metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridobis[2-(1,3-thia­zol-4-yl-κN)-1H-benzimidazole-κN3]cobalt(II) chloride dihydrate

aDepartment of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bHybio Pharmaceutical Co. Ltd, Shenzhen 518057, People's Republic of China
*Correspondence e-mail: 6628yxh@163.com

(Received 18 June 2012; accepted 3 July 2012; online 10 July 2012)

In the title compound, [CoCl(C10H7N3S)2]Cl·2H2O, the CoII atom is five-coordinated by four N atoms from two chelating 2-(1,3-thia­zol-4-yl)-1H-benzimidazole ligands and one Cl atom in a distorted trigonal–bipyramidal geometry. In the crystal, N—H⋯O and O—H⋯Cl hydrogen bonds and ππ inter­actions between the thia­zole, imidazole and benzene rings [centroid-to-centroid distances 3.546 (2), 3.683 (2) and 3.714 (2) Å] link the complex cations, chloride anions and uncoordinating water mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Devereux et al. (2004[Devereux, M., McCann, M., Shea, D. O., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023-1031.], 2007[Devereux, M., Shea, D. O., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kęziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881-892.]); Flores-Alamo et al. (2010[Flores-Alamo, M., González-Martínez, S. & Castillo-Blum, S. E. (2010). Acta Cryst. E66, o812.]); Jean et al. (2002[Jean, M.-G., Tellez, F., Bernés, S., Nöth, H., Contreras, R. & Barba-Behrens, N. (2002). Inorg. Chim. Acta, 339, 532-542.]); Mothilal et al. (2004[Mothilal, K. K., Karunakaran, C., Rajendran, A. & Murugesan, R. (2004). J. Inorg. Biochem. 98, 322-332.]); Murugesan et al. (1998[Murugesan, S., Prabakaran, P. & Muthiah, P. T. (1998). Acta Cryst. C54, 1905-1907.]); Ren et al. (2010[Ren, X.-X., Wang, C.-X., Lu, Y.-M., Zhuang, C.-X. & Le, X.-Y. (2010). Chin. J. Inorg. Chem. 26, 891-898.]); Stanley et al. (2002[Stanley, N., Panneerselvam, P. & Thomas Muthiah, P. (2002). Acta Cryst. E58, o426-o428.]); Trus & Marsh (1973[Trus, B. L. & Marsh, R. E. (1973). Acta Cryst. B29, 2298-2301.]); Wisniewski et al. (2001[Wisniewski, M.-Z., Glowiak, T., Opolski, A. & Wietrzyk, J. (2001). Met. Based Drugs, 8, 189-194.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl(C10H7N3S)2]Cl·2H2O

  • Mr = 568.35

  • Monoclinic, P 21 /c

  • a = 14.803 (4) Å

  • b = 11.709 (3) Å

  • c = 14.082 (4) Å

  • β = 101.439 (4)°

  • V = 2392.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 0.803

  • 12683 measured reflections

  • 4200 independent reflections

  • 3517 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.05

  • 4200 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.86 1.90 2.748 (3) 169
N6—H6⋯O1 0.86 1.86 2.704 (3) 168
O1—H1B⋯Cl2ii 0.85 2.27 3.104 (3) 169
O1—H1A⋯Cl1iii 0.85 2.43 3.272 (3) 169
O2—H2B⋯Cl1 0.85 2.45 3.296 (3) 171
O2—H2A⋯Cl2 0.85 2.21 3.052 (2) 174
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal-based drugs aroused considerable interest in biology and medicine due to their antiproliferative activities. Thiabendazole is an antimicrobial drug belonging to the benzimidazole derivatives and exhibits wide applications in human and veterinary medicine. Thiabendazole had been studied for a long time. The crystal structures of thiabendazole (Trus & Marsh, 1973), thiabendazolium nitrate (Murugesan et al., 1998), thiabendazolium chlorate (Stanley et al., 2002), and a lot of its metal compounds (Devereux et al., 2004, 2007; Flores-Alamo et al., 2010; Jean et al., 2002; Mothilal et al., 2004; Ren et al., 2010; Wisniewski et al., 2001) have been reported.

The title compound consists of a complex cation, a Cl- anion and two uncoordinated water molecules (Fig. 1). The CoII atom is five-coordinated by four N atoms from two chelating 2-(1,3-thiazol-4-yl)-1H-benzimidazole ligands and one Cl atom in a distorted trigonal-bipyramidal geometry. In the crystal, N—H···O and O—H···Cl hydrogen bonds (Table 1) and ππ interactions between the thiazole, imidazole and benzene rings [centroid–centroid distances = 3.546 (2), 3.683 (2) and 3.714 (2) Å] link the cations, anions and water molecules into a three-dimensional network.

Related literature top

For related structures, see: Devereux et al. (2004, 2007); Flores-Alamo et al. (2010); Jean et al. (2002); Mothilal et al. (2004); Murugesan et al. (1998); Ren et al. (2010); Stanley et al. (2002); Trus & Marsh (1973); Wisniewski et al. (2001).

Experimental top

In a 100 ml flask, thiabendazole hydrochloride (0.237 g, 1 mmol) and CoCl2.6H2O (0.240 g, 1 mmol) were dissolved in 20 ml water, 20 ml EtOH and 5 ml DMF. The mixture was heated to 350 K for 5 h. After cooling to room temperature, the mixture was filtered and the filtrate was evaporated slowly. After a month, red crystals were collected and washed with water (yield: 0.198 g, 34.9% based on Co).

Refinement top

H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). Water H atoms were located from a difference Fourier map and refined as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Structure description top

Metal-based drugs aroused considerable interest in biology and medicine due to their antiproliferative activities. Thiabendazole is an antimicrobial drug belonging to the benzimidazole derivatives and exhibits wide applications in human and veterinary medicine. Thiabendazole had been studied for a long time. The crystal structures of thiabendazole (Trus & Marsh, 1973), thiabendazolium nitrate (Murugesan et al., 1998), thiabendazolium chlorate (Stanley et al., 2002), and a lot of its metal compounds (Devereux et al., 2004, 2007; Flores-Alamo et al., 2010; Jean et al., 2002; Mothilal et al., 2004; Ren et al., 2010; Wisniewski et al., 2001) have been reported.

The title compound consists of a complex cation, a Cl- anion and two uncoordinated water molecules (Fig. 1). The CoII atom is five-coordinated by four N atoms from two chelating 2-(1,3-thiazol-4-yl)-1H-benzimidazole ligands and one Cl atom in a distorted trigonal-bipyramidal geometry. In the crystal, N—H···O and O—H···Cl hydrogen bonds (Table 1) and ππ interactions between the thiazole, imidazole and benzene rings [centroid–centroid distances = 3.546 (2), 3.683 (2) and 3.714 (2) Å] link the cations, anions and water molecules into a three-dimensional network.

For related structures, see: Devereux et al. (2004, 2007); Flores-Alamo et al. (2010); Jean et al. (2002); Mothilal et al. (2004); Murugesan et al. (1998); Ren et al. (2010); Stanley et al. (2002); Trus & Marsh (1973); Wisniewski et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the molecules connected by O—H···Cl and N—H···O hydrogen bonds (dashed lines).
Chloridobis[2-(1,3-thiazol-4-yl-κN)-1H-benzimidazole- κN3]cobalt(II) chloride dihydrate top
Crystal data top
[CoCl(C10H7N3S)2]Cl·2H2OF(000) = 1156
Mr = 568.35Dx = 1.578 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5625 reflections
a = 14.803 (4) Åθ = 2.5–27.9°
b = 11.709 (3) ŵ = 1.15 mm1
c = 14.082 (4) ÅT = 296 K
β = 101.439 (4)°Block, red
V = 2392.3 (11) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4200 independent reflections
Radiation source: fine-focus sealed tube3517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1117
Tmin = 0.803, Tmax = 0.803k = 1313
12683 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.5251P]
where P = (Fo2 + 2Fc2)/3
4200 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[CoCl(C10H7N3S)2]Cl·2H2OV = 2392.3 (11) Å3
Mr = 568.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.803 (4) ŵ = 1.15 mm1
b = 11.709 (3) ÅT = 296 K
c = 14.082 (4) Å0.20 × 0.20 × 0.20 mm
β = 101.439 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4200 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3517 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.803Rint = 0.029
12683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
4200 reflectionsΔρmin = 0.37 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.24191 (2)0.52351 (3)0.80442 (2)0.03535 (12)
N10.12865 (16)0.48857 (19)0.70875 (17)0.0431 (5)
N20.19207 (15)0.69958 (19)0.75929 (16)0.0439 (5)
N30.00486 (16)0.54257 (19)0.62029 (16)0.0445 (5)
H30.04860.58630.59190.053*
N40.36009 (15)0.57629 (19)0.88293 (17)0.0433 (5)
N50.32957 (16)0.4841 (2)0.70910 (17)0.0463 (6)
N60.50953 (15)0.60834 (19)0.89573 (16)0.0427 (5)
H60.56290.61090.88050.051*
O10.68432 (15)0.6368 (2)0.86990 (18)0.0747 (7)
H1A0.72360.60880.91640.090*
H1B0.69670.61350.81680.090*
O20.15760 (14)0.17298 (19)0.95087 (16)0.0608 (6)
H2A0.19340.14730.91560.073*
H2B0.15780.24550.94820.073*
S10.42099 (6)0.43913 (9)0.57955 (7)0.0668 (3)
S20.14108 (6)0.90259 (6)0.71020 (6)0.0563 (2)
Cl10.18070 (6)0.45144 (7)0.93089 (6)0.0572 (2)
Cl20.29471 (6)0.07173 (8)0.83834 (7)0.0652 (2)
C10.39292 (18)0.6275 (2)0.9725 (2)0.0430 (6)
C20.3493 (2)0.6578 (3)1.0480 (2)0.0565 (8)
H20.28650.64601.04360.068*
C30.4030 (2)0.7058 (3)1.1293 (2)0.0637 (9)
H3A0.37570.72681.18070.076*
C40.4968 (2)0.7237 (3)1.1363 (2)0.0573 (8)
H40.53050.75651.19250.069*
C50.5412 (2)0.6952 (2)1.0641 (2)0.0499 (7)
H50.60400.70761.06950.060*
C60.48778 (18)0.6465 (2)0.98172 (19)0.0409 (6)
C70.43232 (18)0.5669 (2)0.84080 (19)0.0407 (6)
C80.41976 (19)0.5164 (2)0.7457 (2)0.0416 (6)
C90.4787 (2)0.4974 (3)0.6854 (2)0.0520 (7)
H90.54140.51370.69960.062*
C100.3214 (2)0.4410 (3)0.6220 (2)0.0599 (8)
H100.26580.41380.58650.072*
C110.08023 (19)0.3911 (2)0.6733 (2)0.0436 (6)
C120.1039 (2)0.2764 (3)0.6844 (2)0.0547 (7)
H120.16000.25290.72140.066*
C130.0396 (3)0.1989 (3)0.6377 (3)0.0637 (9)
H130.05350.12140.64280.076*
C140.0449 (3)0.2327 (3)0.5835 (2)0.0628 (9)
H140.08650.17720.55480.075*
C150.0687 (2)0.3454 (3)0.5711 (2)0.0545 (8)
H150.12500.36800.53390.065*
C160.00419 (19)0.4249 (2)0.61717 (19)0.0425 (6)
C170.07502 (18)0.5765 (2)0.67555 (19)0.0403 (6)
C180.10696 (18)0.6918 (2)0.69648 (19)0.0423 (6)
C190.0698 (2)0.7934 (2)0.6639 (2)0.0521 (7)
H190.01320.80240.62210.063*
C200.2169 (2)0.8065 (2)0.7725 (2)0.0484 (7)
H200.27180.82840.81280.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02582 (19)0.0390 (2)0.0398 (2)0.00224 (13)0.00312 (14)0.00274 (14)
N10.0372 (12)0.0425 (13)0.0489 (13)0.0005 (10)0.0068 (10)0.0016 (10)
N20.0379 (12)0.0443 (13)0.0486 (13)0.0001 (10)0.0065 (10)0.0020 (10)
N30.0375 (12)0.0488 (14)0.0441 (13)0.0003 (10)0.0007 (10)0.0059 (10)
N40.0344 (12)0.0449 (13)0.0497 (13)0.0011 (10)0.0064 (10)0.0044 (10)
N50.0364 (12)0.0513 (14)0.0491 (14)0.0013 (10)0.0033 (10)0.0072 (11)
N60.0341 (12)0.0482 (13)0.0450 (13)0.0057 (10)0.0055 (10)0.0002 (10)
O10.0463 (13)0.1013 (19)0.0761 (16)0.0047 (13)0.0114 (11)0.0041 (14)
O20.0544 (13)0.0559 (13)0.0701 (14)0.0024 (10)0.0072 (11)0.0076 (11)
S10.0620 (5)0.0828 (6)0.0582 (5)0.0049 (4)0.0180 (4)0.0234 (4)
S20.0639 (5)0.0412 (4)0.0634 (5)0.0021 (3)0.0121 (4)0.0026 (3)
Cl10.0574 (5)0.0584 (5)0.0558 (4)0.0100 (4)0.0112 (4)0.0053 (3)
Cl20.0516 (5)0.0696 (5)0.0732 (5)0.0039 (4)0.0096 (4)0.0142 (4)
C10.0428 (15)0.0374 (14)0.0481 (15)0.0033 (12)0.0074 (12)0.0040 (12)
C20.0489 (17)0.0591 (19)0.064 (2)0.0050 (14)0.0161 (15)0.0134 (15)
C30.072 (2)0.062 (2)0.060 (2)0.0073 (17)0.0206 (17)0.0183 (16)
C40.067 (2)0.0513 (18)0.0500 (17)0.0102 (15)0.0022 (15)0.0114 (14)
C50.0502 (17)0.0418 (16)0.0540 (17)0.0086 (13)0.0017 (14)0.0009 (13)
C60.0422 (15)0.0365 (14)0.0422 (15)0.0023 (11)0.0040 (12)0.0009 (11)
C70.0383 (14)0.0383 (14)0.0441 (15)0.0007 (11)0.0049 (12)0.0017 (11)
C80.0377 (14)0.0399 (14)0.0465 (15)0.0012 (11)0.0068 (12)0.0021 (12)
C90.0439 (16)0.0540 (17)0.0602 (19)0.0032 (13)0.0155 (14)0.0054 (14)
C100.0512 (18)0.070 (2)0.0560 (19)0.0053 (16)0.0051 (15)0.0192 (16)
C110.0408 (15)0.0463 (16)0.0448 (15)0.0032 (12)0.0111 (12)0.0000 (12)
C120.0535 (18)0.0493 (17)0.0613 (19)0.0034 (14)0.0110 (15)0.0033 (14)
C130.077 (2)0.0449 (18)0.072 (2)0.0066 (16)0.0224 (19)0.0007 (15)
C140.077 (2)0.055 (2)0.0586 (19)0.0255 (17)0.0189 (18)0.0063 (15)
C150.0516 (18)0.067 (2)0.0447 (16)0.0163 (15)0.0076 (13)0.0009 (14)
C160.0414 (15)0.0493 (16)0.0370 (14)0.0069 (12)0.0080 (12)0.0004 (12)
C170.0375 (14)0.0443 (15)0.0394 (14)0.0005 (12)0.0081 (11)0.0021 (11)
C180.0411 (15)0.0460 (16)0.0390 (14)0.0004 (12)0.0064 (12)0.0006 (12)
C190.0536 (17)0.0484 (17)0.0523 (17)0.0048 (14)0.0051 (14)0.0033 (13)
C200.0451 (16)0.0449 (17)0.0551 (17)0.0025 (13)0.0100 (13)0.0057 (13)
Geometric parameters (Å, º) top
Co1—N11.974 (2)C1—C61.402 (4)
Co1—N41.974 (2)C2—C31.377 (4)
Co1—N52.095 (2)C2—H20.9300
Co1—N22.239 (2)C3—C41.390 (5)
Co1—Cl12.3120 (9)C3—H3A0.9300
N1—C171.327 (4)C4—C51.357 (4)
N1—C111.387 (4)C4—H40.9300
N2—C201.308 (4)C5—C61.391 (4)
N2—C181.391 (3)C5—H50.9300
N3—C171.340 (3)C7—C81.442 (4)
N3—C161.379 (4)C8—C91.351 (4)
N3—H30.8600C9—H90.9300
N4—C71.326 (3)C10—H100.9300
N4—C11.393 (3)C11—C121.389 (4)
N5—C101.310 (4)C11—C161.397 (4)
N5—C81.385 (4)C12—C131.383 (4)
N6—C71.338 (3)C12—H120.9300
N6—C61.387 (3)C13—C141.388 (5)
N6—H60.8600C13—H130.9300
O1—H1A0.8500C14—C151.368 (5)
O1—H1B0.8500C14—H140.9300
O2—H2A0.8500C15—C161.398 (4)
O2—H2B0.8500C15—H150.9300
S1—C101.698 (3)C17—C181.442 (4)
S1—C91.707 (3)C18—C191.352 (4)
S2—C191.702 (3)C19—H190.9300
S2—C201.704 (3)C20—H200.9300
C1—C21.395 (4)
N1—Co1—N4170.18 (10)C6—C5—H5121.7
N1—Co1—N593.86 (9)N6—C6—C5132.0 (3)
N4—Co1—N580.51 (9)N6—C6—C1105.6 (2)
N1—Co1—N279.03 (9)C5—C6—C1122.4 (3)
N4—Co1—N294.37 (9)N4—C7—N6112.5 (2)
N5—Co1—N2103.42 (9)N4—C7—C8118.9 (2)
N1—Co1—Cl192.32 (7)N6—C7—C8128.6 (2)
N4—Co1—Cl197.01 (7)C9—C8—N5114.6 (3)
N5—Co1—Cl1143.16 (7)C9—C8—C7132.1 (3)
N2—Co1—Cl1113.41 (6)N5—C8—C7113.2 (2)
C17—N1—C11106.3 (2)C8—C9—S1109.9 (2)
C17—N1—Co1116.58 (19)C8—C9—H9125.0
C11—N1—Co1136.43 (19)S1—C9—H9125.0
C20—N2—C18110.3 (2)N5—C10—S1114.1 (2)
C20—N2—Co1140.7 (2)N5—C10—H10122.9
C18—N2—Co1109.04 (17)S1—C10—H10122.9
C17—N3—C16107.7 (2)N1—C11—C12130.9 (3)
C17—N3—H3126.2N1—C11—C16108.1 (2)
C16—N3—H3126.2C12—C11—C16121.0 (3)
C7—N4—C1105.8 (2)C13—C12—C11116.5 (3)
C7—N4—Co1115.27 (18)C13—C12—H12121.7
C1—N4—Co1138.82 (18)C11—C12—H12121.7
C10—N5—C8110.9 (2)C12—C13—C14122.3 (3)
C10—N5—Co1136.9 (2)C12—C13—H13118.8
C8—N5—Co1112.05 (18)C14—C13—H13118.8
C7—N6—C6107.6 (2)C15—C14—C13121.8 (3)
C7—N6—H6126.2C15—C14—H14119.1
C6—N6—H6126.2C13—C14—H14119.1
H1A—O1—H1B108.7C14—C15—C16116.6 (3)
H2A—O2—H2B108.7C14—C15—H15121.7
C10—S1—C990.38 (15)C16—C15—H15121.7
C19—S2—C2089.78 (15)N3—C16—C11106.0 (2)
N4—C1—C2131.9 (3)N3—C16—C15132.2 (3)
N4—C1—C6108.4 (2)C11—C16—C15121.8 (3)
C2—C1—C6119.7 (3)N1—C17—N3111.9 (2)
C3—C2—C1117.4 (3)N1—C17—C18120.4 (2)
C3—C2—H2121.3N3—C17—C18127.7 (2)
C1—C2—H2121.3C19—C18—N2114.5 (3)
C2—C3—C4121.6 (3)C19—C18—C17131.3 (3)
C2—C3—H3A119.2N2—C18—C17114.2 (2)
C4—C3—H3A119.2C18—C19—S2110.6 (2)
C5—C4—C3122.4 (3)C18—C19—H19124.7
C5—C4—H4118.8S2—C19—H19124.7
C3—C4—H4118.8N2—C20—S2114.9 (2)
C4—C5—C6116.5 (3)N2—C20—H20122.5
C4—C5—H5121.7S2—C20—H20122.5
N5—Co1—N1—C17110.9 (2)C10—N5—C8—C90.1 (4)
N2—Co1—N1—C177.97 (19)Co1—N5—C8—C9177.3 (2)
Cl1—Co1—N1—C17105.44 (19)C10—N5—C8—C7178.7 (3)
N5—Co1—N1—C1180.0 (3)Co1—N5—C8—C71.3 (3)
N2—Co1—N1—C11177.0 (3)N4—C7—C8—C9178.9 (3)
Cl1—Co1—N1—C1163.6 (3)N6—C7—C8—C90.7 (5)
N1—Co1—N2—C20174.8 (3)N4—C7—C8—N50.6 (4)
N4—Co1—N2—C202.2 (3)N6—C7—C8—N5179.0 (3)
N5—Co1—N2—C2083.5 (3)N5—C8—C9—S10.6 (3)
Cl1—Co1—N2—C2097.4 (3)C7—C8—C9—S1177.6 (3)
N1—Co1—N2—C184.89 (17)C10—S1—C9—C80.9 (3)
N4—Co1—N2—C18177.54 (17)C8—N5—C10—S10.9 (4)
N5—Co1—N2—C1896.27 (18)Co1—N5—C10—S1175.71 (17)
Cl1—Co1—N2—C1882.88 (17)C9—S1—C10—N51.0 (3)
N5—Co1—N4—C72.24 (19)C17—N1—C11—C12179.2 (3)
N2—Co1—N4—C7100.7 (2)Co1—N1—C11—C1211.0 (5)
Cl1—Co1—N4—C7145.09 (19)C17—N1—C11—C160.4 (3)
N5—Co1—N4—C1178.8 (3)Co1—N1—C11—C16170.2 (2)
N2—Co1—N4—C175.9 (3)N1—C11—C12—C13179.0 (3)
Cl1—Co1—N4—C138.4 (3)C16—C11—C12—C130.3 (4)
N1—Co1—N5—C106.5 (3)C11—C12—C13—C140.9 (5)
N4—Co1—N5—C10178.4 (3)C12—C13—C14—C151.7 (5)
N2—Co1—N5—C1086.2 (3)C13—C14—C15—C161.1 (5)
Cl1—Co1—N5—C1092.5 (3)C17—N3—C16—C110.1 (3)
N1—Co1—N5—C8170.01 (19)C17—N3—C16—C15179.9 (3)
N4—Co1—N5—C81.89 (18)N1—C11—C16—N30.2 (3)
N2—Co1—N5—C890.38 (19)C12—C11—C16—N3179.1 (3)
Cl1—Co1—N5—C890.9 (2)N1—C11—C16—C15179.8 (2)
C7—N4—C1—C2179.5 (3)C12—C11—C16—C150.9 (4)
Co1—N4—C1—C23.8 (5)C14—C15—C16—N3179.8 (3)
C7—N4—C1—C60.7 (3)C14—C15—C16—C110.2 (4)
Co1—N4—C1—C6177.4 (2)C11—N1—C17—N30.4 (3)
N4—C1—C2—C3178.7 (3)Co1—N1—C17—N3172.59 (17)
C6—C1—C2—C30.0 (4)C11—N1—C17—C18177.6 (2)
C1—C2—C3—C40.1 (5)Co1—N1—C17—C1810.2 (3)
C2—C3—C4—C50.0 (5)C16—N3—C17—N10.3 (3)
C3—C4—C5—C60.1 (5)C16—N3—C17—C18177.3 (3)
C7—N6—C6—C5179.0 (3)C20—N2—C18—C190.0 (3)
C7—N6—C6—C11.5 (3)Co1—N2—C18—C19179.8 (2)
C4—C5—C6—N6179.6 (3)C20—N2—C18—C17178.4 (2)
C4—C5—C6—C10.2 (4)Co1—N2—C18—C171.4 (3)
N4—C1—C6—N61.4 (3)N1—C17—C18—C19172.7 (3)
C2—C1—C6—N6179.7 (3)N3—C17—C18—C194.0 (5)
N4—C1—C6—C5179.1 (2)N1—C17—C18—N25.4 (4)
C2—C1—C6—C50.1 (4)N3—C17—C18—N2177.9 (2)
C1—N4—C7—N60.3 (3)N2—C18—C19—S20.6 (3)
Co1—N4—C7—N6177.35 (18)C17—C18—C19—S2177.5 (2)
C1—N4—C7—C8179.9 (2)C20—S2—C19—C180.7 (2)
Co1—N4—C7—C82.3 (3)C18—N2—C20—S20.6 (3)
C6—N6—C7—N41.2 (3)Co1—N2—C20—S2179.15 (17)
C6—N6—C7—C8179.2 (3)C19—S2—C20—N20.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.861.902.748 (3)169
N6—H6···O10.861.862.704 (3)168
O1—H1B···Cl2ii0.852.273.104 (3)169
O1—H1A···Cl1iii0.852.433.272 (3)169
O2—H2B···Cl10.852.453.296 (3)171
O2—H2A···Cl20.852.213.052 (2)174
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[CoCl(C10H7N3S)2]Cl·2H2O
Mr568.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.803 (4), 11.709 (3), 14.082 (4)
β (°) 101.439 (4)
V3)2392.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.803, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
12683, 4200, 3517
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.05
No. of reflections4200
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.861.902.748 (3)169
N6—H6···O10.861.862.704 (3)168
O1—H1B···Cl2ii0.852.273.104 (3)169
O1—H1A···Cl1iii0.852.433.272 (3)169
O2—H2B···Cl10.852.453.296 (3)171
O2—H2A···Cl20.852.213.052 (2)174
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the Innovation Project of Guangxi University for Nationalities (grant No. gxun-chx2011092).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevereux, M., McCann, M., Shea, D. O., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023–1031.  CSD CrossRef PubMed CAS Google Scholar
First citationDevereux, M., Shea, D. O., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kęziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlores-Alamo, M., González-Martínez, S. & Castillo-Blum, S. E. (2010). Acta Cryst. E66, o812.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJean, M.-G., Tellez, F., Bernés, S., Nöth, H., Contreras, R. & Barba-Behrens, N. (2002). Inorg. Chim. Acta, 339, 532–542.  Google Scholar
First citationMothilal, K. K., Karunakaran, C., Rajendran, A. & Murugesan, R. (2004). J. Inorg. Biochem. 98, 322–332.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMurugesan, S., Prabakaran, P. & Muthiah, P. T. (1998). Acta Cryst. C54, 1905–1907.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRen, X.-X., Wang, C.-X., Lu, Y.-M., Zhuang, C.-X. & Le, X.-Y. (2010). Chin. J. Inorg. Chem. 26, 891–898.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Panneerselvam, P. & Thomas Muthiah, P. (2002). Acta Cryst. E58, o426–o428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrus, B. L. & Marsh, R. E. (1973). Acta Cryst. B29, 2298–2301.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWisniewski, M.-Z., Glowiak, T., Opolski, A. & Wietrzyk, J. (2001). Met. Based Drugs, 8, 189–194.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds