metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­(μ2-4,4′-bi­pyridine-κ2N:N′)[μ3-3-bromo-2-(carboxyl­atometh­yl)­benzoato-κ3O1:O1′:O2]cadmium] monohydrate]

aNational Food Packaging Products Quality Supervision and Inspection Center, Jiangsu Provincial Supervising and Testing Research Institute for Products Quality, Nanjing 210007, Jiangsu, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People's Republic of China
*Correspondence e-mail: hare1014@163.com

(Received 11 June 2012; accepted 10 July 2012; online 14 July 2012)

In the title compound, {[Cd(C9H5BrO4)(C10H8N2)(H2O)]·H2O}n, the CdII atom has a distorted octa­hedral coordination geometry. Two N atoms from two 4,4′-bipyridine (bipy) ligands occupy the axial positions, while the equatorial positions are furnished by three carboxyl­ate O atoms from three 3-bromo-2-(carboxyl­atometh­yl)benzoate (bcb) ligands and one O atom from a water mol­ecule. The bipy and bcb ligands link the CdII atoms into a three-dimensional network. O—H⋯O hydrogen bonds and ππ inter­actions between the pyridine and benzene rings [centroid–centroid distance = 3.736 (4) Å] are present in the crystal.

Related literature

For related structures, see: Liu et al. (2010[Liu, Y., He, R., Wang, F., Lu, C. & Meng, Q. (2010). Inorg. Chem. Commun. 13, 1375-1379.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H5BrO4)(C10H8N2)(H2O)]·H2O

  • Mr = 561.66

  • Monoclinic, P 21

  • a = 9.3257 (19) Å

  • b = 9.1312 (18) Å

  • c = 11.652 (2) Å

  • β = 101.344 (4)°

  • V = 972.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.22 mm−1

  • T = 291 K

  • 0.29 × 0.26 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.466, Tmax = 0.538

  • 5248 measured reflections

  • 3122 independent reflections

  • 2807 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.118

  • S = 1.05

  • 3122 reflections

  • 251 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.93 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1096 Friedel pairs

  • Flack parameter: 0.07 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5X⋯O3i 0.85 2.47 2.963 (8) 118
O5—H5Y⋯O2i 0.85 2.22 2.731 (9) 119
O6—H6X⋯O1 0.85 2.51 3.201 (9) 139
O6—H6Y⋯O2 0.85 2.14 2.643 (9) 117
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title complex (Fig. 1), the carboxylate group containing O1 and O2 is monocoordinated and the other carboxylate group containing O3 and O4 is bidentate and bridging. Therefore, the 3-bromo-2-(carboxymethyl)benzoate (bcb) ligand coordinates with three Cd atoms. The Cd atom is coordinated by three bcb ligands, forming a two-dimensional polymeric layer parallel to (1 1 0). Since each Cd atom is coordinated by three bcb ligands, from a topology viewpoint the Cd atom can be considered as a 3-connecting node and the center of benzene ring of the bcb ligand also acts as a 3-connecting node. In this way, the polymeric layer can be simplified to a 63 network (Fig. 2). The 4,4'-bipyridine ligands act as bridges to connect the neighboring Cd atoms which come from different layers, forming a three-dimensional rigid porous network. This three-dimensional topology can be defined with Schläfli symbol (63)(69.8) (Fig. 3).

Related literature top

For related structures, see: Liu et al. (2010).

Experimental top

A mixture of 3-bromo-2-(carboxymethyl)benzoic acid (0.1 mmol, 25.9 mg), 4,4'-bipyridine (0.1 mmol, 19.5 mg), Cd(NO3)2.4H2O (0.1 mmol, 30.9 mg) and 8 ml water was sealed in a 23 ml Teflon-lined autoclave. The pH value of the mixture was adjusted to 7.0 with NaOH solution. The autoclave was kept at 393 K for 3 days. After the mixture was slowly cooled to room temperature, colorless crystals of the title compound were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and with Uiso(H) = 1.2(1.5 for O5)Ueq(O).

Structure description top

In the title complex (Fig. 1), the carboxylate group containing O1 and O2 is monocoordinated and the other carboxylate group containing O3 and O4 is bidentate and bridging. Therefore, the 3-bromo-2-(carboxymethyl)benzoate (bcb) ligand coordinates with three Cd atoms. The Cd atom is coordinated by three bcb ligands, forming a two-dimensional polymeric layer parallel to (1 1 0). Since each Cd atom is coordinated by three bcb ligands, from a topology viewpoint the Cd atom can be considered as a 3-connecting node and the center of benzene ring of the bcb ligand also acts as a 3-connecting node. In this way, the polymeric layer can be simplified to a 63 network (Fig. 2). The 4,4'-bipyridine ligands act as bridges to connect the neighboring Cd atoms which come from different layers, forming a three-dimensional rigid porous network. This three-dimensional topology can be defined with Schläfli symbol (63)(69.8) (Fig. 3).

For related structures, see: Liu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The aymmetric unit of the title compound, with 50% probability displacement ellipsoids. [Symmetry codes: (i) -1+x, y, z; (ii) 1-x, 1/2+y, 2-z; (iii) x, y, 1+z; (iv) x, y, -1+z; (v) 1+x, y, z; (vi) 1-x, -1/2+y, 2-z.]
[Figure 2] Fig. 2. The two-dimensional polymeric layer in the ab plane, which can be simplified to a 63 network. Black balls denote the centroids of the benzene rings.
[Figure 3] Fig. 3. Schematic view of the three-dimensional network of the title compound. Black balls denote the centroids of the benzene rings.
Poly[[aqua(µ2-4,4'-bipyridine-κ2N:N')[µ3-3-bromo-2- (carboxylatomethyl)benzoato-κ3O1:O1':O2]cadmium] monohydrate] top
Crystal data top
[Cd(C9H5BrO4)(C10H8N2)(H2O)]·H2OF(000) = 552
Mr = 561.66Dx = 1.918 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1319 reflections
a = 9.3257 (19) Åθ = 2.6–21.3°
b = 9.1312 (18) ŵ = 3.22 mm1
c = 11.652 (2) ÅT = 291 K
β = 101.344 (4)°Block, colorless
V = 972.8 (3) Å30.29 × 0.26 × 0.23 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3122 independent reflections
Radiation source: sealed tube2807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 118
Tmin = 0.466, Tmax = 0.538k = 1110
5248 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.07P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3122 reflectionsΔρmax = 0.49 e Å3
251 parametersΔρmin = 0.93 e Å3
1 restraintAbsolute structure: Flack (1983), 1096 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (2)
Crystal data top
[Cd(C9H5BrO4)(C10H8N2)(H2O)]·H2OV = 972.8 (3) Å3
Mr = 561.66Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.3257 (19) ŵ = 3.22 mm1
b = 9.1312 (18) ÅT = 291 K
c = 11.652 (2) Å0.29 × 0.26 × 0.23 mm
β = 101.344 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3122 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2807 reflections with I > 2σ(I)
Tmin = 0.466, Tmax = 0.538Rint = 0.033
5248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.49 e Å3
S = 1.05Δρmin = 0.93 e Å3
3122 reflectionsAbsolute structure: Flack (1983), 1096 Friedel pairs
251 parametersAbsolute structure parameter: 0.07 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.78647 (11)0.15671 (12)1.36696 (9)0.0477 (3)
C10.9844 (6)0.3672 (6)1.1234 (3)0.038 (2)
C20.9014 (6)0.2688 (5)1.1738 (4)0.040 (2)
C30.8909 (6)0.2844 (6)1.2905 (4)0.043 (2)
C40.9634 (6)0.3984 (7)1.3568 (3)0.0325 (18)
H40.95950.40951.43220.039*
C51.0464 (6)0.4968 (6)1.3064 (4)0.037 (2)
H51.09560.57251.35130.045*
C61.0569 (6)0.4812 (6)1.1896 (4)0.044 (2)
H61.11030.54531.15820.053*
C70.9925 (10)0.3554 (11)0.9975 (8)0.043 (2)
C80.8249 (10)0.1429 (14)1.0972 (8)0.048 (2)
H8A0.83390.05841.14860.058*
H8B0.87950.12151.03650.058*
C90.6697 (10)0.1577 (12)1.0473 (8)0.039 (2)
C100.4900 (9)0.3415 (11)0.7781 (7)0.042 (3)
H100.57140.37230.83220.050*
C110.4933 (11)0.3408 (11)0.6554 (8)0.047 (3)
H110.57840.37120.63210.056*
C120.3785 (8)0.2859 (10)0.5800 (7)0.0316 (17)
C130.2515 (10)0.2495 (11)0.6235 (8)0.040 (2)
H130.16890.21560.57230.048*
C140.2516 (11)0.2538 (12)0.7434 (7)0.043 (2)
H140.17000.22060.77050.051*
C150.3746 (8)0.2923 (14)0.4498 (6)0.039 (2)
C160.4478 (10)0.4038 (11)0.4039 (8)0.040 (2)
H160.50140.47460.45140.048*
C170.4438 (11)0.4024 (11)0.2825 (8)0.043 (2)
H170.49530.47390.25060.051*
C180.2976 (10)0.2033 (13)0.2613 (9)0.048 (3)
H180.24520.13310.21230.057*
C190.3039 (11)0.1901 (11)0.3853 (9)0.046 (2)
H190.25290.11570.41420.055*
Cd10.35516 (6)0.30525 (7)1.01349 (5)0.03236 (17)
N10.3714 (7)0.3032 (12)0.8186 (5)0.0387 (15)
N20.3662 (8)0.3106 (13)0.2123 (6)0.0440 (16)
O11.1007 (6)0.3167 (10)0.9680 (5)0.0450 (15)
O20.8816 (8)0.3873 (8)0.9228 (6)0.0454 (16)
O30.6015 (7)0.2669 (7)1.0621 (5)0.0374 (15)
O40.6104 (7)0.0555 (8)0.9904 (5)0.0385 (15)
O50.3078 (7)0.0660 (7)0.9920 (6)0.0367 (15)
H5Y0.21590.05240.97570.055*
H5X0.34620.03200.93720.055*
O60.9272 (8)0.3735 (8)0.7062 (5)0.0464 (17)
H6X0.99630.39690.76240.056*
H6Y0.85100.37160.73600.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0485 (6)0.0441 (6)0.0474 (5)0.0073 (4)0.0018 (4)0.0159 (5)
C10.029 (4)0.049 (5)0.030 (4)0.003 (3)0.008 (3)0.013 (4)
C20.048 (5)0.026 (5)0.042 (4)0.005 (3)0.003 (4)0.002 (4)
C30.037 (4)0.037 (6)0.047 (4)0.002 (4)0.010 (3)0.010 (4)
C40.030 (4)0.037 (5)0.026 (4)0.006 (3)0.004 (3)0.012 (4)
C50.042 (4)0.031 (5)0.032 (4)0.008 (4)0.010 (4)0.014 (4)
C60.049 (5)0.048 (6)0.033 (4)0.002 (4)0.001 (4)0.008 (4)
C70.037 (5)0.052 (6)0.042 (5)0.022 (4)0.014 (4)0.004 (4)
C80.036 (5)0.064 (7)0.037 (5)0.013 (5)0.014 (4)0.009 (5)
C90.037 (4)0.043 (5)0.040 (5)0.006 (4)0.011 (4)0.004 (5)
C100.032 (4)0.059 (8)0.032 (4)0.010 (4)0.001 (3)0.016 (4)
C110.045 (5)0.049 (7)0.045 (5)0.005 (4)0.007 (4)0.018 (5)
C120.034 (4)0.023 (5)0.036 (4)0.002 (3)0.002 (3)0.003 (4)
C130.031 (4)0.044 (5)0.042 (5)0.004 (4)0.002 (4)0.006 (4)
C140.046 (5)0.055 (6)0.025 (4)0.022 (4)0.001 (4)0.014 (4)
C150.035 (4)0.051 (6)0.026 (3)0.021 (5)0.007 (3)0.006 (5)
C160.030 (4)0.043 (6)0.046 (5)0.013 (4)0.001 (4)0.012 (4)
C170.064 (6)0.032 (5)0.035 (4)0.025 (4)0.014 (4)0.004 (4)
C180.029 (4)0.063 (7)0.050 (6)0.011 (4)0.004 (4)0.019 (5)
C190.044 (5)0.037 (5)0.057 (6)0.018 (4)0.008 (4)0.013 (5)
Cd10.0292 (3)0.0353 (3)0.0319 (3)0.0075 (3)0.00435 (19)0.0014 (3)
N10.048 (4)0.038 (4)0.033 (3)0.019 (5)0.016 (3)0.013 (5)
N20.043 (4)0.038 (4)0.046 (4)0.002 (5)0.004 (3)0.005 (5)
O10.038 (3)0.049 (4)0.052 (3)0.007 (4)0.017 (3)0.013 (4)
O20.054 (4)0.044 (4)0.041 (3)0.011 (3)0.015 (3)0.000 (3)
O30.041 (3)0.035 (4)0.034 (3)0.003 (3)0.000 (2)0.003 (3)
O40.032 (3)0.048 (4)0.033 (3)0.004 (3)0.001 (3)0.008 (3)
O50.026 (3)0.037 (4)0.048 (3)0.014 (3)0.007 (3)0.019 (3)
O60.060 (4)0.048 (4)0.029 (3)0.015 (3)0.004 (3)0.008 (3)
Geometric parameters (Å, º) top
Br1—C31.855 (4)C13—H130.9299
C1—C21.3900C14—N11.355 (11)
C1—C61.3900C14—H140.9299
C1—C71.487 (10)C15—C191.294 (15)
C2—C31.3900C15—C161.390 (15)
C2—C81.541 (11)C16—C171.408 (13)
C3—C41.3900C16—H160.9300
C4—C51.3900C17—N21.290 (13)
C4—H40.8922C17—H170.9300
C5—C61.3900C18—N21.356 (15)
C5—H50.9318C18—C191.440 (15)
C6—H60.8918C18—H180.9300
C7—O11.182 (11)C19—H190.9300
C7—O21.248 (12)Cd1—O52.233 (7)
C8—C91.455 (13)Cd1—O32.282 (6)
C8—H8A0.9700Cd1—N2i2.298 (7)
C8—H8B0.9700Cd1—N12.305 (6)
C9—O41.213 (12)Cd1—O4ii2.309 (8)
C9—O31.213 (12)Cd1—O1iii2.330 (6)
C10—N11.332 (11)N2—Cd1iv2.298 (7)
C10—C111.435 (13)O1—Cd1v2.330 (6)
C10—H100.9300O4—Cd1vi2.309 (8)
C11—C121.341 (13)O5—H5Y0.8500
C11—H110.9299O5—H5X0.8500
C12—C131.417 (12)O6—H6X0.8500
C12—C151.511 (11)O6—H6Y0.8500
C13—C141.396 (13)
C2—C1—C6120.0C13—C14—H14119.4
C2—C1—C7120.7 (5)C19—C15—C16122.5 (8)
C6—C1—C7119.2 (5)C19—C15—C12117.7 (9)
C1—C2—C3120.0C16—C15—C12119.8 (9)
C1—C2—C8118.1 (5)C15—C16—C17117.5 (8)
C3—C2—C8121.9 (5)C15—C16—H16121.9
C4—C3—C2120.0C17—C16—H16120.6
C4—C3—Br1116.6 (3)N2—C17—C16123.0 (8)
C2—C3—Br1123.4 (3)N2—C17—H17118.1
C3—C4—C5120.0C16—C17—H17118.8
C3—C4—H4121.5N2—C18—C19123.6 (9)
C5—C4—H4118.5N2—C18—H18118.3
C6—C5—C4120.0C19—C18—H18118.1
C6—C5—H5120.3C15—C19—C18116.0 (9)
C4—C5—H5119.7C15—C19—H19123.7
C5—C6—C1120.0C18—C19—H19120.1
C5—C6—H6119.1O5—Cd1—O392.6 (2)
C1—C6—H6120.9O5—Cd1—N2i95.9 (3)
O1—C7—O2120.3 (9)O3—Cd1—N2i84.8 (2)
O1—C7—C1121.3 (9)O5—Cd1—N186.1 (3)
O2—C7—C1118.4 (8)O3—Cd1—N189.1 (2)
C9—C8—C2118.2 (10)N2i—Cd1—N1173.8 (2)
C9—C8—H8A106.2O5—Cd1—O4ii172.3 (2)
C2—C8—H8A105.2O3—Cd1—O4ii91.1 (2)
C9—C8—H8B110.5N2i—Cd1—O4ii91.2 (3)
C2—C8—H8B108.9N1—Cd1—O4ii87.3 (3)
H8A—C8—H8B107.2O5—Cd1—O1iii81.3 (3)
O4—C9—O3120.9 (9)O3—Cd1—O1iii173.6 (3)
O4—C9—C8117.2 (10)N2i—Cd1—O1iii94.0 (2)
O3—C9—C8121.8 (10)N1—Cd1—O1iii92.1 (2)
N1—C10—C11122.2 (8)O4ii—Cd1—O1iii95.2 (3)
N1—C10—H10117.6C10—N1—C14119.6 (7)
C11—C10—H10120.2C10—N1—Cd1124.5 (5)
C12—C11—C10118.9 (8)C14—N1—Cd1115.8 (5)
C12—C11—H11122.5C17—N2—C18117.0 (8)
C10—C11—H11118.4C17—N2—Cd1iv124.2 (7)
C11—C12—C13117.9 (8)C18—N2—Cd1iv118.5 (7)
C11—C12—C15120.2 (8)C7—O1—Cd1v146.8 (6)
C13—C12—C15120.7 (7)C9—O3—Cd1128.4 (6)
C14—C13—C12121.0 (8)C9—O4—Cd1vi136.2 (7)
C14—C13—H13119.2Cd1—O5—H5Y109.7
C12—C13—H13119.6Cd1—O5—H5X109.7
N1—C14—C13119.7 (8)H5Y—O5—H5X109.5
N1—C14—H14120.9H6X—O6—H6Y105.0
C6—C1—C2—C30.0C19—C15—C16—C170.3 (15)
C7—C1—C2—C3177.8 (7)C12—C15—C16—C17178.4 (9)
C6—C1—C2—C8179.2 (7)C15—C16—C17—N25.9 (16)
C7—C1—C2—C83.1 (8)C16—C15—C19—C183.8 (15)
C1—C2—C3—C40.0C12—C15—C19—C18177.5 (8)
C8—C2—C3—C4179.1 (7)N2—C18—C19—C153.3 (16)
C1—C2—C3—Br1178.6 (5)C11—C10—N1—C143.9 (17)
C8—C2—C3—Br10.5 (7)C11—C10—N1—Cd1178.8 (8)
C2—C3—C4—C50.0C13—C14—N1—C102.8 (17)
Br1—C3—C4—C5178.7 (4)C13—C14—N1—Cd1179.7 (8)
C3—C4—C5—C60.0O5—Cd1—N1—C10120.4 (10)
C4—C5—C6—C10.0O3—Cd1—N1—C1027.7 (10)
C2—C1—C6—C50.0O4ii—Cd1—N1—C1063.4 (10)
C7—C1—C6—C5177.8 (7)O1iii—Cd1—N1—C10158.5 (10)
C2—C1—C7—O1109.3 (9)O5—Cd1—N1—C1457.1 (9)
C6—C1—C7—O173.0 (11)O3—Cd1—N1—C14149.7 (9)
C2—C1—C7—O270.6 (10)O4ii—Cd1—N1—C14119.1 (9)
C6—C1—C7—O2107.1 (8)O1iii—Cd1—N1—C1424.0 (9)
C1—C2—C8—C9100.5 (9)C16—C17—N2—C186.4 (16)
C3—C2—C8—C980.4 (9)C16—C17—N2—Cd1iv179.6 (8)
C2—C8—C9—O4177.7 (8)C19—C18—N2—C171.8 (16)
C2—C8—C9—O31.9 (14)C19—C18—N2—Cd1iv176.2 (8)
N1—C10—C11—C126.9 (16)O2—C7—O1—Cd1v151.1 (10)
C10—C11—C12—C138.3 (14)C1—C7—O1—Cd1v29 (2)
C10—C11—C12—C15176.2 (9)O4—C9—O3—Cd18.0 (13)
C11—C12—C13—C147.6 (14)C8—C9—O3—Cd1171.6 (6)
C15—C12—C13—C14175.3 (9)O5—Cd1—O3—C916.6 (8)
C12—C13—C14—N14.6 (16)N2i—Cd1—O3—C9112.2 (8)
C11—C12—C15—C19150.4 (10)N1—Cd1—O3—C969.5 (8)
C13—C12—C15—C1942.1 (13)O4ii—Cd1—O3—C9156.7 (8)
C11—C12—C15—C1628.3 (13)O3—C9—O4—Cd1vi152.0 (7)
C13—C12—C15—C16139.1 (9)C8—C9—O4—Cd1vi27.7 (13)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+2; (iii) x1, y, z; (iv) x, y, z1; (v) x+1, y, z; (vi) x+1, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5X···O3vi0.852.472.963 (8)118
O5—H5Y···O2vi0.852.222.731 (9)119
O6—H6X···O10.852.513.201 (9)139
O6—H6Y···O20.852.142.643 (9)117
Symmetry code: (vi) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formula[Cd(C9H5BrO4)(C10H8N2)(H2O)]·H2O
Mr561.66
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)9.3257 (19), 9.1312 (18), 11.652 (2)
β (°) 101.344 (4)
V3)972.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.22
Crystal size (mm)0.29 × 0.26 × 0.23
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.466, 0.538
No. of measured, independent and
observed [I > 2σ(I)] reflections
5248, 3122, 2807
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.118, 1.05
No. of reflections3122
No. of parameters251
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.93
Absolute structureFlack (1983), 1096 Friedel pairs
Absolute structure parameter0.07 (2)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5X···O3i0.852.472.963 (8)118
O5—H5Y···O2i0.852.222.731 (9)119
O6—H6X···O10.852.513.201 (9)139
O6—H6Y···O20.852.142.643 (9)117
Symmetry code: (i) x+1, y1/2, z+2.
 

Acknowledgements

This work was financially supported by the Science and Technology Project of the State General Administration of Quality Supervision, Inspection and Quarantine (grant Nos. 2011QK121 and 2011QK122).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, Y., He, R., Wang, F., Lu, C. & Meng, Q. (2010). Inorg. Chem. Commun. 13, 1375–1379.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds