organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1H-1,3-Benzimidazol-2-yl)-2,7-dimeth­­oxy­quinoline

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique (PHYSYNOR), Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria, cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and dCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 14 July 2012; accepted 16 July 2012; online 18 July 2012)

In the title mol­ecule, C18H15N3O2, the dihedral angle between the quinoline and benzimidazole ring systems is 23.57 (5)°. The C atoms of the meth­oxy groups are both close to being coplanar with their attached ring systems [deviations = 0.193 (2) and −0.020 (2) Å]. An intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into C(4) chains propagating in [010]. Weak C—H⋯π inter­actions also occur.

Related literature

For our previous work on the preparation of functionalized heterocyclic compounds with potential biological activity, see: Benzerka et al. (2012[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309-313.]); Hayour et al. (2011[Hayour, H., Bouraiou, A., Bouacida, S., Berrée, F., Carboni, B., Roisnel, T. & Belfaitah, A. (2011). Tetrahedron Lett. 52, 4868-4871.]). For further synthetic details, see: Fioraventi et al. (2006[Fioraventi, S., Pellacani, L., Tardella, P. A., Morreale, A. & Del Signore, G. (2006). J. Comb. Chem. 8, 808-811.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N3O2

  • Mr = 305.33

  • Orthorhombic, P b c a

  • a = 6.7094 (2) Å

  • b = 9.4134 (3) Å

  • c = 49.1620 (16) Å

  • V = 3104.99 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.51 × 0.29 × 0.09 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.900, Tmax = 0.992

  • 14322 measured reflections

  • 3398 independent reflections

  • 2696 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.112

  • S = 1.03

  • 3398 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the N16/N17/C15/C18/C23, N4/C3/C5/C12–C14 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N16—H16⋯N17i 0.88 2.02 2.8397 (17) 154
N16—H16⋯O2 0.88 2.27 2.7107 (17) 111
C1—H1ACg2ii 0.98 2.67 3.3101 (18) 123
C1—H1CCg1iii 0.98 2.82 3.4955 (17) 127
C20—H20⋯Cg4iv 0.95 2.99 3.8271 (18) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, z]; (iii) x+1, y, z; (iv) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the course of our program related to the synthesis of new suitably functionalized heterocyclic compounds of potential biological activity, (Benzerka et al., 2012; Hayour et al., 2011), we now report herein the synthesis and structure determination of the title compound, C18H15N3O2. The reactivity of this compound and its analogues toward nucleophiles is under investigation.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the dimethoxyquinoline unit bearing an benzo imidazol moiety. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 2.68 (4)°. The heterocycle ring of quinolyl unit form also with imidazol plane a dihedral angle of 24.09 (5)°. The crystal packing can be described as layers in zig zag parallel to (010) plane, along the c axis (Fig. 2). It is stabilized by intra and intermolecular hydrogen bond (N—H···N and N—H···O) and C—H···π stacking, resulting in the formation of infinite three-dimensional network linked these layers toghter and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.

Related literature top

For our previous work on the preparation of functionalized heterocyclic compounds with potential biological activity, see: Benzerka et al. (2012); Hayour et al. (2011). For further synthetic details, see: Fioraventi et al. (2006).

Experimental top

In first, malononitrile (1.0 mmol) was condensed with 2,7-dimethoxyquinolin-3-carbaldehyde (1 mmol) to give the corresponding Knoevenagel product in 97% yield. The oxidation of this one, under mild conditions, with 2.5 eq. of m.CPBA proceeded cleany, to afford corresponding 2,2-dicyano-3-(2,7-dimethoxyquinolin-3-yl)oxirane in 64% yield, according to the method reported by Fioraventi et al. (2006) In the next step, a mixture of 1.0 mmol. of 3-(2,7-dimethoxyquinolin-3-yl)oxirane-2,2-dicarbonitrile and 1.0 eq. of o-phenylenediamine dissolved in 30 ml of anhydrous acetonitrile was refluxed during 20 h. The title compound was successfully isolated by silica gel column chromatography using n.hexane/EtOAc (3:2) mixture as eluent in good yield (62%). Colourless blocks were obtained by crystallization (slow evaporation at room temperature) from a dichloromethane/methanol solution.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom. (with C—H = 0.95 and 0.98 Å, N—H = 0.88 Å and Uiso(H) =1.5 or 1.2(carrier atom)).

Structure description top

In the course of our program related to the synthesis of new suitably functionalized heterocyclic compounds of potential biological activity, (Benzerka et al., 2012; Hayour et al., 2011), we now report herein the synthesis and structure determination of the title compound, C18H15N3O2. The reactivity of this compound and its analogues toward nucleophiles is under investigation.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the dimethoxyquinoline unit bearing an benzo imidazol moiety. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 2.68 (4)°. The heterocycle ring of quinolyl unit form also with imidazol plane a dihedral angle of 24.09 (5)°. The crystal packing can be described as layers in zig zag parallel to (010) plane, along the c axis (Fig. 2). It is stabilized by intra and intermolecular hydrogen bond (N—H···N and N—H···O) and C—H···π stacking, resulting in the formation of infinite three-dimensional network linked these layers toghter and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.

For our previous work on the preparation of functionalized heterocyclic compounds with potential biological activity, see: Benzerka et al. (2012); Hayour et al. (2011). For further synthetic details, see: Fioraventi et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [N—H···N and N—H···O] as dashed line.
3-(1H-1,3-Benzimidazol-2-yl)-2,7-dimethoxyquinoline top
Crystal data top
C18H15N3O2F(000) = 1280
Mr = 305.33Dx = 1.306 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3402 reflections
a = 6.7094 (2) Åθ = 3.2–26.7°
b = 9.4134 (3) ŵ = 0.09 mm1
c = 49.1620 (16) ÅT = 150 K
V = 3104.99 (17) Å3Block, colourless
Z = 80.51 × 0.29 × 0.09 mm
Data collection top
Bruker APEXII
diffractometer
2696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
CCD rotation images, thin slices scansθmax = 27.1°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 88
Tmin = 0.900, Tmax = 0.992k = 1211
14322 measured reflectionsl = 5162
3398 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0451P)2 + 1.4136P]
where P = (Fo2 + 2Fc2)/3
3398 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H15N3O2V = 3104.99 (17) Å3
Mr = 305.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.7094 (2) ŵ = 0.09 mm1
b = 9.4134 (3) ÅT = 150 K
c = 49.1620 (16) Å0.51 × 0.29 × 0.09 mm
Data collection top
Bruker APEXII
diffractometer
3398 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2696 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.992Rint = 0.035
14322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
3398 reflectionsΔρmin = 0.21 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2836 (2)0.46202 (18)0.63727 (4)0.0326 (4)
H1A1.2720.40410.62080.049*
H1B1.31780.40090.65270.049*
H1C1.38840.53340.63470.049*
C31.0281 (2)0.62110 (15)0.62327 (3)0.0232 (3)
C51.0569 (2)0.73868 (16)0.58254 (3)0.0258 (3)
C61.1711 (3)0.76468 (17)0.55888 (3)0.0301 (4)
H61.28960.71220.55550.036*
C71.1086 (3)0.86695 (19)0.54070 (3)0.0329 (4)
C91.3846 (3)0.8225 (2)0.51100 (4)0.0453 (5)
H9A1.48380.83680.52540.068*
H9B1.43910.8550.49360.068*
H9C1.35140.72130.50980.068*
C100.9307 (3)0.94447 (19)0.54508 (3)0.0357 (4)
H100.88931.01410.53230.043*
C110.8182 (3)0.91890 (18)0.56783 (3)0.0335 (4)
H110.69870.97090.57070.04*
C120.8784 (2)0.81534 (16)0.58716 (3)0.0270 (3)
C130.7714 (2)0.78642 (16)0.61140 (3)0.0264 (3)
H130.64940.83440.61490.032*
C140.8429 (2)0.68943 (15)0.62988 (3)0.0231 (3)
C150.7363 (2)0.66229 (15)0.65547 (3)0.0219 (3)
C180.5356 (2)0.68915 (15)0.68937 (3)0.0239 (3)
C190.3995 (3)0.73837 (17)0.70884 (3)0.0310 (4)
H190.34240.83050.70750.037*
C200.3513 (3)0.64821 (18)0.73003 (3)0.0327 (4)
H200.2590.67880.74350.039*
C210.4363 (3)0.51183 (18)0.73215 (3)0.0307 (4)
H210.39980.45280.7470.037*
C220.5711 (2)0.46135 (16)0.71324 (3)0.0266 (3)
H220.62750.36910.71470.032*
C230.6202 (2)0.55309 (15)0.69194 (3)0.0225 (3)
N41.12891 (19)0.64018 (13)0.60072 (3)0.0254 (3)
N160.74790 (19)0.53920 (13)0.67005 (2)0.0229 (3)
H160.82260.4650.66620.027*
N170.6102 (2)0.75567 (13)0.66624 (3)0.0253 (3)
O21.09768 (16)0.53168 (11)0.64249 (2)0.0285 (3)
O81.2084 (2)0.90194 (14)0.51729 (2)0.0424 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (9)0.0335 (9)0.0357 (9)0.0116 (7)0.0000 (7)0.0024 (7)
C30.0269 (8)0.0181 (7)0.0247 (8)0.0009 (6)0.0013 (7)0.0007 (6)
C50.0301 (8)0.0239 (7)0.0234 (8)0.0010 (6)0.0007 (7)0.0015 (6)
C60.0320 (8)0.0325 (9)0.0257 (8)0.0016 (7)0.0022 (7)0.0016 (7)
C70.0396 (10)0.0378 (9)0.0213 (8)0.0032 (8)0.0024 (7)0.0019 (7)
C90.0401 (10)0.0612 (13)0.0344 (10)0.0042 (9)0.0114 (9)0.0084 (9)
C100.0455 (10)0.0363 (9)0.0254 (9)0.0032 (8)0.0019 (8)0.0065 (7)
C110.0373 (9)0.0348 (9)0.0285 (9)0.0071 (8)0.0002 (8)0.0043 (7)
C120.0322 (8)0.0244 (8)0.0245 (8)0.0002 (7)0.0010 (7)0.0001 (6)
C130.0277 (8)0.0229 (7)0.0285 (8)0.0029 (6)0.0007 (7)0.0006 (6)
C140.0250 (8)0.0178 (7)0.0265 (8)0.0023 (6)0.0016 (7)0.0019 (6)
C150.0240 (7)0.0170 (7)0.0247 (7)0.0018 (6)0.0006 (6)0.0001 (6)
C180.0260 (8)0.0195 (7)0.0261 (8)0.0023 (6)0.0019 (7)0.0006 (6)
C190.0319 (9)0.0262 (8)0.0350 (9)0.0014 (7)0.0063 (8)0.0037 (7)
C200.0313 (9)0.0364 (9)0.0303 (9)0.0031 (7)0.0085 (7)0.0052 (7)
C210.0347 (9)0.0325 (8)0.0250 (8)0.0091 (7)0.0020 (7)0.0002 (7)
C220.0297 (8)0.0233 (7)0.0269 (8)0.0029 (6)0.0022 (7)0.0015 (6)
C230.0232 (7)0.0204 (7)0.0239 (8)0.0036 (6)0.0002 (6)0.0024 (6)
N40.0271 (7)0.0239 (6)0.0251 (7)0.0003 (5)0.0009 (6)0.0005 (5)
N160.0256 (6)0.0184 (6)0.0246 (7)0.0026 (5)0.0018 (6)0.0011 (5)
N170.0273 (7)0.0195 (6)0.0291 (7)0.0002 (5)0.0049 (6)0.0009 (5)
O20.0280 (6)0.0260 (6)0.0317 (6)0.0061 (5)0.0031 (5)0.0067 (5)
O80.0475 (8)0.0515 (8)0.0282 (7)0.0046 (6)0.0086 (6)0.0112 (6)
Geometric parameters (Å, º) top
C1—O21.4327 (19)C11—H110.95
C1—H1A0.98C12—C131.418 (2)
C1—H1B0.98C13—C141.375 (2)
C1—H1C0.98C13—H130.95
C3—N41.311 (2)C14—C151.470 (2)
C3—O21.3490 (18)C15—N171.3297 (19)
C3—C141.436 (2)C15—N161.3646 (18)
C5—N41.376 (2)C18—N171.3912 (19)
C5—C61.414 (2)C18—C191.402 (2)
C5—C121.416 (2)C18—C231.407 (2)
C6—C71.379 (2)C19—C201.382 (2)
C6—H60.95C19—H190.95
C7—O81.372 (2)C20—C211.409 (2)
C7—C101.416 (3)C20—H200.95
C9—O81.433 (2)C21—C221.381 (2)
C9—H9A0.98C21—H210.95
C9—H9B0.98C22—C231.397 (2)
C9—H9C0.98C22—H220.95
C10—C111.371 (2)C23—N161.3817 (19)
C10—H100.95N16—H160.88
C11—C121.420 (2)
O2—C1—H1A109.5C14—C13—H13119.8
O2—C1—H1B109.5C12—C13—H13119.8
H1A—C1—H1B109.5C13—C14—C3116.74 (14)
O2—C1—H1C109.5C13—C14—C15120.74 (14)
H1A—C1—H1C109.5C3—C14—C15122.49 (13)
H1B—C1—H1C109.5N17—C15—N16112.88 (13)
N4—C3—O2119.97 (14)N17—C15—C14122.37 (13)
N4—C3—C14125.19 (14)N16—C15—C14124.70 (13)
O2—C3—C14114.84 (13)N17—C18—C19130.07 (14)
N4—C5—C6117.44 (14)N17—C18—C23109.77 (13)
N4—C5—C12122.40 (14)C19—C18—C23120.15 (14)
C6—C5—C12120.13 (14)C20—C19—C18117.66 (15)
C7—C6—C5119.29 (16)C20—C19—H19121.2
C7—C6—H6120.4C18—C19—H19121.2
C5—C6—H6120.4C19—C20—C21121.37 (16)
O8—C7—C6124.28 (16)C19—C20—H20119.3
O8—C7—C10114.55 (15)C21—C20—H20119.3
C6—C7—C10121.17 (16)C22—C21—C20121.94 (15)
O8—C9—H9A109.5C22—C21—H21119
O8—C9—H9B109.5C20—C21—H21119
H9A—C9—H9B109.5C21—C22—C23116.50 (15)
O8—C9—H9C109.5C21—C22—H22121.7
H9A—C9—H9C109.5C23—C22—H22121.7
H9B—C9—H9C109.5N16—C23—C22132.20 (14)
C11—C10—C7119.87 (16)N16—C23—C18105.44 (13)
C11—C10—H10120.1C22—C23—C18122.36 (14)
C7—C10—H10120.1C3—N4—C5117.44 (13)
C10—C11—C12120.65 (16)C15—N16—C23107.05 (12)
C10—C11—H11119.7C15—N16—H16126.5
C12—C11—H11119.7C23—N16—H16126.5
C5—C12—C13117.74 (14)C15—N17—C18104.86 (12)
C5—C12—C11118.88 (15)C3—O2—C1117.47 (12)
C13—C12—C11123.36 (15)C7—O8—C9117.27 (14)
C14—C13—C12120.40 (14)
N4—C5—C6—C7177.24 (15)C23—C18—C19—C200.8 (2)
C12—C5—C6—C71.1 (2)C18—C19—C20—C210.3 (3)
C5—C6—C7—O8179.35 (15)C19—C20—C21—C220.1 (3)
C5—C6—C7—C101.1 (3)C20—C21—C22—C230.4 (2)
O8—C7—C10—C11179.94 (16)C21—C22—C23—N16179.34 (16)
C6—C7—C10—C110.5 (3)C21—C22—C23—C181.0 (2)
C7—C10—C11—C120.1 (3)N17—C18—C23—N160.35 (17)
N4—C5—C12—C130.8 (2)C19—C18—C23—N16179.03 (14)
C6—C5—C12—C13179.12 (14)N17—C18—C23—C22179.41 (14)
N4—C5—C12—C11177.74 (15)C19—C18—C23—C221.2 (2)
C6—C5—C12—C110.6 (2)O2—C3—N4—C5176.33 (13)
C10—C11—C12—C50.1 (3)C14—C3—N4—C53.4 (2)
C10—C11—C12—C13178.40 (16)C6—C5—N4—C3176.76 (14)
C5—C12—C13—C141.5 (2)C12—C5—N4—C31.6 (2)
C11—C12—C13—C14176.94 (15)N17—C15—N16—C230.02 (17)
C12—C13—C14—C30.0 (2)C14—C15—N16—C23177.42 (14)
C12—C13—C14—C15177.97 (14)C22—C23—N16—C15179.52 (16)
N4—C3—C14—C132.7 (2)C18—C23—N16—C150.20 (16)
O2—C3—C14—C13177.08 (13)N16—C15—N17—C180.23 (17)
N4—C3—C14—C15179.41 (14)C14—C15—N17—C18177.70 (14)
O2—C3—C14—C150.8 (2)C19—C18—N17—C15178.94 (17)
C13—C14—C15—N1722.2 (2)C23—C18—N17—C150.36 (17)
C3—C14—C15—N17155.59 (15)N4—C3—O2—C10.8 (2)
C13—C14—C15—N16154.92 (15)C14—C3—O2—C1179.00 (13)
C3—C14—C15—N1627.2 (2)C6—C7—O8—C92.5 (3)
N17—C18—C19—C20179.94 (16)C10—C7—O8—C9177.05 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the N16/N17/C15/C18/C23, N4/C3/C5/C12–C14 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N16—H16···N17i0.882.022.8397 (17)154
N16—H16···O20.882.272.7107 (17)111
C1—H1A···Cg2ii0.982.673.3101 (18)123
C1—H1C···Cg1iii0.982.823.4955 (17)127
C20—H20···Cg4iv0.952.993.8271 (18)148
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+5/2, y1/2, z; (iii) x+1, y, z; (iv) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H15N3O2
Mr305.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)6.7094 (2), 9.4134 (3), 49.1620 (16)
V3)3104.99 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.51 × 0.29 × 0.09
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.900, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
14322, 3398, 2696
Rint0.035
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 1.03
No. of reflections3398
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the N16/N17/C15/C18/C23, N4/C3/C5/C12–C14 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N16—H16···N17i0.882.022.8397 (17)154
N16—H16···O20.882.272.7107 (17)111
C1—H1A···Cg2ii0.982.673.3101 (18)123
C1—H1C···Cg1iii0.982.823.4955 (17)127
C20—H20···Cg4iv0.952.993.8271 (18)148
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+5/2, y1/2, z; (iii) x+1, y, z; (iv) x1/2, y, z+3/2.
 

Acknowledgements

We are grateful to all personel of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFioraventi, S., Pellacani, L., Tardella, P. A., Morreale, A. & Del Signore, G. (2006). J. Comb. Chem. 8, 808–811.  Web of Science PubMed Google Scholar
First citationHayour, H., Bouraiou, A., Bouacida, S., Berrée, F., Carboni, B., Roisnel, T. & Belfaitah, A. (2011). Tetrahedron Lett. 52, 4868–4871.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds