metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-2,2′-(1,4-Phenyl­ene)di­acetato-κ2O1:O4]bis­­[aqua­(2,2′-bi­pyridine-κ2N,N′)chloridocopper(II)] dihydrate

aDepartment of Chemical and Life Science, Baise University, Baise 533000, People's Republic of China, bHybio Pharmaceutical Co. Ltd, Shenzhen 518057, People's Republic of China, and cDepartment of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: tougaomingda@163.com

(Received 25 June 2012; accepted 29 June 2012; online 25 July 2012)

In the centrosymmetric title compound, [Cu2(C10H8O4)Cl2(C10H8N2)2(H2O)2]·2H2O, the CuII atom is five-coordinated in a distorted square-pyramidal geometry by two N atoms from a chelating 2,2′-bipyridine ligand, one O atom from a 1,4-phenyl­enediacetate ligand, one Cl atom and one water mol­ecule. The 1,4-phenyl­enediacetate ligand, lying on an inversion center, bridges two CuII atoms. In the crystal, O—H⋯O and O—H⋯Cl hydrogen bonds and ππ inter­actions between the pyridine rings [centroid–centroid distance = 3.740 (5) Å] link the complex mol­ecules and uncoordinated water mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Hu et al. (2009[Hu, F.-L., Yin, X.-H., Mi, Y., Zhang, J.-L., Zhuang, Y. & Dai, X.-Z. (2009). Inorg. Chem. Commun. 12, 628-631.]); Wu et al. (2010[Wu, Q.-L., Zhuang, J.-C., Luo, Z.-R., Yin, X.-H. & Zhao, D.-D. (2010). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 40, 790-797.], 2011[Wu, Q.-L., Luo, Z.-R., Zhuang, J.-C. & Yin, X.-H. (2011). J. Chem. Crystallogr. 41, 664-669.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C10H8O4)Cl2(C10H8N2)2(H2O)2]·2H2O

  • Mr = 774.58

  • Monoclinic, P 21 /c

  • a = 11.713 (4) Å

  • b = 6.954 (2) Å

  • c = 19.585 (7) Å

  • β = 100.507 (5)°

  • V = 1568.6 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 296 K

  • 0.41 × 0.39 × 0.37 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.563, Tmax = 0.592

  • 7958 measured reflections

  • 3011 independent reflections

  • 2394 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.177

  • S = 1.06

  • 3011 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.85 2.00 2.822 (8) 164
O3—H3B⋯O4ii 0.85 1.94 2.769 (8) 164
O4—H4A⋯O1 0.85 2.06 2.900 (8) 169
O4—H4B⋯Cl1ii 0.85 2.44 3.276 (7) 169
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

2,2'-Bipyridine (2,2'-bpy) is one of the first-line popular drugs used to treat invasive infections. 1,4-Phenylenediacetic acid (H2PDA) has two flexible acetate groups, resulting in trans- or cis-conformation. Both of them are interesting candidates to coordinate to metal ions through nitrogen atoms or oxygen atoms for constructing a diversity of coordination architectures (Hu et al., 2009; Wu et al., 2010, 2011).

In the title complex (Fig. 1), the CuII atom is five-coordinated by two N atoms (N1, N2) from a 2,2-bpy ligand, one O atom (O1) from a centrosymmetric PDA ligand, one O atom (O3) from a water molecule and one chloride ion. The asymmetric unit also contains one uncoordinated water molecule. O—H···O and O—H···Cl hydrogen bonds (Table 1) and ππ interactions between the pyridine rings [centroid–centroid distance = 3.740 (5) Å] result in the formation of a supramolecular structure (Fig. 2).

Related literature top

For related structures, see: Hu et al. (2009); Wu et al. (2010, 2011).

Experimental top

1,4-Phenylenediacetic acid (0.097 g, 0.5 mmol) and 2,2-bipyridine (0.078 g, 0.5 mmol) were dissolved in a mixture of 15 ml N,N-dimethylformamide and 10 ml water and an aqueous solution of sodium hydroxide was added dropwise with stirring to adjust the pH value being 6. Then 5 ml aqueous solution of CuCl2.2H2O (0.097 g, 0.05 mmol) was added. The mixture was kept stirring at 350 K for 4 h and then filtered. The filtrate was kept at room temperature and a few days later X-ray quality blue block-shaped crystals were obtained. Analysis, calculated for C30H32Cl2Cu2N4O8: C 46.52, H 4.16, N 7.23%; found: C 46.49, H 4.17, N 7.21%.

Refinement top

H atoms bonded to O atoms were located in a difference Fourier map and refined as riding atoms, with O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

2,2'-Bipyridine (2,2'-bpy) is one of the first-line popular drugs used to treat invasive infections. 1,4-Phenylenediacetic acid (H2PDA) has two flexible acetate groups, resulting in trans- or cis-conformation. Both of them are interesting candidates to coordinate to metal ions through nitrogen atoms or oxygen atoms for constructing a diversity of coordination architectures (Hu et al., 2009; Wu et al., 2010, 2011).

In the title complex (Fig. 1), the CuII atom is five-coordinated by two N atoms (N1, N2) from a 2,2-bpy ligand, one O atom (O1) from a centrosymmetric PDA ligand, one O atom (O3) from a water molecule and one chloride ion. The asymmetric unit also contains one uncoordinated water molecule. O—H···O and O—H···Cl hydrogen bonds (Table 1) and ππ interactions between the pyridine rings [centroid–centroid distance = 3.740 (5) Å] result in the formation of a supramolecular structure (Fig. 2).

For related structures, see: Hu et al. (2009); Wu et al. (2010, 2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability ellipsoids. [Symmetry code: (a) 1-x, -y, 1-z.]
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
[µ-2,2'-(1,4-Phenylene)diacetato-κ2O1:O4]bis[aqua(2,2'- bipyridine-κ2N,N')chloridocopper(II)] dihydrate top
Crystal data top
[Cu2(C10H8O4)Cl2(C10H8N2)2(H2O)2]·2H2OF(000) = 792
Mr = 774.58Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3637 reflections
a = 11.713 (4) Åθ = 2.5–28.2°
b = 6.954 (2) ŵ = 1.58 mm1
c = 19.585 (7) ÅT = 296 K
β = 100.507 (5)°Block, blue
V = 1568.6 (9) Å30.41 × 0.39 × 0.37 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
3011 independent reflections
Radiation source: fine-focus sealed tube2394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.563, Tmax = 0.592k = 88
7958 measured reflectionsl = 2318
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0067P)2 + 24.0162P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3011 reflectionsΔρmax = 0.92 e Å3
209 parametersΔρmin = 0.79 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0220 (15)
Crystal data top
[Cu2(C10H8O4)Cl2(C10H8N2)2(H2O)2]·2H2OV = 1568.6 (9) Å3
Mr = 774.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.713 (4) ŵ = 1.58 mm1
b = 6.954 (2) ÅT = 296 K
c = 19.585 (7) Å0.41 × 0.39 × 0.37 mm
β = 100.507 (5)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3011 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2394 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 0.592Rint = 0.039
7958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0067P)2 + 24.0162P]
where P = (Fo2 + 2Fc2)/3
3011 reflectionsΔρmax = 0.92 e Å3
209 parametersΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.77380 (7)0.64270 (13)0.35400 (4)0.0243 (3)
Cl10.71866 (18)0.5594 (4)0.24104 (10)0.0431 (6)
N10.9450 (5)0.6443 (10)0.3524 (3)0.0313 (14)
N20.8374 (5)0.7190 (9)0.4531 (3)0.0281 (14)
O10.6232 (4)0.5601 (8)0.3742 (3)0.0295 (12)
O20.7159 (4)0.2915 (8)0.4109 (3)0.0345 (13)
O30.7324 (6)0.9562 (8)0.3321 (3)0.0473 (16)
H3A0.73601.04540.36200.057*
H3B0.68850.99400.29510.057*
O40.4144 (6)0.6431 (10)0.2741 (3)0.0547 (18)
H4A0.47500.63460.30530.066*
H4B0.38710.75620.27480.066*
C10.9972 (8)0.6049 (13)0.2969 (4)0.041 (2)
H10.94990.57670.25460.049*
C21.1147 (8)0.6046 (15)0.2998 (5)0.048 (2)
H21.14700.57360.26120.057*
C31.1824 (7)0.6517 (14)0.3616 (4)0.041 (2)
H31.26250.65900.36490.050*
C41.1348 (7)0.6885 (12)0.4192 (4)0.0337 (18)
H41.18180.71470.46180.040*
C51.0153 (6)0.6858 (9)0.4124 (4)0.0235 (15)
C60.9531 (6)0.7264 (10)0.4706 (4)0.0224 (15)
C71.0085 (7)0.7747 (11)0.5371 (4)0.0295 (17)
H71.08910.77970.54830.035*
C80.9419 (8)0.8147 (11)0.5861 (4)0.0360 (19)
H80.97710.84400.63130.043*
C90.8234 (7)0.8113 (13)0.5681 (4)0.039 (2)
H90.77740.84230.60050.047*
C100.7729 (6)0.7610 (12)0.5006 (4)0.0318 (17)
H100.69240.75650.48840.038*
C110.6254 (6)0.3871 (10)0.3943 (3)0.0240 (15)
C120.5077 (6)0.2956 (12)0.3957 (4)0.0316 (18)
H12A0.45400.39650.40310.038*
H12B0.47900.23990.35040.038*
C130.5059 (6)0.1417 (11)0.4501 (4)0.0245 (15)
C140.5399 (7)0.1820 (11)0.5198 (4)0.0330 (18)
H140.56610.30470.53360.040*
C150.4647 (6)0.0410 (11)0.4305 (4)0.0282 (16)
H150.43990.06930.38380.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0217 (5)0.0281 (5)0.0225 (5)0.0032 (4)0.0024 (3)0.0004 (4)
Cl10.0393 (11)0.0609 (14)0.0257 (10)0.0081 (10)0.0029 (8)0.0083 (9)
N10.034 (3)0.033 (3)0.026 (3)0.004 (3)0.003 (3)0.006 (3)
N20.027 (3)0.030 (3)0.026 (3)0.003 (3)0.002 (3)0.001 (3)
O10.021 (3)0.033 (3)0.033 (3)0.001 (2)0.002 (2)0.004 (2)
O20.029 (3)0.034 (3)0.039 (3)0.002 (2)0.002 (2)0.007 (2)
O30.074 (4)0.028 (3)0.037 (3)0.013 (3)0.002 (3)0.002 (3)
O40.053 (4)0.044 (4)0.058 (4)0.008 (3)0.014 (3)0.003 (3)
C10.045 (5)0.051 (5)0.025 (4)0.004 (4)0.004 (4)0.001 (4)
C20.038 (5)0.069 (7)0.041 (5)0.004 (5)0.018 (4)0.005 (5)
C30.025 (4)0.061 (6)0.035 (4)0.004 (4)0.002 (3)0.007 (4)
C40.027 (4)0.040 (5)0.033 (4)0.001 (3)0.003 (3)0.003 (4)
C50.022 (3)0.016 (3)0.032 (4)0.005 (3)0.005 (3)0.005 (3)
C60.020 (3)0.020 (3)0.026 (4)0.003 (3)0.000 (3)0.002 (3)
C70.029 (4)0.028 (4)0.028 (4)0.007 (3)0.004 (3)0.000 (3)
C80.053 (5)0.031 (4)0.023 (4)0.004 (4)0.003 (3)0.007 (3)
C90.039 (5)0.047 (5)0.035 (4)0.001 (4)0.018 (4)0.010 (4)
C100.023 (4)0.042 (5)0.031 (4)0.002 (3)0.007 (3)0.002 (4)
C110.036 (4)0.021 (4)0.014 (3)0.005 (3)0.000 (3)0.001 (3)
C120.023 (4)0.041 (4)0.026 (4)0.012 (3)0.009 (3)0.003 (3)
C130.018 (3)0.034 (4)0.022 (3)0.002 (3)0.007 (3)0.005 (3)
C140.043 (5)0.024 (4)0.032 (4)0.002 (3)0.006 (3)0.006 (3)
C150.029 (4)0.033 (4)0.021 (3)0.010 (3)0.001 (3)0.001 (3)
Geometric parameters (Å, º) top
Cu1—O11.963 (5)C4—C51.383 (10)
Cu1—N12.011 (6)C4—H40.9300
Cu1—N22.020 (6)C5—C61.487 (10)
Cu1—O32.257 (6)C6—C71.387 (9)
Cu1—Cl12.264 (2)C7—C81.369 (11)
N1—C51.338 (9)C7—H70.9300
N1—C11.368 (10)C8—C91.368 (12)
N2—C101.333 (10)C8—H80.9300
N2—C61.338 (9)C9—C101.391 (11)
O1—C111.265 (8)C9—H90.9300
O2—C111.243 (9)C10—H100.9300
O3—H3A0.8500C11—C121.523 (10)
O3—H3B0.8500C12—C131.513 (10)
O4—H4A0.8500C12—H12A0.9700
O4—H4B0.8500C12—H12B0.9700
C1—C21.367 (12)C13—C141.379 (10)
C1—H10.9300C13—C151.388 (10)
C2—C31.361 (12)C14—C15i1.389 (11)
C2—H20.9300C14—H140.9300
C3—C41.369 (11)C15—C14i1.389 (11)
C3—H30.9300C15—H150.9300
O1—Cu1—N1160.0 (2)C4—C5—C6123.6 (7)
O1—Cu1—N294.1 (2)N2—C6—C7121.9 (7)
N1—Cu1—N279.6 (3)N2—C6—C5114.3 (6)
O1—Cu1—O398.7 (2)C7—C6—C5123.8 (6)
N1—Cu1—O399.9 (3)C8—C7—C6118.6 (7)
N2—Cu1—O387.6 (2)C8—C7—H7120.7
O1—Cu1—Cl190.87 (16)C6—C7—H7120.7
N1—Cu1—Cl195.37 (19)C9—C8—C7119.8 (7)
N2—Cu1—Cl1174.95 (19)C9—C8—H8120.1
O3—Cu1—Cl192.75 (17)C7—C8—H8120.1
C5—N1—C1116.6 (7)C8—C9—C10119.0 (7)
C5—N1—Cu1116.3 (5)C8—C9—H9120.5
C1—N1—Cu1127.1 (5)C10—C9—H9120.5
C10—N2—C6119.4 (6)N2—C10—C9121.4 (7)
C10—N2—Cu1124.9 (5)N2—C10—H10119.3
C6—N2—Cu1115.8 (5)C9—C10—H10119.3
C11—O1—Cu1111.9 (5)O2—C11—O1123.9 (7)
Cu1—O3—H3A126.3O2—C11—C12120.2 (6)
Cu1—O3—H3B122.4O1—C11—C12115.8 (7)
H3A—O3—H3B108.0C13—C12—C11115.9 (6)
H4A—O4—H4B108.7C13—C12—H12A108.3
C2—C1—N1124.1 (8)C11—C12—H12A108.3
C2—C1—H1118.0C13—C12—H12B108.3
N1—C1—H1118.0C11—C12—H12B108.3
C3—C2—C1117.1 (8)H12A—C12—H12B107.4
C3—C2—H2121.5C14—C13—C15118.9 (7)
C1—C2—H2121.5C14—C13—C12121.0 (7)
C2—C3—C4121.2 (8)C15—C13—C12120.1 (6)
C2—C3—H3119.4C13—C14—C15i120.6 (7)
C4—C3—H3119.4C13—C14—H14119.7
C3—C4—C5118.4 (7)C15i—C14—H14119.7
C3—C4—H4120.8C13—C15—C14i120.6 (7)
C5—C4—H4120.8C13—C15—H15119.7
N1—C5—C4122.5 (7)C14i—C15—H15119.7
N1—C5—C6114.0 (6)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.852.002.822 (8)164
O3—H3B···O4iii0.851.942.769 (8)164
O4—H4A···O10.852.062.900 (8)169
O4—H4B···Cl1iii0.852.443.276 (7)169
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C10H8O4)Cl2(C10H8N2)2(H2O)2]·2H2O
Mr774.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.713 (4), 6.954 (2), 19.585 (7)
β (°) 100.507 (5)
V3)1568.6 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.41 × 0.39 × 0.37
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.563, 0.592
No. of measured, independent and
observed [I > 2σ(I)] reflections
7958, 3011, 2394
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.177, 1.06
No. of reflections3011
No. of parameters209
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0067P)2 + 24.0162P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.92, 0.79

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.852.002.822 (8)164
O3—H3B···O4ii0.851.942.769 (8)164
O4—H4A···O10.852.062.900 (8)169
O4—H4B···Cl1ii0.852.443.276 (7)169
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, F.-L., Yin, X.-H., Mi, Y., Zhang, J.-L., Zhuang, Y. & Dai, X.-Z. (2009). Inorg. Chem. Commun. 12, 628–631.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Q.-L., Luo, Z.-R., Zhuang, J.-C. & Yin, X.-H. (2011). J. Chem. Crystallogr. 41, 664–669.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, Q.-L., Zhuang, J.-C., Luo, Z.-R., Yin, X.-H. & Zhao, D.-D. (2010). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 40, 790–797.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds