organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,3-Di­methyl­anilino)benzohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 14 July 2012; accepted 18 July 2012; online 25 July 2012)

In the title compound, C15H17N3O, the dihedral angle between the benzene rings is 58.05 (9)°. The non-H atoms of the hydrazide group lie in a common plane (r.m.s. deviation = 0.0006 Å) and are close to coplanar with their attached benzene ring [dihedral angle = 8.02 (9)°]. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif in the mol­ecule, and a short intra­molecular contact (H⋯H = 1.88 Å) is also observed. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds into inversion dimers. The crystal packing also features C—H⋯π inter­actions.

Related literature

For the biological activity of fenamates, see: Boschelli et al. (1990[Boschelli, D. H., Connor, D. T., Flynn, D. L., Sircar, J. C. & Hoefle, M. L. (1990). US Patent No. 4962119.]); Reddy et al. (2010[Reddy, L. V., Suman, A., Beevi, S. S., Mangamoori, L. N., Mukkanti, K. & Pal, S. (2010). J. Braz. Chem. Soc. 21, 98-104.]); Aboul-Fadl et al. (2011[Aboul-Fadl, T., Abdel-Aziz, H. A., Kadi, A., Bari, A., Ahmad, P., Al-Samani, T. & Ng, S. W. (2011). Molecules, 16, 3544-3551.]). For the synthesis, see: Reddy et al. (2010[Reddy, L. V., Suman, A., Beevi, S. S., Mangamoori, L. N., Mukkanti, K. & Pal, S. (2010). J. Braz. Chem. Soc. 21, 98-104.]); Aboul-Fadl et al. (2011[Aboul-Fadl, T., Abdel-Aziz, H. A., Kadi, A., Bari, A., Ahmad, P., Al-Samani, T. & Ng, S. W. (2011). Molecules, 16, 3544-3551.]). For a related structure, see: Bhat et al. (2012[Bhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o1135.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3O

  • Mr = 255.32

  • Triclinic, [P \overline 1]

  • a = 6.9092 (8) Å

  • b = 6.9609 (7) Å

  • c = 14.9458 (15) Å

  • α = 81.562 (2)°

  • β = 81.328 (2)°

  • γ = 66.269 (2)°

  • V = 647.56 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.28 × 0.18 × 0.13 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]) Tmin = 0.977, Tmax = 0.989

  • 8491 measured reflections

  • 2218 independent reflections

  • 1826 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.05

  • 2218 reflections

  • 190 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N3i 0.89 (2) 2.29 (2) 3.129 (2) 158.4 (19)
N1—H1N1⋯O1 0.89 (2) 1.90 (2) 2.6667 (19) 143.4 (18)
C11—H11ACg1ii 0.93 2.58 3.303 (2) 135
C14—H14CCg1iii 0.96 2.77 3.535 (2) 137
Symmetry codes: (i) -x+3, -y+1, -z; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Mefenamic acid (MFA), N-(2,3-xylyl)anthranilic acid and meclofenamic acid (MCFA) are derivatives of fenamates. They are non-steroidal anti-inflammatory drugs (NSAIDs) used as potent analgesic and anti-inflammatory agents in the treatment of osteoarthritis and rheumatoid arthritis (Boschelli et al., 1990; Reddy et al., 2010; Aboul-Fadl et al., 2011). In view of the importance of the hydrazide of fenamic acid as an active synthon in the synthesis of compounds with biological interests (Reddy et al., 2010; Bhat et al., 2012), we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The C1–C6 benzene ring makes a dihedral angle of 58.05 (9)° with the C7–C12 benzene ring. The non-H atoms of hydrazide group (O1/N2/N3/C13) lie nearly on a plane [r.m.s. deviation = 0.0006 Å] and are nearly coplanar with the attached C7–C12 benzene ring as indicated by the dihedral angle of 8.02 (9)°. An intramolecular N1—H1N1···O1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those in a related structure (Bhat et al., 2012).

In the crystal (Fig. 2), the molecules are linked by pairs of intermolecular N2—H1N2···N3 hydrogen bond into inversion dimers. The crystal packing is further stabilized by C—H···π interactions (Table 1), involving Cg1 which is the centroid of C1–C6 ring. A short intramolecular contact [H1N2···H9A = 1.88 Å] is also observed.

Related literature top

For the biological activity of fenamates, see: Boschelli et al. (1990); Reddy et al. (2010); Aboul-Fadl et al. (2011). For the synthesis, see: Reddy et al. (2010); Aboul-Fadl et al. (2011). For a related structure, see: Bhat et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared by the reaction of the methyl ester of fenamic acid with hydrazine hydrate or with the direct reaction of fenamic acid with hydrazine hydrate under microwave irritation (Reddy et al., 2010; Aboul-Fadl et al., 2011). Brown blocks were grown from the slow evaporation of a methanol solution.

Refinement top

The N-bound H atoms were located in a difference Fourier map and refined freely [N—H = 0.89 (2), 0.93 (3) and 0.963 (19) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 and 0.96 Å] and refined with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. Five outliers, (213), (417), (533), (300) and (532), were omitted in the final refinement.

Structure description top

Mefenamic acid (MFA), N-(2,3-xylyl)anthranilic acid and meclofenamic acid (MCFA) are derivatives of fenamates. They are non-steroidal anti-inflammatory drugs (NSAIDs) used as potent analgesic and anti-inflammatory agents in the treatment of osteoarthritis and rheumatoid arthritis (Boschelli et al., 1990; Reddy et al., 2010; Aboul-Fadl et al., 2011). In view of the importance of the hydrazide of fenamic acid as an active synthon in the synthesis of compounds with biological interests (Reddy et al., 2010; Bhat et al., 2012), we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The C1–C6 benzene ring makes a dihedral angle of 58.05 (9)° with the C7–C12 benzene ring. The non-H atoms of hydrazide group (O1/N2/N3/C13) lie nearly on a plane [r.m.s. deviation = 0.0006 Å] and are nearly coplanar with the attached C7–C12 benzene ring as indicated by the dihedral angle of 8.02 (9)°. An intramolecular N1—H1N1···O1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those in a related structure (Bhat et al., 2012).

In the crystal (Fig. 2), the molecules are linked by pairs of intermolecular N2—H1N2···N3 hydrogen bond into inversion dimers. The crystal packing is further stabilized by C—H···π interactions (Table 1), involving Cg1 which is the centroid of C1–C6 ring. A short intramolecular contact [H1N2···H9A = 1.88 Å] is also observed.

For the biological activity of fenamates, see: Boschelli et al. (1990); Reddy et al. (2010); Aboul-Fadl et al. (2011). For the synthesis, see: Reddy et al. (2010); Aboul-Fadl et al. (2011). For a related structure, see: Bhat et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. The dashed line represents the intramolecular N—H···O hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
2-(2,3-Dimethylanilino)benzohydrazide top
Crystal data top
C15H17N3OZ = 2
Mr = 255.32F(000) = 272
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9092 (8) ÅCell parameters from 4059 reflections
b = 6.9609 (7) Åθ = 2.8–30.3°
c = 14.9458 (15) ŵ = 0.09 mm1
α = 81.562 (2)°T = 100 K
β = 81.328 (2)°Block, brown
γ = 66.269 (2)°0.28 × 0.18 × 0.13 mm
V = 647.56 (12) Å3
Data collection top
Bruker APEX DUO CCD
diffractometer
2218 independent reflections
Radiation source: fine-focus sealed tube1826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.977, Tmax = 0.989k = 88
8491 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4394P]
where P = (Fo2 + 2Fc2)/3
2218 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H17N3Oγ = 66.269 (2)°
Mr = 255.32V = 647.56 (12) Å3
Triclinic, P1Z = 2
a = 6.9092 (8) ÅMo Kα radiation
b = 6.9609 (7) ŵ = 0.09 mm1
c = 14.9458 (15) ÅT = 100 K
α = 81.562 (2)°0.28 × 0.18 × 0.13 mm
β = 81.328 (2)°
Data collection top
Bruker APEX DUO CCD
diffractometer
2218 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1826 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.028
8491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
2218 reflectionsΔρmin = 0.20 e Å3
190 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.91711 (19)0.74672 (18)0.09083 (8)0.0228 (3)
N10.7359 (2)0.5409 (2)0.21691 (10)0.0232 (4)
N21.2514 (3)0.5701 (2)0.03071 (10)0.0228 (4)
N31.2742 (2)0.7493 (2)0.01967 (10)0.0220 (3)
C10.4439 (3)0.4330 (3)0.27761 (11)0.0214 (4)
H1A0.47630.35020.22960.026*
C20.2757 (3)0.4418 (3)0.34225 (12)0.0235 (4)
H2A0.19570.36360.33850.028*
C30.2270 (3)0.5677 (3)0.41256 (11)0.0228 (4)
H3A0.11440.57240.45620.027*
C40.3424 (3)0.6870 (3)0.41951 (11)0.0202 (4)
C50.5160 (3)0.6764 (3)0.35493 (11)0.0181 (4)
C60.5649 (3)0.5483 (2)0.28435 (11)0.0181 (4)
C70.9115 (3)0.3622 (3)0.19813 (10)0.0173 (4)
C81.0787 (3)0.3723 (3)0.13174 (10)0.0173 (4)
C91.2500 (3)0.1835 (3)0.11310 (11)0.0205 (4)
H9A1.35780.18790.06840.025*
C101.2652 (3)0.0080 (3)0.15836 (11)0.0219 (4)
H10A1.38140.13050.14450.026*
C111.1052 (3)0.0163 (3)0.22493 (11)0.0211 (4)
H11A1.11490.14480.25650.025*
C120.9318 (3)0.1645 (3)0.24464 (11)0.0196 (4)
H12A0.82580.15620.28960.023*
C131.0721 (3)0.5779 (3)0.08386 (10)0.0178 (4)
C140.2827 (3)0.8260 (3)0.49557 (12)0.0297 (4)
H14A0.16200.81390.53330.045*
H14B0.24790.96980.47070.045*
H14C0.40020.78310.53130.045*
C150.6429 (3)0.8056 (3)0.36060 (13)0.0272 (4)
H15A0.78130.74340.32850.041*
H15B0.65710.80930.42320.041*
H15C0.57120.94650.33380.041*
H1N21.370 (3)0.454 (3)0.0319 (13)0.027 (5)*
H1N10.756 (3)0.654 (3)0.1890 (14)0.032 (6)*
H2N31.204 (3)0.867 (3)0.0165 (13)0.022 (5)*
H1N31.188 (4)0.795 (4)0.0667 (17)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0206 (7)0.0180 (6)0.0261 (6)0.0056 (5)0.0023 (5)0.0010 (5)
N10.0212 (9)0.0164 (8)0.0258 (8)0.0049 (6)0.0064 (6)0.0002 (6)
N20.0184 (9)0.0202 (8)0.0263 (8)0.0068 (7)0.0021 (6)0.0018 (6)
N30.0226 (9)0.0212 (8)0.0223 (8)0.0101 (7)0.0000 (6)0.0001 (6)
C10.0243 (10)0.0181 (8)0.0220 (8)0.0077 (7)0.0084 (7)0.0022 (7)
C20.0195 (10)0.0224 (9)0.0308 (9)0.0115 (8)0.0090 (7)0.0073 (7)
C30.0121 (9)0.0278 (10)0.0222 (9)0.0048 (8)0.0016 (7)0.0079 (7)
C40.0141 (9)0.0215 (9)0.0176 (8)0.0000 (7)0.0042 (6)0.0024 (6)
C50.0130 (9)0.0170 (8)0.0217 (8)0.0032 (7)0.0054 (6)0.0019 (6)
C60.0151 (9)0.0165 (8)0.0189 (8)0.0039 (7)0.0016 (6)0.0033 (6)
C70.0163 (9)0.0191 (8)0.0160 (8)0.0054 (7)0.0034 (6)0.0030 (6)
C80.0171 (9)0.0208 (9)0.0150 (8)0.0077 (7)0.0043 (6)0.0016 (6)
C90.0174 (9)0.0230 (9)0.0193 (8)0.0063 (7)0.0004 (7)0.0026 (7)
C100.0188 (10)0.0197 (9)0.0232 (9)0.0024 (7)0.0039 (7)0.0026 (7)
C110.0240 (10)0.0195 (9)0.0192 (8)0.0074 (8)0.0077 (7)0.0026 (6)
C120.0192 (9)0.0225 (9)0.0172 (8)0.0088 (7)0.0016 (6)0.0002 (6)
C130.0176 (9)0.0218 (9)0.0155 (8)0.0080 (8)0.0031 (6)0.0034 (6)
C140.0242 (11)0.0312 (10)0.0246 (9)0.0001 (8)0.0051 (8)0.0039 (8)
C150.0206 (10)0.0234 (9)0.0385 (11)0.0083 (8)0.0042 (8)0.0051 (8)
Geometric parameters (Å, º) top
O1—C131.236 (2)C5—C151.505 (2)
N1—C71.372 (2)C7—C121.411 (2)
N1—C61.422 (2)C7—C81.422 (2)
N1—H1N10.89 (2)C8—C91.401 (2)
N2—C131.353 (2)C8—C131.489 (2)
N2—N31.412 (2)C9—C101.375 (2)
N2—H1N20.89 (2)C9—H9A0.9300
N3—H2N30.963 (19)C10—C111.385 (2)
N3—H1N30.93 (3)C10—H10A0.9300
C1—C21.382 (3)C11—C121.377 (2)
C1—C61.394 (2)C11—H11A0.9300
C1—H1A0.9300C12—H12A0.9300
C2—C31.383 (3)C14—H14A0.9600
C2—H2A0.9300C14—H14B0.9600
C3—C41.385 (2)C14—H14C0.9600
C3—H3A0.9300C15—H15A0.9600
C4—C51.406 (2)C15—H15B0.9600
C4—C141.503 (2)C15—H15C0.9600
C5—C61.395 (2)
C7—N1—C6124.88 (14)C9—C8—C7118.05 (15)
C7—N1—H1N1110.0 (14)C9—C8—C13121.02 (15)
C6—N1—H1N1124.1 (13)C7—C8—C13120.93 (15)
C13—N2—N3123.16 (15)C10—C9—C8122.59 (16)
C13—N2—H1N2121.2 (13)C10—C9—H9A118.7
N3—N2—H1N2115.0 (13)C8—C9—H9A118.7
N2—N3—H2N3108.0 (11)C9—C10—C11119.13 (16)
N2—N3—H1N3109.7 (15)C9—C10—H10A120.4
H2N3—N3—H1N399.5 (19)C11—C10—H10A120.4
C2—C1—C6119.93 (16)C12—C11—C10120.42 (16)
C2—C1—H1A120.0C12—C11—H11A119.8
C6—C1—H1A120.0C10—C11—H11A119.8
C1—C2—C3119.54 (16)C11—C12—C7121.37 (15)
C1—C2—H2A120.2C11—C12—H12A119.3
C3—C2—H2A120.2C7—C12—H12A119.3
C2—C3—C4121.49 (15)O1—C13—N2120.69 (15)
C2—C3—H3A119.3O1—C13—C8124.06 (15)
C4—C3—H3A119.3N2—C13—C8115.25 (15)
C3—C4—C5119.36 (15)C4—C14—H14A109.5
C3—C4—C14120.26 (16)C4—C14—H14B109.5
C5—C4—C14120.38 (16)H14A—C14—H14B109.5
C6—C5—C4118.89 (15)C4—C14—H14C109.5
C6—C5—C15120.69 (15)H14A—C14—H14C109.5
C4—C5—C15120.39 (15)H14B—C14—H14C109.5
C1—C6—C5120.76 (15)C5—C15—H15A109.5
C1—C6—N1119.64 (15)C5—C15—H15B109.5
C5—C6—N1119.57 (15)H15A—C15—H15B109.5
N1—C7—C12120.95 (15)C5—C15—H15C109.5
N1—C7—C8120.68 (15)H15A—C15—H15C109.5
C12—C7—C8118.37 (15)H15B—C15—H15C109.5
C6—C1—C2—C30.9 (2)N1—C7—C8—C9177.64 (15)
C1—C2—C3—C40.5 (3)C12—C7—C8—C92.9 (2)
C2—C3—C4—C51.5 (2)N1—C7—C8—C132.7 (2)
C2—C3—C4—C14178.65 (15)C12—C7—C8—C13176.72 (14)
C3—C4—C5—C61.2 (2)C7—C8—C9—C102.1 (2)
C14—C4—C5—C6178.98 (15)C13—C8—C9—C10177.53 (15)
C3—C4—C5—C15179.57 (16)C8—C9—C10—C110.2 (3)
C14—C4—C5—C150.6 (2)C9—C10—C11—C120.9 (2)
C2—C1—C6—C51.2 (2)C10—C11—C12—C70.0 (2)
C2—C1—C6—N1179.12 (15)N1—C7—C12—C11178.61 (16)
C4—C5—C6—C10.1 (2)C8—C7—C12—C112.0 (2)
C15—C5—C6—C1178.22 (15)N3—N2—C13—O10.2 (2)
C4—C5—C6—N1178.07 (14)N3—N2—C13—C8179.91 (14)
C15—C5—C6—N10.3 (2)C9—C8—C13—O1172.87 (15)
C7—N1—C6—C161.6 (2)C7—C8—C13—O17.5 (2)
C7—N1—C6—C5120.45 (18)C9—C8—C13—N27.4 (2)
C6—N1—C7—C122.0 (3)C7—C8—C13—N2172.23 (14)
C6—N1—C7—C8177.41 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N3i0.89 (2)2.29 (2)3.129 (2)158.4 (19)
N1—H1N1···O10.89 (2)1.90 (2)2.6667 (19)143.4 (18)
C11—H11A···Cg1ii0.932.583.303 (2)135
C14—H14C···Cg1iii0.962.773.535 (2)137
Symmetry codes: (i) x+3, y+1, z; (ii) x+1, y1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H17N3O
Mr255.32
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9092 (8), 6.9609 (7), 14.9458 (15)
α, β, γ (°)81.562 (2), 81.328 (2), 66.269 (2)
V3)647.56 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.18 × 0.13
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8491, 2218, 1826
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.05
No. of reflections2218
No. of parameters190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N3i0.89 (2)2.29 (2)3.129 (2)158.4 (19)
N1—H1N1···O10.89 (2)1.90 (2)2.6667 (19)143.4 (18)
C11—H11A···Cg1ii0.932.583.303 (2)135
C14—H14C···Cg1iii0.962.773.535 (2)137
Symmetry codes: (i) x+3, y+1, z; (ii) x+1, y1, z; (iii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, for funding and facilities.

References

First citationAboul-Fadl, T., Abdel-Aziz, H. A., Kadi, A., Bari, A., Ahmad, P., Al-Samani, T. & Ng, S. W. (2011). Molecules, 16, 3544–3551.  Web of Science CAS PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o1135.  CSD CrossRef IUCr Journals Google Scholar
First citationBoschelli, D. H., Connor, D. T., Flynn, D. L., Sircar, J. C. & Hoefle, M. L. (1990). US Patent No. 4962119.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.   Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationReddy, L. V., Suman, A., Beevi, S. S., Mangamoori, L. N., Mukkanti, K. & Pal, S. (2010). J. Braz. Chem. Soc. 21, 98–104.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds