organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4,6-Tri­methyl­phen­yl)-1,3-thia­zol-2-amine

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cInterdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore, Pakistan, and dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 9 July 2012; accepted 10 July 2012; online 14 July 2012)

In the title compound, C12H14N2S, the dihedral angle between the 1,3,5-trimethyl­benzene and 1,3-thia­zol-2-amine groups is 73.15 (4)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops.

Related literature

For background to the biological activities of thia­zoles, see: Wilson et al. (2001[Wilson, K. J., Utig, C. R., Subhasinghe, N., Hoffman, J. B., Rudolph, N. J., Soll, R., Molloy, C. J., Bone, R., Green, D. & Randall, J. (2001). Bioorg. Med. Chem. Lett. 11, 915-918.]). For a related crystal structure, see: Caranoni & Capella (1982[Caranoni, C. & Capella, L. (1982). J. Appl. Cryst. 15, 106-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2S

  • Mr = 218.31

  • Monoclinic, P 21 /c

  • a = 14.2766 (6) Å

  • b = 7.0676 (2) Å

  • c = 13.8598 (6) Å

  • β = 118.736 (2)°

  • V = 1226.24 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.32 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.959

  • 10086 measured reflections

  • 2717 independent reflections

  • 2196 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.05

  • 2717 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.16 2.944 (2) 151
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Thiazole and its derivatives exhibit a large number of biological properties, for example antifungal and antibacterial (Wilson et al., 2001) activities. As part of our studies in this area, the title compound (I, Fig. 1) has been synthesized and its crystal structure is now reported.

The crystal structures of 1,3-thiazol-2-amine (Caranoni & Capella, 1982) has been published which is related to (I), (Fig. 1).

In (I), the 1,3,5-trimethylbenzene moiety A (C1–C9) and 1,3-thiazol-2-amine group B (N1/C10/S1/C11/C12/N2) are planar with r.m.s. deviation of 0.0345 Å and 0.0031 Å, respectively. The dihedral angle between A/B is 73.15 (4)°. The molecules are linked into dimers due to H-bondings of N—H···N type with R22(8) (Table 1, Fig. 2) ring motif.

Related literature top

For background to the biological activities of thiazoles, see: Wilson et al. (2001). For a related crystal structure, see: Caranoni & Capella (1982).

Experimental top

A mixture of N-mesitylthiourea (1 equiv, 1.00 g, 4.58 mmol), 2-chloro-1,1-dimethoxyethane (1.5 equiv, 1.04 g, 6.8 mmol) and few drops of concentrated HCl were dissolved in water and methanol mixture (1:1) (100 ml). The reaction mixture was refluxed for 6 h. The reaction mixture was diluted with water (100 ml) and basified to pH 8 with aqeous NaOH. The resulting precipitate was filtered, washed with cold water and recrystallized from chloroform and hexane (3:1) solution as yellow prisms.

Refinement top

The H-atoms were positioned geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl groups and x = 1.2 for other H atoms.

Structure description top

Thiazole and its derivatives exhibit a large number of biological properties, for example antifungal and antibacterial (Wilson et al., 2001) activities. As part of our studies in this area, the title compound (I, Fig. 1) has been synthesized and its crystal structure is now reported.

The crystal structures of 1,3-thiazol-2-amine (Caranoni & Capella, 1982) has been published which is related to (I), (Fig. 1).

In (I), the 1,3,5-trimethylbenzene moiety A (C1–C9) and 1,3-thiazol-2-amine group B (N1/C10/S1/C11/C12/N2) are planar with r.m.s. deviation of 0.0345 Å and 0.0031 Å, respectively. The dihedral angle between A/B is 73.15 (4)°. The molecules are linked into dimers due to H-bondings of N—H···N type with R22(8) (Table 1, Fig. 2) ring motif.

For background to the biological activities of thiazoles, see: Wilson et al. (2001). For a related crystal structure, see: Caranoni & Capella (1982).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers with R22(8) loops.
N-(2,4,6-Trimethylphenyl)-1,3-thiazol-2-amine top
Crystal data top
C12H14N2SF(000) = 464
Mr = 218.31Dx = 1.183 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2196 reflections
a = 14.2766 (6) Åθ = 1.6–27.3°
b = 7.0676 (2) ŵ = 0.23 mm1
c = 13.8598 (6) ÅT = 296 K
β = 118.736 (2)°Prism, yellow
V = 1226.24 (9) Å30.32 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2717 independent reflections
Radiation source: fine-focus sealed tube2196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 7.80 pixels mm-1θmax = 27.3°, θmin = 1.6°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 89
Tmin = 0.929, Tmax = 0.959l = 1717
10086 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.3377P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2717 reflectionsΔρmax = 0.30 e Å3
140 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (4)
Crystal data top
C12H14N2SV = 1226.24 (9) Å3
Mr = 218.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2766 (6) ŵ = 0.23 mm1
b = 7.0676 (2) ÅT = 296 K
c = 13.8598 (6) Å0.32 × 0.22 × 0.18 mm
β = 118.736 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2717 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2196 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.959Rint = 0.027
10086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
2717 reflectionsΔρmin = 0.24 e Å3
140 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28549 (3)0.60626 (7)0.20694 (3)0.0510 (2)
N10.37642 (11)0.6678 (2)0.42680 (11)0.0489 (4)
N20.46689 (11)0.4830 (2)0.35713 (11)0.0457 (4)
C10.28129 (12)0.7598 (2)0.41025 (12)0.0417 (5)
C20.25718 (15)0.9401 (3)0.36248 (14)0.0503 (5)
C30.16150 (17)1.0218 (3)0.34372 (15)0.0619 (7)
C40.09327 (16)0.9380 (3)0.37534 (15)0.0640 (7)
C50.12224 (14)0.7638 (3)0.42681 (14)0.0579 (6)
C60.21467 (13)0.6720 (2)0.44421 (12)0.0464 (5)
C70.24324 (19)0.4809 (3)0.49949 (19)0.0689 (8)
C80.3330 (2)1.0470 (3)0.3358 (2)0.0774 (9)
C90.0095 (2)1.0332 (5)0.3547 (2)0.1073 (13)
C100.38520 (12)0.5850 (2)0.34340 (12)0.0385 (4)
C110.36100 (15)0.4680 (3)0.16835 (14)0.0522 (6)
C120.45154 (15)0.4168 (3)0.25688 (14)0.0499 (6)
H10.430210.664510.492000.0586*
H30.142551.138320.308250.0742*
H50.078210.706560.450480.0694*
H7A0.184600.433990.508120.1034*
H7B0.305330.492710.570440.1034*
H7C0.257970.394420.455050.1034*
H8A0.317271.179800.331410.1162*
H8B0.324951.004120.266510.1162*
H8C0.405021.025360.392460.1162*
H9A0.058171.035670.277110.1608*
H9B0.005331.160260.382500.1608*
H9C0.041050.963990.391500.1608*
H110.341590.433780.096360.0626*
H120.501760.340470.251280.0599*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0449 (3)0.0634 (3)0.0357 (2)0.0060 (2)0.0122 (2)0.0011 (2)
N10.0442 (7)0.0644 (9)0.0332 (6)0.0155 (7)0.0148 (5)0.0007 (6)
N20.0449 (7)0.0542 (8)0.0398 (7)0.0100 (6)0.0217 (6)0.0047 (6)
C10.0410 (8)0.0480 (9)0.0323 (7)0.0071 (7)0.0147 (6)0.0023 (6)
C20.0594 (10)0.0491 (9)0.0441 (9)0.0067 (8)0.0263 (8)0.0009 (7)
C30.0747 (13)0.0597 (11)0.0479 (10)0.0267 (10)0.0268 (9)0.0082 (8)
C40.0539 (10)0.0921 (15)0.0403 (9)0.0287 (10)0.0182 (8)0.0018 (9)
C50.0448 (9)0.0857 (14)0.0432 (9)0.0020 (9)0.0212 (7)0.0026 (9)
C60.0481 (9)0.0532 (9)0.0347 (7)0.0004 (7)0.0174 (7)0.0039 (7)
C70.0830 (14)0.0585 (12)0.0719 (13)0.0024 (10)0.0425 (12)0.0080 (10)
C80.0980 (17)0.0590 (12)0.0915 (17)0.0005 (12)0.0585 (15)0.0086 (11)
C90.0779 (16)0.166 (3)0.0768 (16)0.0672 (19)0.0362 (13)0.0210 (17)
C100.0377 (7)0.0420 (8)0.0340 (7)0.0021 (6)0.0158 (6)0.0044 (6)
C110.0656 (11)0.0535 (10)0.0407 (8)0.0042 (8)0.0282 (8)0.0051 (7)
C120.0594 (10)0.0505 (10)0.0500 (9)0.0078 (8)0.0344 (8)0.0015 (7)
Geometric parameters (Å, º) top
S1—C101.7428 (15)C6—C71.509 (3)
S1—C111.720 (2)C11—C121.335 (3)
N1—C11.421 (2)C3—H30.9300
N1—C101.354 (2)C5—H50.9300
N2—C101.305 (2)C7—H7A0.9600
N2—C121.380 (2)C7—H7B0.9600
N1—H10.8600C7—H7C0.9600
C1—C61.393 (3)C8—H8A0.9600
C1—C21.401 (2)C8—H8B0.9600
C2—C31.388 (3)C8—H8C0.9600
C2—C81.505 (4)C9—H9A0.9600
C3—C41.379 (3)C9—H9B0.9600
C4—C51.383 (3)C9—H9C0.9600
C4—C91.511 (4)C11—H110.9300
C5—C61.384 (3)C12—H120.9300
C10—S1—C1188.94 (8)C4—C3—H3119.00
C1—N1—C10122.23 (14)C4—C5—H5119.00
C10—N2—C12110.02 (15)C6—C5—H5119.00
C1—N1—H1119.00C6—C7—H7A109.00
C10—N1—H1119.00C6—C7—H7B109.00
N1—C1—C2119.41 (17)C6—C7—H7C109.00
N1—C1—C6119.75 (13)H7A—C7—H7B109.00
C2—C1—C6120.82 (17)H7A—C7—H7C109.00
C1—C2—C3117.6 (2)H7B—C7—H7C109.00
C3—C2—C8120.31 (19)C2—C8—H8A109.00
C1—C2—C8122.1 (2)C2—C8—H8B109.00
C2—C3—C4122.9 (2)C2—C8—H8C109.00
C3—C4—C9121.2 (2)H8A—C8—H8B109.00
C3—C4—C5117.7 (2)H8A—C8—H8C109.00
C5—C4—C9121.1 (2)H8B—C8—H8C110.00
C4—C5—C6122.1 (2)C4—C9—H9A110.00
C1—C6—C5118.75 (15)C4—C9—H9B110.00
C5—C6—C7120.70 (19)C4—C9—H9C109.00
C1—C6—C7120.55 (18)H9A—C9—H9B110.00
S1—C10—N2114.35 (12)H9A—C9—H9C109.00
S1—C10—N1121.78 (13)H9B—C9—H9C109.00
N1—C10—N2123.87 (14)S1—C11—H11125.00
S1—C11—C12110.05 (14)C12—C11—H11125.00
N2—C12—C11116.6 (2)N2—C12—H12122.00
C2—C3—H3119.00C11—C12—H12122.00
C11—S1—C10—N1179.66 (15)N1—C1—C6—C5179.71 (14)
C11—S1—C10—N20.05 (14)N1—C1—C6—C70.6 (2)
C10—S1—C11—C120.38 (17)C2—C1—C6—C52.0 (2)
C10—N1—C1—C276.7 (2)C2—C1—C6—C7177.69 (16)
C10—N1—C1—C6104.96 (18)C1—C2—C3—C43.6 (3)
C1—N1—C10—S16.9 (2)C8—C2—C3—C4174.12 (19)
C1—N1—C10—N2172.72 (16)C2—C3—C4—C50.8 (3)
C12—N2—C10—S10.29 (19)C2—C3—C4—C9179.1 (2)
C12—N2—C10—N1179.31 (17)C3—C4—C5—C61.7 (3)
C10—N2—C12—C110.6 (3)C9—C4—C5—C6178.44 (18)
N1—C1—C2—C3177.48 (15)C4—C5—C6—C11.1 (3)
N1—C1—C2—C84.8 (2)C4—C5—C6—C7179.29 (18)
C6—C1—C2—C34.2 (2)S1—C11—C12—N20.7 (3)
C6—C1—C2—C8173.51 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.162.944 (2)151
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H14N2S
Mr218.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.2766 (6), 7.0676 (2), 13.8598 (6)
β (°) 118.736 (2)
V3)1226.24 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.32 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.929, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
10086, 2717, 2196
Rint0.027
(sin θ/λ)max1)0.645
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.05
No. of reflections2717
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.162.944 (2)151
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaranoni, C. & Capella, L. (1982). J. Appl. Cryst. 15, 106–107.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, K. J., Utig, C. R., Subhasinghe, N., Hoffman, J. B., Rudolph, N. J., Soll, R., Molloy, C. J., Bone, R., Green, D. & Randall, J. (2001). Bioorg. Med. Chem. Lett. 11, 915–918.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds