0165 (5)0.0016 (4)0.0034 (4)0.0007 (4)
C40.0180 (6)0.0151 (6)0.0214 (6)0.0007 (4)0.0073 (5)0.0011 (5)
C50.0170 (6)0.0163 (6)0.0240 (7)0.0008 (4)0.0063 (5)0.0028 (5)
C60.0142 (5)0.0159 (6)0.0210 (6)0.0018 (4)0.0027 (4)0.0031 (5)
C70.0168 (6)0.0158 (6)0.0223 (6)0.0002 (4)0.0013 (5)0.0019 (5)
C80.0213 (6)0.0187 (6)0.0201 (6)0.0015 (5)0.0002 (5)0.0016 (5)
C90.0221 (6)0.0214 (7)0.0185 (6)0.0030 (5)0.0037 (5)0.0016 (5)
C100.0147 (5)0.0176 (6)0.0194 (6)0.0028 (4)0.0014 (4)0.0049 (5)
C110.0210 (6)0.0214 (7)0.0238 (7)0.0010 (5)0.0063 (5)0.0063 (5)
C120.0209 (6)0.0178 (6)0.0274 (7)0.0017 (5)0.0035 (5)0.0057 (5)
C130.0236 (6)0.0137 (6)0.0254 (7)0.0016 (5)0.0021 (5)0.0019 (5)
C140.0210 (6)0.0162 (6)0.0221 (6)0.0012 (5)0.0052 (5)0.0018 (5)
C150.0145 (5)0.0155 (6)0.0189 (6)0.0018 (4)0.0019 (4)0.0029 (4)
Geometric parameters (Å, º) top
S1—C11.7264 (15)C7—C81.415 (2)
S1—C31.7367 (13)C7—H7A0.9500
O1—C41.2197 (17)C8—C91.367 (2)
N1—C31.3098 (17)C8—H8A0.9500
N1—C21.3846 (17)C9—C101.425 (2)
N2—C41.3749 (17)C9—H9A0.9500
N2—C31.3786 (16)C10—C111.4209 (19)
N2—H10.8458C10—C151.4247 (19)
C1—C21.3523 (19)C11—C121.370 (2)
C1—H1A0.9500C11—H11A0.9500
C2—H2A0.9500C12—C131.409 (2)
C4—C51.5188 (19)C12—H12A0.9500
C5—C61.5229 (19)C13—C141.375 (2)
C5—H5A0.9900C13—H13A0.9500
C5—H5B0.9900C14—C151.4238 (19)
C6—C71.3747 (19)C14—H14A0.9500
C6—C151.4350 (18)
C1—S1—C388.65 (6)C6—C7—H7A119.3
C3—N1—C2109.86 (11)C8—C7—H7A119.3
C4—N2—C3123.32 (11)C9—C8—C7120.21 (13)
C4—N2—H1120.7C9—C8—H8A119.9
C3—N2—H1116.0C7—C8—H8A119.9
C2—C1—S1110.32 (10)C8—C9—C10120.38 (13)
C2—C1—H1A124.8C8—C9—H9A119.8
S1—C1—H1A124.8C10—C9—H9A119.8
C1—C2—N1115.87 (13)C11—C10—C15119.47 (13)
C1—C2—H2A122.1C11—C10—C9120.96 (13)
N1—C2—H2A122.1C15—C10—C9119.57 (12)
N1—C3—N2121.37 (11)C12—C11—C10120.89 (14)
N1—C3—S1115.27 (10)C12—C11—H11A119.6
N2—C3—S1123.24 (10)C10—C11—H11A119.6
O1—C4—N2121.42 (13)C11—C12—C13119.88 (13)
O1—C4—C5123.70 (13)C11—C12—H12A120.1
N2—C4—C5114.69 (12)C13—C12—H12A120.1
C4—C5—C6108.24 (11)C14—C13—C12120.76 (14)
C4—C5—H5A110.1C14—C13—H13A119.6
C6—C5—H5A110.1C12—C13—H13A119.6
C4—C5—H5B110.1C13—C14—C15120.87 (13)
C6—C5—H5B110.1C13—C14—H14A119.6
H5A—C5—H5B108.4C15—C14—H14A119.6
C7—C6—C15119.46 (13)C14—C15—C10118.10 (12)
C7—C6—C5119.95 (12)C14—C15—C6123.03 (13)
C15—C6—C5120.50 (12)C10—C15—C6118.87 (12)
C6—C7—C8121.48 (13)
C3—S1—C1—C21.29 (11)C7—C8—C9—C101.9 (2)
S1—C1—C2—N10.83 (16)C8—C9—C10—C11179.05 (13)
C3—N1—C2—C10.34 (18)C8—C9—C10—C151.2 (2)
C2—N1—C3—N2174.69 (12)C15—C10—C11—C120.5 (2)
C2—N1—C3—S11.39 (15)C9—C10—C11—C12179.70 (13)
C4—N2—C3—N1176.49 (13)C10—C11—C12—C130.7 (2)
C4—N2—C3—S17.74 (18)C11—C12—C13—C141.0 (2)
C1—S1—C3—N11.59 (11)C12—C13—C14—C150.2 (2)
C1—S1—C3—N2174.41 (12)C13—C14—C15—C101.0 (2)
C3—N2—C4—O19.5 (2)C13—C14—C15—C6179.30 (13)
C3—N2—C4—C5165.66 (12)C11—C10—C15—C141.30 (18)
O1—C4—C5—C692.07 (16)C9—C10—C15—C14178.91 (12)
N2—C4—C5—C682.97 (14)C11—C10—C15—C6178.95 (12)
C4—C5—C6—C7101.68 (14)C9—C10—C15—C60.84 (18)
C4—C5—C6—C1574.62 (15)C7—C6—C15—C14177.58 (12)
C15—C6—C7—C81.5 (2)C5—C6—C15—C146.11 (19)
C5—C6—C7—C8174.79 (12)C7—C6—C15—C102.16 (18)
C6—C7—C8—C90.5 (2)C5—C6—C15—C10174.15 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.852.072.9099 (16)172
C13—H13A···O1ii0.952.523.1929 (19)128
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H12N2OS
Mr268.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.2668 (1), 13.0861 (2), 18.5373 (3)
β (°) 105.640 (1)
V3)1230.32 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.39 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.907, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
17425, 4470, 3657
Rint0.036
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.108, 1.06
No. of reflections4470
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.852.072.9099 (16)172
C13—H13A···O1ii0.952.523.1929 (19)128
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia for a Research University Grant (No. 1001/PFIZIK/811160). BN also thanks UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1385.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds