organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,7-Dimeth­­oxy-8-(4-propyl­benzo­yl)naphthalen-1-yl](4-propyl­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 23 July 2012; accepted 25 July 2012; online 28 July 2012)

In the title compound, C32H32O4, the 4-propyl­benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel, and their benzene rings make a dihedral angle of 8.64 (10)°. The dihedral angles between the naphthalene ring system and the benzene rings are 69.37 (8) and 69.45 (8)°. In the crystal, C—H⋯O inter­actions link adjacent mol­ecules via their aroyl groups.

Related literature

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Sasagawa, Hijikata et al. (2011)[Sasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.]; Sasagawa, Muto et al. (2011[Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.]); Sasagawa et al. (2012[Sasagawa, K., Hijikata, D., Kusakabe, T., Okamoto, A. & Yonezawa, N. (2012). In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C32H32O4

  • Mr = 480.58

  • Monoclinic, P 21 /n

  • a = 18.1224 (3) Å

  • b = 7.91914 (14) Å

  • c = 19.7355 (4) Å

  • β = 113.502 (1)°

  • V = 2597.37 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 193 K

  • 0.40 × 0.30 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.786, Tmax = 0.969

  • 45013 measured reflections

  • 4752 independent reflections

  • 3258 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.152

  • S = 1.10

  • 4752 reflections

  • 330 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3i 0.95 2.41 3.342 (3) 168
C24—H24⋯O4ii 0.95 2.45 3.390 (3) 170
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007)[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone [1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2010), {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Hijikata et al., 2011), {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Muto et al., 2011), and 4-{[8-(4-acetyloxybenzoyl)-2,7-dimethoxynaphthalen-1-yl]carbonyl}phenyl acetate [1,8-bis(4-acetoxybenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2012). The aroyl groups in these compounds are almost perpendicularly attached to the naphthalene rings and oriented in opposite directions (anti-orientation). Moreover, we have also shown that the aroyl groups of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) are oriented in same direction (syn-orientation). As part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylated naphthalene bearing propyl groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. Two 4-propylbenzoyl groups are situated in anti-orientation. The dihedral angle between the best planes of the two phenyl rings is 8.64 (10) °. The dihedral angles between the best planes of the 4-propylphenyl rings and the naphthalene ring are 69.37 (8) and 69.45 (8) °.

Ketonic carbonyl moieties (C11, O3; C21, O4), carbon atoms (C18; C28) of propyl groups and benzene ring are lie on the same plane [torsion angles O3—C11—C14—C12 = -179.58 (18)°, C18—C15—C17—C16 = 178.9 (2)°; O4—C21—C23—C25 = -178.18 (19)°, C28—C26—C27—C25 = -179.5 (2)°].

In the molecular packing, two types of C—H···O interactions between carbonyl oxygen atom and hydrogen atom of the benzene ring are observed (Fig. 2).

Related literature top

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2009, 2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto et al. (2010); Sasagawa, Hijikata et al. (2011); Sasagawa, Muto et al. (2011); Sasagawa et al. (2012).

Experimental top

To a 50 ml flask, 4-propylbenzoic acid (722 mg, 4.4 mmol), phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH [1/10 w/w]; 8.8 ml) were placed and stirred at 333 K. To the solution thus obtained, 2,7-dimethoxynaphthalene (376 mg, 2.0 mmol) was added. After the reaction mixture was stirred at 333 K for 1.5 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from methanol (54% yield). Colorless platelet single crystals were obtained by repeated crystallization from ethanol solution.

1H-NMR δ (300 MHz, CDCl3): 0.95 (6H, t, J = 7.2 Hz), 1.65 (4H, q, J = 7.2 Hz), 2.60 (4H, t, J =7.2 Hz), 3.69 (6H, s), 7.11 (4H, d, J = 7.5 Hz), 7.21 (2H, d, J = 8.7 Hz), 7.58 (4H, d, J = 7.5 Hz), 7.94 (2H, d, J = 9.0 Hz) p.p.m.

13C-NMR δ (75 MHz, CDCl3): 13.9, 24.0, 38.2, 56.5, 111.3, 121.9, 125.5, 128.0, 129.2, 129.6, 131.8, 136.5, 147.8, 156.1, 196.2 p.p.m.

IR (KBr): 2952 (CH3), 2927 (CH2), 1656 (C=O), 1605, 1510, 1460 (Ar) cm-1

HRMS (m/z): [M+H]+ calcd. for C32H33O4,481.2379, found, 481.2421.

m.p. = 447.1—448.9 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).

Structure description top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone [1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2010), {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Hijikata et al., 2011), {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Muto et al., 2011), and 4-{[8-(4-acetyloxybenzoyl)-2,7-dimethoxynaphthalen-1-yl]carbonyl}phenyl acetate [1,8-bis(4-acetoxybenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2012). The aroyl groups in these compounds are almost perpendicularly attached to the naphthalene rings and oriented in opposite directions (anti-orientation). Moreover, we have also shown that the aroyl groups of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) are oriented in same direction (syn-orientation). As part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylated naphthalene bearing propyl groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. Two 4-propylbenzoyl groups are situated in anti-orientation. The dihedral angle between the best planes of the two phenyl rings is 8.64 (10) °. The dihedral angles between the best planes of the 4-propylphenyl rings and the naphthalene ring are 69.37 (8) and 69.45 (8) °.

Ketonic carbonyl moieties (C11, O3; C21, O4), carbon atoms (C18; C28) of propyl groups and benzene ring are lie on the same plane [torsion angles O3—C11—C14—C12 = -179.58 (18)°, C18—C15—C17—C16 = 178.9 (2)°; O4—C21—C23—C25 = -178.18 (19)°, C28—C26—C27—C25 = -179.5 (2)°].

In the molecular packing, two types of C—H···O interactions between carbonyl oxygen atom and hydrogen atom of the benzene ring are observed (Fig. 2).

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2009, 2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto et al. (2010); Sasagawa, Hijikata et al. (2011); Sasagawa, Muto et al. (2011); Sasagawa et al. (2012).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···O interactions between H13 and O3 [symmetrycode: x, y + 1, z] and between H24 and O4 [symmetry code: x, y - 1, z] along the b axis (dashed lines).
[2,7-Dimethoxy-8-(4-propylbenzoyl)naphthalen-1-yl](4-propylphenyl)methanone top
Crystal data top
C32H32O4F(000) = 1024
Mr = 480.58Dx = 1.229 Mg m3
Monoclinic, P21/nMelting point = 448.9–447.1 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54187 Å
a = 18.1224 (3) ÅCell parameters from 25236 reflections
b = 7.91914 (14) Åθ = 4.3–68.2°
c = 19.7355 (4) ŵ = 0.63 mm1
β = 113.502 (1)°T = 193 K
V = 2597.37 (8) Å3Platelet, colorless
Z = 40.40 × 0.30 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4752 independent reflections
Radiation source: rotating anode3258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 4.3°
ω scansh = 2121
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.786, Tmax = 0.969l = 2323
45013 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.7538P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4752 reflectionsΔρmax = 0.22 e Å3
330 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (2)
Crystal data top
C32H32O4V = 2597.37 (8) Å3
Mr = 480.58Z = 4
Monoclinic, P21/nCu Kα radiation
a = 18.1224 (3) ŵ = 0.63 mm1
b = 7.91914 (14) ÅT = 193 K
c = 19.7355 (4) Å0.40 × 0.30 × 0.05 mm
β = 113.502 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4752 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3258 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.969Rint = 0.047
45013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
4752 reflectionsΔρmin = 0.26 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24425 (9)0.4558 (2)0.71149 (8)0.0569 (4)
O20.01824 (9)0.1904 (2)0.33799 (8)0.0610 (4)
O30.27655 (8)0.20263 (18)0.58444 (8)0.0532 (4)
O40.17938 (9)0.44541 (18)0.42987 (8)0.0542 (4)
C10.03056 (14)0.3547 (3)0.61602 (12)0.0540 (5)
H10.01720.35000.62500.065*
C20.04538 (13)0.2496 (3)0.49034 (13)0.0535 (5)
H20.09240.24350.50050.064*
C30.10007 (13)0.4085 (3)0.67087 (13)0.0548 (5)
H30.10080.44250.71730.066*
C40.02756 (12)0.3058 (3)0.54627 (12)0.0467 (5)
C50.04981 (13)0.2041 (3)0.42247 (13)0.0553 (6)
H50.09890.16340.38600.066*
C60.17079 (12)0.4131 (3)0.65775 (11)0.0467 (5)
C70.09867 (11)0.3134 (2)0.53196 (11)0.0422 (5)
C80.01909 (12)0.2179 (3)0.40692 (12)0.0499 (5)
C90.17178 (12)0.3663 (2)0.59093 (10)0.0421 (5)
C100.09209 (12)0.2697 (2)0.45953 (11)0.0436 (5)
C110.25296 (12)0.3465 (3)0.58720 (10)0.0434 (5)
C120.27818 (12)0.6589 (3)0.59160 (11)0.0478 (5)
H120.22770.67830.59440.057*
C130.32583 (13)0.7945 (3)0.59118 (12)0.0534 (5)
H130.30760.90600.59350.064*
C140.30310 (11)0.4946 (2)0.58802 (10)0.0423 (5)
C150.40005 (13)0.7706 (3)0.58743 (11)0.0518 (5)
C160.37687 (12)0.4698 (3)0.58295 (11)0.0507 (5)
H160.39470.35840.57970.061*
C170.42412 (13)0.6057 (3)0.58265 (12)0.0551 (6)
H170.47420.58660.57910.066*
C180.45184 (15)0.9209 (3)0.58852 (13)0.0658 (7)
H18A0.41951.00170.54980.079*
H18B0.49710.88250.57640.079*
C190.48555 (15)1.0115 (3)0.66281 (14)0.0670 (7)
H19A0.51521.11290.65840.080*
H19B0.44011.05000.67470.080*
C200.54096 (15)0.9046 (4)0.72574 (14)0.0726 (7)
H20A0.51120.80740.73270.087*
H20B0.56180.97210.77110.087*
H20C0.58590.86480.71430.087*
C210.15938 (12)0.2993 (3)0.43450 (11)0.0445 (5)
C220.17742 (13)0.0111 (3)0.42097 (11)0.0499 (5)
H220.13150.03320.43150.060*
C230.20091 (12)0.1545 (2)0.41792 (10)0.0436 (5)
C240.21995 (14)0.1447 (3)0.40895 (12)0.0546 (6)
H240.20230.25700.41040.065*
C250.26860 (13)0.1837 (3)0.40237 (12)0.0518 (5)
H250.28550.29600.39950.062*
C260.28793 (13)0.1169 (3)0.39483 (11)0.0521 (5)
C270.31099 (13)0.0493 (3)0.39115 (12)0.0550 (6)
H270.35690.07090.38070.066*
C280.33506 (15)0.2620 (3)0.38310 (12)0.0611 (6)
H28A0.32710.36220.40940.073*
H28B0.39300.23300.40530.073*
C290.31187 (15)0.3071 (3)0.30285 (13)0.0644 (6)
H29A0.31810.20620.27600.077*
H29B0.25450.34080.28090.077*
C300.36266 (15)0.4497 (3)0.29291 (14)0.0688 (7)
H30A0.41940.41640.31390.083*
H30B0.34570.47390.24010.083*
H30C0.35560.55100.31820.083*
C310.24686 (15)0.5212 (3)0.77932 (12)0.0656 (7)
H31A0.23070.43310.80550.079*
H31B0.21000.61730.76950.079*
H31C0.30170.55830.80980.079*
C320.04718 (15)0.0998 (4)0.28517 (13)0.0715 (7)
H32A0.05500.00620.30710.086*
H32B0.03550.07510.24180.086*
H32C0.09620.16820.27020.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0583 (9)0.0656 (10)0.0449 (8)0.0052 (7)0.0187 (7)0.0098 (7)
O20.0540 (9)0.0761 (11)0.0463 (9)0.0106 (8)0.0131 (7)0.0089 (7)
O30.0574 (9)0.0405 (8)0.0617 (9)0.0069 (7)0.0237 (7)0.0021 (7)
O40.0629 (9)0.0414 (9)0.0585 (9)0.0071 (7)0.0244 (7)0.0017 (7)
C10.0569 (13)0.0492 (13)0.0615 (14)0.0022 (10)0.0296 (11)0.0040 (10)
C20.0476 (12)0.0511 (13)0.0618 (14)0.0006 (10)0.0220 (10)0.0066 (10)
C30.0626 (14)0.0517 (13)0.0547 (13)0.0001 (11)0.0285 (11)0.0031 (10)
C40.0485 (11)0.0405 (11)0.0531 (12)0.0021 (9)0.0224 (10)0.0044 (9)
C50.0448 (11)0.0547 (14)0.0597 (14)0.0039 (10)0.0137 (10)0.0014 (11)
C60.0497 (11)0.0410 (11)0.0480 (11)0.0003 (9)0.0182 (9)0.0004 (9)
C70.0427 (10)0.0352 (11)0.0476 (11)0.0003 (8)0.0166 (9)0.0030 (8)
C80.0491 (12)0.0489 (12)0.0486 (12)0.0028 (10)0.0163 (10)0.0002 (9)
C90.0489 (11)0.0343 (10)0.0439 (10)0.0009 (8)0.0195 (9)0.0016 (8)
C100.0454 (11)0.0377 (11)0.0458 (11)0.0014 (8)0.0163 (9)0.0016 (9)
C110.0481 (11)0.0395 (11)0.0398 (10)0.0039 (9)0.0145 (9)0.0018 (8)
C120.0438 (11)0.0430 (12)0.0525 (12)0.0015 (9)0.0148 (9)0.0006 (9)
C130.0523 (12)0.0440 (12)0.0600 (13)0.0038 (10)0.0182 (10)0.0002 (10)
C140.0404 (10)0.0414 (11)0.0406 (10)0.0011 (8)0.0113 (8)0.0025 (8)
C150.0504 (12)0.0553 (14)0.0439 (11)0.0089 (10)0.0125 (9)0.0045 (10)
C160.0482 (12)0.0520 (13)0.0504 (12)0.0060 (10)0.0180 (9)0.0043 (10)
C170.0440 (11)0.0649 (15)0.0549 (13)0.0014 (10)0.0182 (10)0.0059 (11)
C180.0593 (14)0.0668 (16)0.0628 (14)0.0163 (12)0.0155 (11)0.0118 (12)
C190.0604 (14)0.0570 (15)0.0795 (17)0.0157 (12)0.0235 (13)0.0025 (13)
C200.0643 (15)0.091 (2)0.0588 (15)0.0128 (14)0.0202 (12)0.0067 (14)
C210.0470 (11)0.0405 (12)0.0429 (11)0.0039 (9)0.0146 (9)0.0012 (9)
C220.0580 (13)0.0446 (12)0.0521 (12)0.0020 (10)0.0273 (10)0.0030 (9)
C230.0475 (11)0.0427 (11)0.0398 (10)0.0029 (9)0.0165 (9)0.0011 (8)
C240.0701 (15)0.0437 (12)0.0542 (13)0.0003 (11)0.0292 (11)0.0017 (10)
C250.0541 (12)0.0493 (13)0.0549 (13)0.0088 (10)0.0246 (10)0.0023 (10)
C260.0566 (13)0.0561 (14)0.0413 (11)0.0072 (10)0.0173 (10)0.0013 (9)
C270.0510 (12)0.0631 (15)0.0548 (13)0.0016 (11)0.0251 (10)0.0034 (11)
C280.0656 (14)0.0632 (15)0.0531 (13)0.0123 (12)0.0221 (11)0.0000 (11)
C290.0605 (14)0.0694 (16)0.0560 (14)0.0108 (12)0.0155 (11)0.0096 (12)
C300.0701 (16)0.0726 (17)0.0580 (14)0.0131 (13)0.0196 (12)0.0115 (12)
C310.0765 (16)0.0654 (16)0.0512 (13)0.0056 (13)0.0217 (12)0.0117 (11)
C320.0639 (15)0.0814 (18)0.0574 (14)0.0151 (13)0.0117 (12)0.0142 (13)
Geometric parameters (Å, º) top
O1—C61.373 (2)C18—H18A0.9900
O1—C311.418 (2)C18—H18B0.9900
O2—C81.372 (2)C19—C201.507 (3)
O2—C321.422 (3)C19—H19A0.9900
O3—C111.226 (2)C19—H19B0.9900
O4—C211.226 (2)C20—H20A0.9800
C1—C31.361 (3)C20—H20B0.9800
C1—C41.410 (3)C20—H20C0.9800
C1—H10.9500C21—C231.478 (3)
C2—C51.358 (3)C22—C241.383 (3)
C2—C41.414 (3)C22—C231.388 (3)
C2—H20.9500C22—H220.9500
C3—C61.405 (3)C23—C251.397 (3)
C3—H30.9500C24—C261.385 (3)
C4—C71.426 (3)C24—H240.9500
C5—C81.404 (3)C25—C271.381 (3)
C5—H50.9500C25—H250.9500
C6—C91.377 (3)C26—C271.392 (3)
C7—C101.429 (3)C26—C281.503 (3)
C7—C91.434 (3)C27—H270.9500
C8—C101.379 (3)C28—C291.511 (3)
C9—C111.510 (3)C28—H28A0.9900
C10—C211.506 (3)C28—H28B0.9900
C11—C141.480 (3)C29—C301.518 (3)
C12—C131.380 (3)C29—H29A0.9900
C12—C141.389 (3)C29—H29B0.9900
C12—H120.9500C30—H30A0.9800
C13—C151.389 (3)C30—H30B0.9800
C13—H130.9500C30—H30C0.9800
C14—C161.394 (3)C31—H31A0.9800
C15—C171.392 (3)C31—H31B0.9800
C15—C181.511 (3)C31—H31C0.9800
C16—C171.377 (3)C32—H32A0.9800
C16—H160.9500C32—H32B0.9800
C17—H170.9500C32—H32C0.9800
C18—C191.524 (3)
C6—O1—C31118.44 (17)C18—C19—H19A108.7
C8—O2—C32118.93 (18)C20—C19—H19B108.7
C3—C1—C4121.7 (2)C18—C19—H19B108.7
C3—C1—H1119.1H19A—C19—H19B107.6
C4—C1—H1119.1C19—C20—H20A109.5
C5—C2—C4121.5 (2)C19—C20—H20B109.5
C5—C2—H2119.3H20A—C20—H20B109.5
C4—C2—H2119.3C19—C20—H20C109.5
C1—C3—C6119.0 (2)H20A—C20—H20C109.5
C1—C3—H3120.5H20B—C20—H20C109.5
C6—C3—H3120.5O4—C21—C23121.58 (18)
C1—C4—C2120.58 (19)O4—C21—C10118.27 (18)
C1—C4—C7119.70 (19)C23—C21—C10120.13 (17)
C2—C4—C7119.73 (19)C24—C22—C23120.90 (19)
C2—C5—C8119.1 (2)C24—C22—H22119.6
C2—C5—H5120.4C23—C22—H22119.6
C8—C5—H5120.4C22—C23—C25118.49 (19)
O1—C6—C9115.29 (18)C22—C23—C21122.13 (18)
O1—C6—C3122.58 (19)C25—C23—C21119.29 (18)
C9—C6—C3122.04 (19)C22—C24—C26121.0 (2)
C4—C7—C10117.79 (18)C22—C24—H24119.5
C4—C7—C9117.85 (18)C26—C24—H24119.5
C10—C7—C9124.36 (17)C27—C25—C23120.1 (2)
O2—C8—C10114.97 (18)C27—C25—H25120.0
O2—C8—C5123.04 (19)C23—C25—H25120.0
C10—C8—C5121.9 (2)C24—C26—C27118.0 (2)
C6—C9—C7119.69 (18)C24—C26—C28121.0 (2)
C6—C9—C11117.36 (17)C27—C26—C28120.9 (2)
C7—C9—C11122.22 (17)C25—C27—C26121.5 (2)
C8—C10—C7119.86 (18)C25—C27—H27119.3
C8—C10—C21117.30 (18)C26—C27—H27119.3
C7—C10—C21122.34 (17)C26—C28—C29113.86 (19)
O3—C11—C14120.92 (18)C26—C28—H28A108.8
O3—C11—C9117.53 (18)C29—C28—H28A108.8
C14—C11—C9121.55 (17)C26—C28—H28B108.8
C13—C12—C14120.78 (19)C29—C28—H28B108.8
C13—C12—H12119.6H28A—C28—H28B107.7
C14—C12—H12119.6C28—C29—C30112.45 (19)
C12—C13—C15121.1 (2)C28—C29—H29A109.1
C12—C13—H13119.5C30—C29—H29A109.1
C15—C13—H13119.5C28—C29—H29B109.1
C12—C14—C16118.47 (19)C30—C29—H29B109.1
C12—C14—C11122.18 (18)H29A—C29—H29B107.8
C16—C14—C11119.33 (18)C29—C30—H30A109.5
C13—C15—C17117.9 (2)C29—C30—H30B109.5
C13—C15—C18120.1 (2)H30A—C30—H30B109.5
C17—C15—C18122.0 (2)C29—C30—H30C109.5
C17—C16—C14120.4 (2)H30A—C30—H30C109.5
C17—C16—H16119.8H30B—C30—H30C109.5
C14—C16—H16119.8O1—C31—H31A109.5
C16—C17—C15121.4 (2)O1—C31—H31B109.5
C16—C17—H17119.3H31A—C31—H31B109.5
C15—C17—H17119.3O1—C31—H31C109.5
C15—C18—C19113.14 (19)H31A—C31—H31C109.5
C15—C18—H18A109.0H31B—C31—H31C109.5
C19—C18—H18A109.0O2—C32—H32A109.5
C15—C18—H18B109.0O2—C32—H32B109.5
C19—C18—H18B109.0H32A—C32—H32B109.5
H18A—C18—H18B107.8O2—C32—H32C109.5
C20—C19—C18114.1 (2)H32A—C32—H32C109.5
C20—C19—H19A108.7H32B—C32—H32C109.5
C4—C1—C3—C60.9 (3)C14—C12—C13—C150.2 (3)
C3—C1—C4—C2179.7 (2)C13—C12—C14—C160.9 (3)
C3—C1—C4—C70.5 (3)C13—C12—C14—C11179.05 (19)
C5—C2—C4—C1179.1 (2)O3—C11—C14—C12179.58 (19)
C5—C2—C4—C70.8 (3)C9—C11—C14—C120.6 (3)
C4—C2—C5—C81.9 (3)O3—C11—C14—C162.3 (3)
C31—O1—C6—C9173.89 (19)C9—C11—C14—C16178.71 (17)
C31—O1—C6—C39.4 (3)C12—C13—C15—C171.2 (3)
C1—C3—C6—O1175.9 (2)C12—C13—C15—C18178.8 (2)
C1—C3—C6—C90.6 (3)C12—C14—C16—C171.0 (3)
C1—C4—C7—C10177.32 (19)C11—C14—C16—C17179.17 (18)
C2—C4—C7—C102.5 (3)C14—C16—C17—C150.1 (3)
C1—C4—C7—C92.0 (3)C13—C15—C17—C161.2 (3)
C2—C4—C7—C9178.17 (18)C18—C15—C17—C16178.9 (2)
C32—O2—C8—C10165.2 (2)C13—C15—C18—C1968.8 (3)
C32—O2—C8—C518.2 (3)C17—C15—C18—C19111.2 (3)
C2—C5—C8—O2173.6 (2)C15—C18—C19—C2062.7 (3)
C2—C5—C8—C102.8 (3)C8—C10—C21—O4107.1 (2)
O1—C6—C9—C7177.76 (17)C7—C10—C21—O464.8 (3)
C3—C6—C9—C71.0 (3)C8—C10—C21—C2374.3 (2)
O1—C6—C9—C117.3 (3)C7—C10—C21—C23113.7 (2)
C3—C6—C9—C11169.44 (19)C24—C22—C23—C250.0 (3)
C4—C7—C9—C62.2 (3)C24—C22—C23—C21176.60 (19)
C10—C7—C9—C6177.02 (18)O4—C21—C23—C22178.17 (19)
C4—C7—C9—C11167.69 (17)C10—C21—C23—C223.3 (3)
C10—C7—C9—C1113.1 (3)O4—C21—C23—C255.2 (3)
O2—C8—C10—C7175.68 (17)C10—C21—C23—C25173.28 (18)
C5—C8—C10—C71.0 (3)C23—C22—C24—C261.1 (3)
O2—C8—C10—C213.5 (3)C22—C23—C25—C270.6 (3)
C5—C8—C10—C21173.08 (19)C21—C23—C25—C27176.10 (19)
C4—C7—C10—C81.7 (3)C22—C24—C26—C271.7 (3)
C9—C7—C10—C8179.06 (19)C22—C24—C26—C28178.9 (2)
C4—C7—C10—C21170.04 (18)C23—C25—C27—C260.1 (3)
C9—C7—C10—C219.2 (3)C24—C26—C27—C251.1 (3)
C6—C9—C11—O3106.1 (2)C28—C26—C27—C25179.5 (2)
C7—C9—C11—O364.1 (3)C24—C26—C28—C2994.9 (3)
C6—C9—C11—C1473.0 (2)C27—C26—C28—C2984.5 (3)
C7—C9—C11—C14116.9 (2)C26—C28—C29—C30177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.952.413.342 (3)168
C24—H24···O4ii0.952.453.390 (3)170
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC32H32O4
Mr480.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)18.1224 (3), 7.91914 (14), 19.7355 (4)
β (°) 113.502 (1)
V3)2597.37 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.40 × 0.30 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.786, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
45013, 4752, 3258
Rint0.047
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.152, 1.10
No. of reflections4752
No. of parameters330
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: RAPID-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.952.413.342 (3)168
C24—H24···O4ii0.952.453.390 (3)170
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

The authors express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by a Sasagawa Scientific Research Grant from The Japan Science Society.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Hijikata, D., Kusakabe, T., Okamoto, A. & Yonezawa, N. (2012). In the press.  Google Scholar
First citationSasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds