metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chloridobis[2-(1,3-thia­zol-4-yl-κN)-1H-benzimidazole-κN3]nickel(II) nitrate

aDepartment of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: 6628yxh@163.com

(Received 19 May 2012; accepted 29 June 2012; online 4 July 2012)

In the title compound, [NiCl(C10H7N3S)2(H2O)]NO3, the NiII ion is coordinated by four N atoms from two chelating 2-(1,3-thia­zol-4-yl)-1H-benzimidazole ligands, one Cl atom and one water mol­ecule in a distorted octa­hedral geometry. In the crystal, O—H⋯O, N—H⋯O and N—H⋯Cl hydrogen bonds link the complex cations and nitrate anions into a three-dimensional network. ππ inter­actions between the thia­zole and imidazole rings and between the thia­zole and benzene rings are observed [centroid–centroid distances = 3.592 (3) and 3.735 (3) Å].

Related literature

For background to the synthesis and properties of benzimidazole derivatives, see: Agh-Atabay et al. (2003[Agh-Atabay, N. M., Dulger, B. & Gucin, F. (2003). Eur. J. Med. Chem. 38, 875-881.]); Devereux et al. (2004[Devereux, M., McCann, M., Shea, D. O., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023-1031.]); Inoue et al. (2002[Inoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., Kanzaki, Y., Hamashima, H. & Sasatru, M. (2002). J. Inorg. Biochem. 92, 37-42.]). For a related structure, see: Mothilal et al. (2004[Mothilal, K. K., Karunakaran, C., Rajendran, A. & Murugesan, R. (2004). J. Inorg. Biochem. 98, 322-332.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl(C10H7N3S)2(H2O)]NO3

  • Mr = 576.68

  • Monoclinic, P 21 /c

  • a = 16.091 (5) Å

  • b = 11.189 (3) Å

  • c = 13.931 (3) Å

  • β = 113.275 (3)°

  • V = 2304.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 296 K

  • 0.26 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.748, Tmax = 0.764

  • 11654 measured reflections

  • 4050 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.174

  • S = 1.07

  • 4050 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.84 2.00 2.751 (5) 149
O1—H1B⋯O2ii 0.79 2.53 3.293 (6) 160
O1—H1B⋯O4ii 0.79 2.38 3.025 (5) 139
N4—H4⋯O3iii 0.86 2.35 2.962 (5) 129
N4—H4⋯O4iii 0.86 2.14 2.996 (5) 173
N7—H7⋯Cl1iv 0.86 2.35 3.159 (4) 157
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thiabendazole (TBZ) aroused considerable interest in biology and medicine due to its antiproliferative activities. It is an antimicrobial drug belonging to the benzimidazole derivatives and exhibits wide applications in human and veterinary medicine (Agh-Atabay et al., 2003; Devereux et al., 2004; Inoue et al., 2002). As part of our studies of the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of the title compound (Fig. 1).

In the crystal, intermolecular O—H···O, N—H···O and N—H···Cl hydrogen bonds link the complex cations and nitrate anions into a three-dimensional network (Table 1, Fig. 2) (Mothilal et al., 2004). ππ interactions between the thiazole and imidazole rings and between the thiazole and benzene rings are observed [centroid–centroid distances = 3.592 (3) and 3.735 (3) Å]. In the complex cation, the two ligand planes are nearly perpendicular to each other, with a dihedral angle of 89.14 (7)°.

Related literature top

For background to the synthesis and properties of benzimidazole derivatives, see: Agh-Atabay et al. (2003); Devereux et al. (2004); Inoue et al. (2002). For a related structure, see: Mothilal et al. (2004).

Experimental top

A solution of TBZ (0.201 g, 1 mmol) in 3 ml DMF was added dropwise with stirring at room temperature to a solution of Ni(NO3)2.6H2O (0.290 g, 1 mmol) and NiCl2.6H2O (0.237 g, 1 mmol) in a mixture of 10 ml water and 5 ml ethanol. Then an aqueous solution of sodium hydroxide was added dropwise with stirring to adjust the pH value of the solution being 6. The resulting mixture was sealed in a 23 ml Teflon-lined stainless reactor, kept under autogenous pressure at 403 K for 72 h, and then slowly cooled to room temperature at a rate of 5 K per hour. Dark-green block crystals suitable for X-ray diffraction were isolated, washed with ethanol and dried in air (yield: 65% based on Ni).

Refinement top

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). The water H atoms were located from a difference Fourier map and refined as riding with Uiso(H) = 0.079 Å2.

Structure description top

Thiabendazole (TBZ) aroused considerable interest in biology and medicine due to its antiproliferative activities. It is an antimicrobial drug belonging to the benzimidazole derivatives and exhibits wide applications in human and veterinary medicine (Agh-Atabay et al., 2003; Devereux et al., 2004; Inoue et al., 2002). As part of our studies of the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of the title compound (Fig. 1).

In the crystal, intermolecular O—H···O, N—H···O and N—H···Cl hydrogen bonds link the complex cations and nitrate anions into a three-dimensional network (Table 1, Fig. 2) (Mothilal et al., 2004). ππ interactions between the thiazole and imidazole rings and between the thiazole and benzene rings are observed [centroid–centroid distances = 3.592 (3) and 3.735 (3) Å]. In the complex cation, the two ligand planes are nearly perpendicular to each other, with a dihedral angle of 89.14 (7)°.

For background to the synthesis and properties of benzimidazole derivatives, see: Agh-Atabay et al. (2003); Devereux et al. (2004); Inoue et al. (2002). For a related structure, see: Mothilal et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound. Dashed lines denote hydrogen bonds.
Aquachloridobis[2-(1,3-thiazol-4-yl-κN)- 1H-benzimidazole-κN3]nickel(II) nitrate top
Crystal data top
[NiCl(C10H7N3S)2(H2O)]NO3F(000) = 1176
Mr = 576.68Dx = 1.662 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2584 reflections
a = 16.091 (5) Åθ = 2.3–26.6°
b = 11.189 (3) ŵ = 1.18 mm1
c = 13.931 (3) ÅT = 296 K
β = 113.275 (3)°Block, green
V = 2304.1 (11) Å30.26 × 0.25 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4050 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1819
Tmin = 0.748, Tmax = 0.764k = 1313
11654 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.083P)2 + 1.4424P]
where P = (Fo2 + 2Fc2)/3
4050 reflections(Δ/σ)max = 0.045
316 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[NiCl(C10H7N3S)2(H2O)]NO3V = 2304.1 (11) Å3
Mr = 576.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.091 (5) ŵ = 1.18 mm1
b = 11.189 (3) ÅT = 296 K
c = 13.931 (3) Å0.26 × 0.25 × 0.24 mm
β = 113.275 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4050 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3129 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.764Rint = 0.072
11654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.07Δρmax = 0.80 e Å3
4050 reflectionsΔρmin = 0.53 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.26114 (3)0.47368 (5)0.32612 (4)0.0352 (2)
Cl10.31740 (8)0.27662 (10)0.40665 (10)0.0490 (4)
S10.36620 (9)0.71229 (11)0.62788 (10)0.0507 (4)
S20.13043 (9)0.27528 (12)0.00588 (11)0.0552 (4)
O10.13949 (19)0.4517 (3)0.3478 (3)0.0412 (7)
O31.0666 (2)0.6635 (3)0.3784 (3)0.0606 (10)
O41.0018 (2)0.8339 (3)0.3421 (3)0.0693 (11)
O20.9808 (3)0.7045 (5)0.2204 (3)0.0964 (18)
N30.2001 (2)0.3971 (3)0.1739 (3)0.0344 (8)
N50.3884 (2)0.5240 (3)0.3241 (3)0.0313 (8)
N60.3205 (2)0.5777 (3)0.4687 (3)0.0324 (8)
N20.2024 (2)0.6272 (3)0.2292 (3)0.0343 (8)
N70.5158 (2)0.6289 (3)0.3975 (3)0.0370 (9)
H70.55620.67420.44140.044*
N40.1133 (2)0.6929 (3)0.0713 (3)0.0430 (9)
H40.08010.69160.00540.052*
N11.0157 (2)0.7334 (4)0.3117 (3)0.0447 (10)
C80.4375 (3)0.5129 (4)0.2623 (3)0.0343 (10)
C150.1532 (3)0.4763 (4)0.0953 (4)0.0368 (10)
C200.5192 (3)0.5792 (4)0.3096 (4)0.0371 (10)
C70.1553 (3)0.5995 (4)0.1300 (3)0.0339 (9)
C190.4372 (2)0.5941 (3)0.4029 (3)0.0321 (9)
C170.4038 (2)0.6273 (3)0.4827 (3)0.0327 (9)
C60.1899 (3)0.7514 (4)0.2356 (4)0.0388 (10)
C130.1927 (3)0.2884 (4)0.1364 (4)0.0419 (11)
H130.21960.22290.17830.050*
C50.1327 (3)0.7920 (4)0.1353 (4)0.0441 (11)
C180.4377 (3)0.7027 (4)0.5649 (4)0.0421 (11)
H180.49230.74350.58420.051*
C110.5629 (4)0.5228 (5)0.1731 (5)0.0571 (14)
H110.60400.52480.14120.069*
C10.2222 (3)0.8290 (4)0.3202 (4)0.0495 (12)
H10.26020.80240.38620.059*
C120.5820 (3)0.5849 (5)0.2636 (5)0.0540 (14)
H120.63490.62940.29350.065*
C140.1106 (3)0.4261 (5)0.0009 (4)0.0467 (12)
H140.07590.46760.06130.056*
C100.4830 (4)0.4559 (5)0.1265 (4)0.0507 (12)
H100.47230.41440.06490.061*
C90.4209 (3)0.4511 (4)0.1705 (4)0.0443 (11)
H90.36810.40690.13920.053*
C160.2942 (3)0.6140 (4)0.5385 (4)0.0412 (11)
H160.24000.58920.54120.049*
C40.1057 (4)0.9106 (5)0.1180 (5)0.0562 (14)
H4A0.06790.93750.05200.067*
C20.1958 (4)0.9471 (4)0.3023 (5)0.0612 (15)
H20.21691.00190.35690.073*
C30.1367 (4)0.9856 (4)0.2012 (6)0.0661 (18)
H30.11861.06520.19160.079*
H1A0.10160.50690.33580.079*
H1B0.10000.40400.32410.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0293 (3)0.0361 (3)0.0344 (4)0.0022 (2)0.0065 (3)0.0048 (2)
Cl10.0429 (6)0.0411 (6)0.0506 (8)0.0038 (5)0.0053 (5)0.0024 (5)
S10.0636 (8)0.0451 (6)0.0402 (8)0.0015 (5)0.0170 (6)0.0142 (5)
S20.0516 (7)0.0592 (8)0.0476 (8)0.0047 (6)0.0119 (6)0.0238 (6)
O10.0344 (15)0.0363 (15)0.051 (2)0.0037 (12)0.0148 (14)0.0003 (14)
O30.072 (2)0.054 (2)0.046 (2)0.0172 (18)0.0134 (19)0.0004 (17)
O40.059 (2)0.057 (2)0.093 (3)0.0218 (18)0.032 (2)0.011 (2)
O20.090 (3)0.159 (5)0.025 (2)0.052 (3)0.006 (2)0.010 (2)
N30.0294 (16)0.0339 (17)0.034 (2)0.0017 (14)0.0065 (15)0.0072 (15)
N50.0255 (16)0.0344 (17)0.029 (2)0.0029 (13)0.0058 (15)0.0020 (15)
N60.0306 (17)0.0380 (18)0.025 (2)0.0000 (14)0.0077 (15)0.0059 (15)
N20.0346 (17)0.0303 (17)0.035 (2)0.0006 (14)0.0104 (16)0.0017 (15)
N70.0291 (16)0.0394 (18)0.036 (2)0.0067 (14)0.0055 (16)0.0033 (16)
N40.042 (2)0.045 (2)0.036 (2)0.0034 (17)0.0087 (17)0.0068 (18)
N10.0357 (19)0.061 (3)0.038 (2)0.0123 (18)0.0146 (18)0.001 (2)
C80.032 (2)0.035 (2)0.033 (2)0.0016 (17)0.0102 (19)0.0018 (18)
C150.032 (2)0.045 (2)0.032 (3)0.0053 (17)0.0113 (19)0.0058 (19)
C200.034 (2)0.034 (2)0.044 (3)0.0039 (17)0.0153 (19)0.010 (2)
C70.0296 (19)0.040 (2)0.033 (2)0.0007 (17)0.0126 (18)0.0016 (18)
C190.0265 (18)0.033 (2)0.033 (2)0.0024 (16)0.0076 (18)0.0031 (18)
C170.0296 (19)0.0275 (18)0.032 (2)0.0016 (16)0.0032 (17)0.0002 (17)
C60.033 (2)0.030 (2)0.054 (3)0.0005 (17)0.017 (2)0.004 (2)
C130.031 (2)0.044 (2)0.046 (3)0.0004 (18)0.010 (2)0.009 (2)
C50.039 (2)0.045 (3)0.054 (3)0.0063 (19)0.024 (2)0.018 (2)
C180.042 (2)0.037 (2)0.040 (3)0.0067 (18)0.007 (2)0.0074 (19)
C110.069 (3)0.057 (3)0.062 (4)0.013 (3)0.043 (3)0.017 (3)
C10.048 (3)0.035 (2)0.065 (3)0.001 (2)0.021 (2)0.003 (2)
C120.040 (2)0.053 (3)0.071 (4)0.003 (2)0.024 (3)0.023 (3)
C140.045 (2)0.057 (3)0.033 (3)0.002 (2)0.010 (2)0.001 (2)
C100.064 (3)0.055 (3)0.040 (3)0.004 (2)0.028 (3)0.006 (2)
C90.046 (3)0.043 (2)0.043 (3)0.001 (2)0.018 (2)0.001 (2)
C160.036 (2)0.046 (2)0.038 (3)0.0030 (19)0.012 (2)0.004 (2)
C40.060 (3)0.045 (3)0.071 (4)0.016 (2)0.035 (3)0.022 (3)
C20.069 (3)0.038 (2)0.092 (5)0.002 (2)0.048 (3)0.005 (3)
C30.067 (3)0.034 (2)0.116 (6)0.011 (2)0.057 (4)0.013 (3)
Geometric parameters (Å, º) top
Ni1—O12.109 (3)C8—C91.383 (6)
Ni1—N32.133 (3)C8—C201.424 (6)
Ni1—N52.134 (3)C15—C141.361 (6)
Ni1—N22.159 (3)C15—C71.456 (6)
Ni1—N62.171 (3)C20—C121.396 (7)
Ni1—Cl12.4772 (13)C19—C171.461 (6)
S1—C181.704 (5)C17—C181.351 (6)
S1—C161.721 (4)C6—C11.389 (7)
S2—C131.700 (5)C6—C51.410 (6)
S2—C141.713 (5)C13—H130.9300
O1—H1A0.8372C5—C41.387 (7)
O1—H1B0.7947C18—H180.9300
O3—N11.244 (5)C11—C121.364 (8)
O4—N11.252 (5)C11—C101.406 (8)
O2—N11.214 (5)C11—H110.9300
N3—C131.310 (5)C1—C21.381 (7)
N3—C151.380 (5)C1—H10.9300
N5—C191.326 (5)C12—H120.9300
N5—C81.386 (6)C14—H140.9300
N6—C161.271 (6)C10—C91.364 (7)
N6—C171.391 (5)C10—H100.9300
N2—C71.324 (5)C9—H90.9300
N2—C61.412 (5)C16—H160.9300
N7—C191.354 (5)C4—C31.356 (8)
N7—C201.367 (6)C4—H4A0.9300
N7—H70.8600C2—C31.420 (8)
N4—C71.335 (5)C2—H20.9300
N4—C51.379 (6)C3—H30.9300
N4—H40.8600
O1—Ni1—N390.37 (13)N2—C7—C15119.8 (4)
O1—Ni1—N5169.10 (12)N4—C7—C15126.7 (4)
N3—Ni1—N599.19 (13)N5—C19—N7112.6 (4)
O1—Ni1—N288.88 (12)N5—C19—C17120.3 (3)
N3—Ni1—N277.42 (13)N7—C19—C17127.0 (4)
N5—Ni1—N288.12 (13)C18—C17—N6114.4 (4)
O1—Ni1—N691.69 (12)C18—C17—C19131.0 (4)
N3—Ni1—N6171.22 (14)N6—C17—C19114.5 (3)
N5—Ni1—N678.08 (13)C1—C6—C5121.2 (4)
N2—Ni1—N694.09 (13)C1—C6—N2130.8 (4)
O1—Ni1—Cl191.44 (9)C5—C6—N2107.9 (4)
N3—Ni1—Cl191.99 (10)N3—C13—S2115.4 (4)
N5—Ni1—Cl193.43 (9)N3—C13—H13122.3
N2—Ni1—Cl1169.41 (10)S2—C13—H13122.3
N6—Ni1—Cl196.48 (10)N4—C5—C4132.9 (5)
C18—S1—C1689.2 (2)N4—C5—C6105.9 (4)
C13—S2—C1489.5 (2)C4—C5—C6121.1 (5)
Ni1—O1—H1A122.0C17—C18—S1110.3 (3)
Ni1—O1—H1B130.8C17—C18—H18124.9
H1A—O1—H1B90.7S1—C18—H18124.9
C13—N3—C15110.2 (4)C12—C11—C10121.9 (5)
C13—N3—Ni1134.7 (3)C12—C11—H11119.0
C15—N3—Ni1115.1 (3)C10—C11—H11119.0
C19—N5—C8105.7 (3)C2—C1—C6117.4 (5)
C19—N5—Ni1113.7 (3)C2—C1—H1121.3
C8—N5—Ni1140.4 (3)C6—C1—H1121.3
C16—N6—C17111.0 (4)C11—C12—C20117.5 (5)
C16—N6—Ni1135.5 (3)C11—C12—H12121.3
C17—N6—Ni1113.2 (3)C20—C12—H12121.3
C7—N2—C6105.0 (3)C15—C14—S2110.0 (4)
C7—N2—Ni1113.3 (3)C15—C14—H14125.0
C6—N2—Ni1141.4 (3)S2—C14—H14125.0
C19—N7—C20107.6 (3)C9—C10—C11120.8 (5)
C19—N7—H7126.2C9—C10—H10119.6
C20—N7—H7126.2C11—C10—H10119.6
C7—N4—C5107.6 (4)C10—C9—C8119.2 (5)
C7—N4—H4126.2C10—C9—H9120.4
C5—N4—H4126.2C8—C9—H9120.4
O2—N1—O3120.7 (5)N6—C16—S1115.2 (3)
O2—N1—O4121.6 (5)N6—C16—H16122.4
O3—N1—O4117.7 (4)S1—C16—H16122.4
C9—C8—N5132.1 (4)C3—C4—C5117.4 (5)
C9—C8—C20119.5 (4)C3—C4—H4A121.3
N5—C8—C20108.4 (4)C5—C4—H4A121.3
C14—C15—N3114.9 (4)C1—C2—C3120.5 (5)
C14—C15—C7130.8 (4)C1—C2—H2119.8
N3—C15—C7114.3 (4)C3—C2—H2119.8
N7—C20—C12133.3 (4)C4—C3—C2122.4 (5)
N7—C20—C8105.7 (4)C4—C3—H3118.8
C12—C20—C8121.0 (5)C2—C3—H3118.8
N2—C7—N4113.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.842.002.751 (5)149
O1—H1B···O2ii0.792.533.293 (6)160
O1—H1B···O4ii0.792.383.025 (5)139
N4—H4···O3iii0.862.352.962 (5)129
N4—H4···O4iii0.862.142.996 (5)173
N7—H7···Cl1iv0.862.353.159 (4)157
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[NiCl(C10H7N3S)2(H2O)]NO3
Mr576.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.091 (5), 11.189 (3), 13.931 (3)
β (°) 113.275 (3)
V3)2304.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.26 × 0.25 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.748, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
11654, 4050, 3129
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.174, 1.07
No. of reflections4050
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.53

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.842.002.751 (5)149
O1—H1B···O2ii0.792.533.293 (6)160
O1—H1B···O4ii0.792.383.025 (5)139
N4—H4···O3iii0.862.352.962 (5)129
N4—H4···O4iii0.862.142.996 (5)173
N7—H7···Cl1iv0.862.353.159 (4)157
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Key Scientific Research Projects of Guangxi University for Nationalities (2009MDZD42) and the Innovation Project of Guangxi University for Nationalities (gxun-chx2011092).

References

First citationAgh-Atabay, N. M., Dulger, B. & Gucin, F. (2003). Eur. J. Med. Chem. 38, 875–881.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevereux, M., McCann, M., Shea, D. O., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023–1031.  CSD CrossRef PubMed CAS Google Scholar
First citationInoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., Kanzaki, Y., Hamashima, H. & Sasatru, M. (2002). J. Inorg. Biochem. 92, 37–42.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMothilal, K. K., Karunakaran, C., Rajendran, A. & Murugesan, R. (2004). J. Inorg. Biochem. 98, 322–332.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds