metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(ethyl­enedi­amine-κ2N,N′)nickel(II) bis­­(di­methyl phosphate)

aDepartment of Chemistry, Share-Ray Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: m_rafizadeh83@yahoo.com

(Received 26 June 2012; accepted 1 July 2012; online 7 July 2012)

In the title compound, [Ni(C2H8N2)3][O2P(OCH3)2]2, the NiII atom is six-coordinated in a distorted octa­hedral geometry by six N atoms from three ethyl­enediamine ligands. The P atoms of the anions adopt a distorted tetra­hedral geometry. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the cations and anions into a three-dimensional network.

Related literature

For related structures, see: Amani et al. (2006[Amani, V., Rafizadeh, M., Yousefi, M. & Zargar, N. S. (2006). Anal. Sci. 22, x303-x304.]); Jun & Zhang (2010[Jun, Q. & Zhang, C. (2010). Acta Cryst. E66, m24-m25.]); Rafizadeh & Amani (2006a[Rafizadeh, M. & Amani, V. (2006a). Acta Cryst. E62, m1776-m1777.],b[Rafizadeh, M. & Amani, V. (2006b). Anal. Sci. 22, x211-x212.], 2007[Rafizadeh, M. & Amani, V. (2007). Z. Anorg. Allg. Chem. 633, 2738-2741.]); Rafizadeh, Amani & Aghayan (2006[Rafizadeh, M., Amani, V. & Aghayan, H. (2006). Acta Cryst. E62, m2450-m2452.]); Rafizadeh, Amani & Broushaky (2006[Rafizadeh, M., Amani, V. & Broushaky, M. (2006). Anal. Sci. 22, x213-x214.]); Rafizadeh, Hoseinzadeh & Amani (2006[Rafizadeh, M., Hoseinzadeh, F. & Amani, V. (2006). Anal. Sci. 22, x3-x4.]); Rafizadeh et al. (2005[Rafizadeh, M., Tayebee, R., Amani, V. & Nasseh, M. (2005). Bull. Korean Chem. Soc. 26, 594-598.], 2007[Rafizadeh, M., Amani, V. & Farajian, H. (2007). Z. Anorg. Allg. Chem. 633, 1143-1145.], 2009[Rafizadeh, M., Amani, V. & Mortazavi, N. S. (2009). Bull. Korean Chem. Soc. 30, 489-492.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H8N2)3](C2H6O4P)2

  • Mr = 489.08

  • Monoclinic, P 21 /n

  • a = 9.2553 (5) Å

  • b = 12.4913 (5) Å

  • c = 18.190 (1) Å

  • β = 90.156 (4)°

  • V = 2102.95 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 120 K

  • 0.49 × 0.40 × 0.38 mm

Data collection
  • Stoe IPDS-2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.590, Tmax = 0.650

  • 9338 measured reflections

  • 5205 independent reflections

  • 4555 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.08

  • 5205 reflections

  • 284 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2 0.90 (3) 2.17 (3) 3.057 (2) 171 (2)
N1—H1D⋯O5i 0.93 (4) 2.36 (4) 3.263 (2) 165 (3)
N2—H2C⋯O6 0.87 (3) 2.35 (3) 3.111 (2) 146 (2)
N2—H2D⋯O6ii 0.84 (3) 2.19 (3) 3.015 (2) 169 (2)
N3—H3C⋯O2iii 0.92 (3) 2.11 (3) 2.971 (2) 157 (2)
N3—H3D⋯O6 0.90 (3) 2.13 (3) 3.002 (2) 163 (2)
N4—H4C⋯O1 0.92 (3) 2.00 (3) 2.910 (2) 176 (3)
N4—H4D⋯O8ii 0.88 (3) 2.40 (3) 3.205 (2) 152 (2)
N5—H5C⋯O5i 0.87 (3) 2.11 (3) 2.911 (2) 154 (2)
N6—H6C⋯O4 0.90 2.35 3.243 (2) 175
N6—H6D⋯O2iii 0.90 2.20 3.064 (2) 160
C9—H9C⋯O1iv 0.96 2.41 3.305 (3) 155
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, we reported the synthesis and crystal structure of [Ni(H2O)6](DMP)2 (Rafizadeh & Amani, 2006a) (DMP = dimethylphosphate anion, [O2P(OCH3)2]-). In this compound, DMP is not bonded to the metal but acts as a counterion. Also, we reported the syntheses and crystal structures of [Cu2(µ-DMP)4(µ-DMSO)]n (Rafizadeh et al., 2005), [UO2(µ-DMP)2(DMSO)]n (Rafizadeh, Hoseinzadeh & Amani, 2006), [La(µ-DMP)23-NO3)(DMSO)]n (Rafizadeh, Amani & Broushaky, 2006), [UO2(µ-DEP)2(DMSO)]n (Rafizadeh & Amani, 2006b), {[Mn2(µ-DMP)3(µ-DMSO)2(DMSO)(H2O)]NO3.H2O}n (Rafizadeh, Amani, & Aghayan, 2006), [Ce2(µ-DEP)6(TEP)]n (Amani et al., 2006), [Mn23-DMP)2(µ-DMP)2]n (Rafizadeh et al., 2007), [Nd(µ-DEP)3]n and [Pr(µ-DMP)2(µ-NO3)(DMSO)]n (Rafizadeh et al., 2009) (DMSO = dimethylsulfoxide, DEP = diethylphosphate and TEP = triethylphosphate). DMP and DEP act as O-donor ligands, thus forming coordination polymers in solid state. We have also reported the synthesis and crystal structure of [Fe163-O)83-OH)4(µ-OH)4(µ-DMP)12 (µ-OAc)12(DMSO)4].2DMSO.1.5H2O (Rafizadeh & Amani, 2007), which consists of sixteen iron ions connected by twelve bridging dimethylphosphates, twelve bridging acetates, eight µ3-oxo, four µ3-OH, four µ-OH groups and four DMSO ligands. We now report the synthesis and structure of the title compound, which was synthesized by the reaction of [Ni(H2O)6](DMP)2 and ethylenediamine (en).

In the title compound (Fig. 1), the NiII atom is six-coordinated in a distorted octahedral geometry by six N atoms from three en ligands. The Ni—N bond lengths and angles are within normal range as observed in [Ne(en)3]2[Mo(CN)6].5H2O (Jun & Zhang, 2010). Also, in the [O2P(OCH3)2]- anions, the P atom is four-coordinated in a distorted tetrahedral geometry. The P—O bond lengths and angles are within normal range as observed in [Ni(H2O)6](DMP)2 (Rafizadeh & Amani, 2006a). In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds form a three-dimensional network (Table 1, Fig. 2).

Related literature top

For related structures, see: Amani et al. (2006); Jun & Zhang (2010); Rafizadeh & Amani (2006a,b, 2007); Rafizadeh, Amani & Aghayan (2006); Rafizadeh, Amani & Broushaky (2006); Rafizadeh, Hoseinzadeh & Amani (2006); Rafizadeh et al. (2005, 2007, 2009).

Experimental top

For the preparation of the title compound, en (0.40 ml, 6.0 mmol) was added to a solution of [Ni(H2O)6](DMP)2 (0.83 g, 2.0 mmol) in DMSO (10 ml) and the resulting violet solution was stirred for 2 h at room temperature. This solution was left to evaporate slowly at room temperature. After 2 months, violet block crystals of the title compound were isolated (yield: 0.71 g, 72.6%).

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2Ueq(C). H atoms on N atoms were located from a difference Fourier map and refined isotropically, except those on N6. They were refined as riding atoms, with N—H = 0.90 Å and Uiso(H) = 1.2Ueq(N).

Structure description top

In recent years, we reported the synthesis and crystal structure of [Ni(H2O)6](DMP)2 (Rafizadeh & Amani, 2006a) (DMP = dimethylphosphate anion, [O2P(OCH3)2]-). In this compound, DMP is not bonded to the metal but acts as a counterion. Also, we reported the syntheses and crystal structures of [Cu2(µ-DMP)4(µ-DMSO)]n (Rafizadeh et al., 2005), [UO2(µ-DMP)2(DMSO)]n (Rafizadeh, Hoseinzadeh & Amani, 2006), [La(µ-DMP)23-NO3)(DMSO)]n (Rafizadeh, Amani & Broushaky, 2006), [UO2(µ-DEP)2(DMSO)]n (Rafizadeh & Amani, 2006b), {[Mn2(µ-DMP)3(µ-DMSO)2(DMSO)(H2O)]NO3.H2O}n (Rafizadeh, Amani, & Aghayan, 2006), [Ce2(µ-DEP)6(TEP)]n (Amani et al., 2006), [Mn23-DMP)2(µ-DMP)2]n (Rafizadeh et al., 2007), [Nd(µ-DEP)3]n and [Pr(µ-DMP)2(µ-NO3)(DMSO)]n (Rafizadeh et al., 2009) (DMSO = dimethylsulfoxide, DEP = diethylphosphate and TEP = triethylphosphate). DMP and DEP act as O-donor ligands, thus forming coordination polymers in solid state. We have also reported the synthesis and crystal structure of [Fe163-O)83-OH)4(µ-OH)4(µ-DMP)12 (µ-OAc)12(DMSO)4].2DMSO.1.5H2O (Rafizadeh & Amani, 2007), which consists of sixteen iron ions connected by twelve bridging dimethylphosphates, twelve bridging acetates, eight µ3-oxo, four µ3-OH, four µ-OH groups and four DMSO ligands. We now report the synthesis and structure of the title compound, which was synthesized by the reaction of [Ni(H2O)6](DMP)2 and ethylenediamine (en).

In the title compound (Fig. 1), the NiII atom is six-coordinated in a distorted octahedral geometry by six N atoms from three en ligands. The Ni—N bond lengths and angles are within normal range as observed in [Ne(en)3]2[Mo(CN)6].5H2O (Jun & Zhang, 2010). Also, in the [O2P(OCH3)2]- anions, the P atom is four-coordinated in a distorted tetrahedral geometry. The P—O bond lengths and angles are within normal range as observed in [Ni(H2O)6](DMP)2 (Rafizadeh & Amani, 2006a). In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds form a three-dimensional network (Table 1, Fig. 2).

For related structures, see: Amani et al. (2006); Jun & Zhang (2010); Rafizadeh & Amani (2006a,b, 2007); Rafizadeh, Amani & Aghayan (2006); Rafizadeh, Amani & Broushaky (2006); Rafizadeh, Hoseinzadeh & Amani (2006); Rafizadeh et al. (2005, 2007, 2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.
Tris(ethylenediamine-κ2N,N')nickel(II) bis(dimethyl phosphate) top
Crystal data top
[Ni(C2H8N2)3](C2H6O4P)2F(000) = 1040
Mr = 489.08Dx = 1.545 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9338 reflections
a = 9.2553 (5) Åθ = 2.7–29.2°
b = 12.4913 (5) ŵ = 1.12 mm1
c = 18.190 (1) ÅT = 120 K
β = 90.156 (4)°Block, violet
V = 2102.95 (18) Å30.49 × 0.40 × 0.38 mm
Z = 4
Data collection top
Stoe IPDS-2T
diffractometer
5205 independent reflections
Radiation source: fine-focus sealed tube4555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 2.7°
ω scansh = 1210
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
k = 1714
Tmin = 0.590, Tmax = 0.650l = 2124
9338 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0434P)2 + 1.1522P]
where P = (Fo2 + 2Fc2)/3
5205 reflections(Δ/σ)max = 0.014
284 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ni(C2H8N2)3](C2H6O4P)2V = 2102.95 (18) Å3
Mr = 489.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2553 (5) ŵ = 1.12 mm1
b = 12.4913 (5) ÅT = 120 K
c = 18.190 (1) Å0.49 × 0.40 × 0.38 mm
β = 90.156 (4)°
Data collection top
Stoe IPDS-2T
diffractometer
5205 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
4555 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.650Rint = 0.031
9338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.51 e Å3
5205 reflectionsΔρmin = 0.40 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7792 (2)0.35678 (14)0.35218 (10)0.0138 (3)
H1A0.84210.29610.34340.017*
H1B0.68700.34280.32860.017*
C20.7579 (2)0.37245 (14)0.43420 (10)0.0142 (4)
H2A0.71080.31020.45520.017*
H2B0.85060.38180.45830.017*
C30.4548 (2)0.69465 (15)0.39362 (11)0.0158 (4)
H3A0.40300.76140.40050.019*
H3B0.40500.63910.42090.019*
C40.4576 (2)0.66600 (16)0.31238 (10)0.0162 (4)
H4A0.36020.65300.29480.019*
H4B0.49840.72460.28430.019*
C50.9829 (2)0.72847 (15)0.40027 (11)0.0178 (4)
H5A1.08270.73610.41590.021*
H5B0.92960.79070.41690.021*
C60.9750 (2)0.72044 (16)0.31718 (11)0.0186 (4)
H6A1.00930.78630.29510.022*
H6B1.03550.66210.30010.022*
C70.6815 (3)0.55279 (17)0.01227 (11)0.0242 (4)
H7A0.73150.61960.00640.029*
H7B0.58150.56210.00010.029*
H7C0.68910.52950.06240.029*
C80.9788 (3)0.61156 (19)0.10517 (15)0.0301 (5)
H8A0.98290.59410.05380.036*
H8B1.03510.56080.13260.036*
H8C1.01690.68220.11280.036*
C90.8392 (3)0.79999 (16)0.61676 (13)0.0242 (5)
H9A0.79310.81650.66260.029*
H9B0.77370.81440.57700.029*
H9C0.92420.84340.61140.029*
C100.7784 (3)0.56998 (19)0.76650 (11)0.0250 (5)
H10A0.87260.60210.76770.030*
H10B0.78770.49390.76070.030*
H10C0.72900.58520.81160.030*
N10.84434 (19)0.45511 (12)0.32143 (9)0.0126 (3)
H1C0.837 (3)0.449 (2)0.2723 (16)0.022 (6)*
H1D0.940 (4)0.456 (3)0.3362 (18)0.042 (9)*
N20.66754 (19)0.46838 (12)0.44496 (9)0.0118 (3)
H2C0.682 (3)0.491 (2)0.4897 (16)0.024 (7)*
H2D0.581 (3)0.451 (2)0.4390 (16)0.026 (7)*
N30.60386 (18)0.70561 (12)0.42125 (9)0.0130 (3)
H3C0.636 (3)0.773 (2)0.4098 (14)0.019 (6)*
H3D0.606 (3)0.696 (2)0.4703 (15)0.019 (6)*
N40.54660 (18)0.56862 (13)0.30284 (9)0.0136 (3)
H4C0.565 (3)0.557 (2)0.2541 (17)0.029 (7)*
H4D0.495 (3)0.512 (2)0.3150 (15)0.025 (7)*
N50.92017 (18)0.63031 (13)0.43245 (9)0.0133 (3)
H5C0.981 (3)0.578 (2)0.4283 (15)0.021 (7)*
H5D0.903 (3)0.638 (2)0.4756 (15)0.020 (6)*
N60.82331 (18)0.70111 (12)0.29583 (9)0.0135 (3)
H6C0.81920.67620.24950.016*
H6D0.77290.76270.29790.016*
O10.59564 (17)0.52152 (13)0.14823 (8)0.0218 (3)
O20.82725 (16)0.40819 (10)0.15670 (7)0.0163 (3)
O30.74502 (17)0.47356 (11)0.03552 (7)0.0173 (3)
O40.83165 (17)0.60793 (11)0.12947 (8)0.0185 (3)
O50.83257 (17)0.49601 (11)0.61469 (8)0.0210 (3)
O60.62989 (16)0.62537 (11)0.57626 (8)0.0171 (3)
O70.87916 (16)0.68872 (11)0.61572 (8)0.0182 (3)
O80.69760 (16)0.61289 (11)0.70610 (7)0.0176 (3)
P10.74375 (5)0.49734 (4)0.12224 (2)0.01149 (10)
P20.75573 (5)0.59976 (4)0.62379 (2)0.01087 (10)
Ni10.73359 (2)0.587559 (17)0.369019 (12)0.00877 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0156 (9)0.0121 (8)0.0136 (8)0.0000 (6)0.0006 (7)0.0019 (6)
C20.0162 (9)0.0140 (8)0.0124 (8)0.0002 (7)0.0028 (7)0.0014 (6)
C30.0129 (9)0.0195 (9)0.0149 (8)0.0036 (7)0.0019 (8)0.0002 (7)
C40.0121 (9)0.0218 (9)0.0147 (8)0.0028 (7)0.0018 (8)0.0016 (7)
C50.0148 (9)0.0152 (8)0.0235 (10)0.0036 (7)0.0054 (8)0.0002 (7)
C60.0146 (9)0.0205 (9)0.0209 (9)0.0031 (7)0.0030 (8)0.0054 (7)
C70.0346 (13)0.0236 (10)0.0144 (9)0.0012 (9)0.0034 (9)0.0051 (7)
C80.0210 (11)0.0258 (11)0.0435 (14)0.0081 (9)0.0027 (11)0.0073 (10)
C90.0250 (11)0.0149 (9)0.0328 (11)0.0060 (8)0.0085 (10)0.0026 (8)
C100.0312 (13)0.0319 (11)0.0118 (9)0.0004 (9)0.0040 (9)0.0039 (8)
N10.0143 (8)0.0147 (7)0.0088 (7)0.0001 (6)0.0005 (7)0.0010 (5)
N20.0132 (8)0.0122 (7)0.0101 (7)0.0021 (6)0.0008 (7)0.0006 (5)
N30.0140 (8)0.0135 (7)0.0115 (7)0.0008 (6)0.0008 (6)0.0006 (5)
N40.0118 (7)0.0172 (7)0.0120 (7)0.0008 (6)0.0009 (6)0.0006 (6)
N50.0122 (8)0.0167 (7)0.0109 (7)0.0002 (6)0.0007 (6)0.0017 (6)
N60.0149 (8)0.0135 (7)0.0121 (7)0.0005 (5)0.0008 (7)0.0012 (5)
O10.0172 (7)0.0314 (8)0.0168 (7)0.0059 (6)0.0028 (6)0.0006 (6)
O20.0215 (7)0.0128 (6)0.0145 (6)0.0022 (5)0.0014 (6)0.0010 (5)
O30.0269 (8)0.0160 (6)0.0089 (6)0.0010 (5)0.0006 (6)0.0001 (5)
O40.0225 (8)0.0123 (6)0.0206 (7)0.0010 (5)0.0036 (6)0.0013 (5)
O50.0211 (7)0.0174 (7)0.0244 (7)0.0039 (6)0.0023 (7)0.0039 (5)
O60.0147 (7)0.0219 (7)0.0147 (6)0.0020 (5)0.0037 (6)0.0006 (5)
O70.0129 (7)0.0181 (6)0.0236 (7)0.0030 (5)0.0005 (6)0.0022 (5)
O80.0187 (7)0.0240 (7)0.0101 (6)0.0038 (5)0.0024 (6)0.0011 (5)
P10.0146 (2)0.0111 (2)0.00880 (19)0.00133 (16)0.00036 (18)0.00062 (15)
P20.0095 (2)0.0136 (2)0.0095 (2)0.00065 (15)0.00064 (18)0.00094 (15)
Ni10.00858 (12)0.00985 (11)0.00788 (11)0.00036 (8)0.00025 (9)0.00034 (7)
Geometric parameters (Å, º) top
C1—N11.479 (2)C9—H9C0.9600
C1—C21.518 (2)C10—O81.431 (3)
C1—H1A0.9700C10—H10A0.9600
C1—H1B0.9700C10—H10B0.9600
C2—N21.475 (2)C10—H10C0.9600
C2—H2A0.9700N1—Ni12.1313 (15)
C2—H2B0.9700N1—H1C0.90 (3)
C3—N31.474 (3)N1—H1D0.93 (4)
C3—C41.521 (3)N2—Ni12.1220 (15)
C3—H3A0.9700N2—H2C0.87 (3)
C3—H3B0.9700N2—H2D0.83 (3)
C4—N41.479 (2)N3—Ni12.1272 (15)
C4—H4A0.9700N3—H3C0.92 (3)
C4—H4B0.9700N3—H3D0.90 (3)
C5—N51.478 (2)N4—Ni12.1187 (18)
C5—C61.516 (3)N4—H4C0.91 (3)
C5—H5A0.9700N4—H4D0.89 (3)
C5—H5B0.9700N5—Ni12.1418 (18)
C6—N61.476 (3)N5—H5C0.86 (3)
C6—H6A0.9700N5—H5D0.81 (3)
C6—H6B0.9700N6—Ni12.1166 (15)
C7—O31.442 (2)N6—H6C0.9000
C7—H7A0.9600N6—H6D0.9000
C7—H7B0.9600O1—P11.4824 (15)
C7—H7C0.9600O2—P11.4925 (14)
C8—O41.434 (3)O3—P11.6052 (14)
C8—H8A0.9600O4—P11.6084 (14)
C8—H8B0.9600O5—P21.4878 (14)
C8—H8C0.9600O6—P21.4835 (16)
C9—O71.438 (2)O7—P21.6008 (14)
C9—H9A0.9600O8—P21.6008 (13)
C9—H9B0.9600
N1—C1—C2108.59 (14)Ni1—N1—H1D109 (2)
N1—C1—H1A110.0H1C—N1—H1D111 (3)
C2—C1—H1A110.0C2—N2—Ni1108.62 (11)
N1—C1—H1B110.0C2—N2—H2C107.3 (19)
C2—C1—H1B110.0Ni1—N2—H2C109.7 (18)
H1A—C1—H1B108.4C2—N2—H2D108.2 (19)
N2—C2—C1108.08 (15)Ni1—N2—H2D112 (2)
N2—C2—H2A110.1H2C—N2—H2D111 (3)
C1—C2—H2A110.1C3—N3—Ni1108.20 (11)
N2—C2—H2B110.1C3—N3—H3C108.0 (17)
C1—C2—H2B110.1Ni1—N3—H3C110.7 (16)
H2A—C2—H2B108.4C3—N3—H3D109.8 (17)
N3—C3—C4109.55 (15)Ni1—N3—H3D109.7 (16)
N3—C3—H3A109.8H3C—N3—H3D110 (2)
C4—C3—H3A109.8C4—N4—Ni1107.20 (12)
N3—C3—H3B109.8C4—N4—H4C110.2 (19)
C4—C3—H3B109.8Ni1—N4—H4C115 (2)
H3A—C3—H3B108.2C4—N4—H4D109.3 (17)
N4—C4—C3108.57 (16)Ni1—N4—H4D112.8 (19)
N4—C4—H4A110.0H4C—N4—H4D103 (2)
C3—C4—H4A110.0C5—N5—Ni1108.09 (12)
N4—C4—H4B110.0C5—N5—H5C109.6 (18)
C3—C4—H4B110.0Ni1—N5—H5C106.7 (19)
H4A—C4—H4B108.4C5—N5—H5D111.3 (19)
N5—C5—C6108.79 (16)Ni1—N5—H5D113 (2)
N5—C5—H5A109.9H5C—N5—H5D108 (3)
C6—C5—H5A109.9C6—N6—Ni1108.58 (12)
N5—C5—H5B109.9C6—N6—H6C110.0
C6—C5—H5B109.9Ni1—N6—H6C110.0
H5A—C5—H5B108.3C6—N6—H6D110.0
N6—C6—C5108.44 (15)Ni1—N6—H6D110.0
N6—C6—H6A110.0H6C—N6—H6D108.4
C5—C6—H6A110.0C7—O3—P1117.49 (12)
N6—C6—H6B110.0C8—O4—P1118.86 (13)
C5—C6—H6B110.0C9—O7—P2119.09 (13)
H6A—C6—H6B108.4C10—O8—P2120.22 (13)
O3—C7—H7A109.5O1—P1—O2119.76 (8)
O3—C7—H7B109.5O1—P1—O3111.12 (9)
H7A—C7—H7B109.5O2—P1—O3105.64 (8)
O3—C7—H7C109.5O1—P1—O4105.48 (9)
H7A—C7—H7C109.5O2—P1—O4110.20 (8)
H7B—C7—H7C109.5O3—P1—O4103.54 (8)
O4—C8—H8A109.5O6—P2—O5119.85 (9)
O4—C8—H8B109.5O6—P2—O7110.87 (8)
H8A—C8—H8B109.5O5—P2—O7104.66 (8)
O4—C8—H8C109.5O6—P2—O8104.94 (8)
H8A—C8—H8C109.5O5—P2—O8110.81 (8)
H8B—C8—H8C109.5O7—P2—O8104.86 (8)
O7—C9—H9A109.5N6—Ni1—N492.22 (6)
O7—C9—H9B109.5N6—Ni1—N2173.64 (7)
H9A—C9—H9B109.5N4—Ni1—N293.17 (7)
O7—C9—H9C109.5N6—Ni1—N392.25 (6)
H9A—C9—H9C109.5N4—Ni1—N382.53 (6)
H9B—C9—H9C109.5N2—Ni1—N391.81 (6)
O8—C10—H10A109.5N6—Ni1—N194.29 (6)
O8—C10—H10B109.5N4—Ni1—N194.33 (6)
H10A—C10—H10B109.5N2—Ni1—N181.93 (6)
O8—C10—H10C109.5N3—Ni1—N1172.86 (6)
H10A—C10—H10C109.5N6—Ni1—N581.64 (6)
H10B—C10—H10C109.5N4—Ni1—N5171.90 (6)
C1—N1—Ni1107.09 (11)N2—Ni1—N593.30 (7)
C1—N1—H1C105.9 (17)N3—Ni1—N592.40 (7)
Ni1—N1—H1C116.1 (17)N1—Ni1—N591.40 (7)
C1—N1—H1D107 (2)
N1—C1—C2—N256.9 (2)C6—N6—Ni1—N174.78 (13)
N3—C3—C4—N455.1 (2)C6—N6—Ni1—N516.01 (12)
N5—C5—C6—N655.6 (2)C4—N4—Ni1—N673.62 (11)
C2—C1—N1—Ni143.53 (17)C4—N4—Ni1—N2109.78 (11)
C1—C2—N2—Ni140.33 (18)C4—N4—Ni1—N318.36 (11)
C4—C3—N3—Ni137.22 (17)C4—N4—Ni1—N1168.09 (11)
C3—C4—N4—Ni143.55 (17)C2—N2—Ni1—N4107.14 (13)
C6—C5—N5—Ni139.95 (18)C2—N2—Ni1—N3170.24 (13)
C5—C6—N6—Ni142.24 (17)C2—N2—Ni1—N113.21 (13)
C7—O3—P1—O153.70 (17)C2—N2—Ni1—N577.74 (13)
C7—O3—P1—O2174.96 (15)C3—N3—Ni1—N6102.42 (12)
C7—O3—P1—O459.09 (16)C3—N3—Ni1—N410.48 (12)
C8—O4—P1—O1177.29 (16)C3—N3—Ni1—N282.48 (12)
C8—O4—P1—O252.12 (18)C3—N3—Ni1—N5175.86 (12)
C8—O4—P1—O360.47 (18)C1—N1—Ni1—N6168.38 (12)
C9—O7—P2—O645.21 (17)C1—N1—Ni1—N475.83 (12)
C9—O7—P2—O5175.78 (15)C1—N1—Ni1—N216.76 (12)
C9—O7—P2—O867.52 (17)C1—N1—Ni1—N5109.90 (12)
C10—O8—P2—O6164.87 (15)C5—N5—Ni1—N613.37 (12)
C10—O8—P2—O534.15 (18)C5—N5—Ni1—N2170.51 (12)
C10—O8—P2—O778.24 (16)C5—N5—Ni1—N378.56 (12)
C6—N6—Ni1—N4169.29 (12)C5—N5—Ni1—N1107.49 (12)
C6—N6—Ni1—N3108.10 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.90 (3)2.17 (3)3.057 (2)171 (2)
N1—H1D···O5i0.93 (4)2.36 (4)3.263 (2)165 (3)
N2—H2C···O60.87 (3)2.35 (3)3.111 (2)146 (2)
N2—H2D···O6ii0.84 (3)2.19 (3)3.015 (2)169 (2)
N3—H3C···O2iii0.92 (3)2.11 (3)2.971 (2)157 (2)
N3—H3D···O60.90 (3)2.13 (3)3.002 (2)163 (2)
N4—H4C···O10.92 (3)2.00 (3)2.910 (2)176 (3)
N4—H4D···O8ii0.88 (3)2.40 (3)3.205 (2)152 (2)
N5—H5C···O5i0.87 (3)2.11 (3)2.911 (2)154 (2)
N6—H6C···O40.902.353.243 (2)175
N6—H6D···O2iii0.902.203.064 (2)160
C9—H9C···O1iv0.962.413.305 (3)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)3](C2H6O4P)2
Mr489.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.2553 (5), 12.4913 (5), 18.190 (1)
β (°) 90.156 (4)
V3)2102.95 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.49 × 0.40 × 0.38
Data collection
DiffractometerStoe IPDS2T
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.590, 0.650
No. of measured, independent and
observed [I > 2σ(I)] reflections
9338, 5205, 4555
Rint0.031
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.08
No. of reflections5205
No. of parameters284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.40

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.90 (3)2.17 (3)3.057 (2)171 (2)
N1—H1D···O5i0.93 (4)2.36 (4)3.263 (2)165 (3)
N2—H2C···O60.87 (3)2.35 (3)3.111 (2)146 (2)
N2—H2D···O6ii0.84 (3)2.19 (3)3.015 (2)169 (2)
N3—H3C···O2iii0.92 (3)2.11 (3)2.971 (2)157 (2)
N3—H3D···O60.90 (3)2.13 (3)3.002 (2)163 (2)
N4—H4C···O10.92 (3)2.00 (3)2.910 (2)176 (3)
N4—H4D···O8ii0.88 (3)2.40 (3)3.205 (2)152 (2)
N5—H5C···O5i0.87 (3)2.11 (3)2.911 (2)154 (2)
N6—H6C···O40.902.353.243 (2)175
N6—H6D···O2iii0.902.203.064 (2)160
C9—H9C···O1iv0.962.413.305 (3)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahre-Rey Branch, for financial support.

References

First citationAmani, V., Rafizadeh, M., Yousefi, M. & Zargar, N. S. (2006). Anal. Sci. 22, x303–x304.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJun, Q. & Zhang, C. (2010). Acta Cryst. E66, m24–m25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafizadeh, M. & Amani, V. (2006a). Acta Cryst. E62, m1776–m1777.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafizadeh, M. & Amani, V. (2006b). Anal. Sci. 22, x211–x212.  CAS Google Scholar
First citationRafizadeh, M. & Amani, V. (2007). Z. Anorg. Allg. Chem. 633, 2738–2741.  Web of Science CSD CrossRef CAS Google Scholar
First citationRafizadeh, M., Amani, V. & Aghayan, H. (2006). Acta Cryst. E62, m2450–m2452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafizadeh, M., Amani, V. & Broushaky, M. (2006). Anal. Sci. 22, x213–x214.  CAS Google Scholar
First citationRafizadeh, M., Amani, V. & Farajian, H. (2007). Z. Anorg. Allg. Chem. 633, 1143–1145.  Web of Science CSD CrossRef CAS Google Scholar
First citationRafizadeh, M., Amani, V. & Mortazavi, N. S. (2009). Bull. Korean Chem. Soc. 30, 489–492.  CAS Google Scholar
First citationRafizadeh, M., Hoseinzadeh, F. & Amani, V. (2006). Anal. Sci. 22, x3–x4.  CAS Google Scholar
First citationRafizadeh, M., Tayebee, R., Amani, V. & Nasseh, M. (2005). Bull. Korean Chem. Soc. 26, 594–598.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds