metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-phenyl-3-(1H-1,2,4-triazol-1-yl-κN4)propan-1-one]bis­­(thio­cyanato-κN)copper(II)

aCollege of Science, Civil Aviation University of China, Tianjin 300300, People's Republic of China
*Correspondence e-mail: caihua-1109@163.com

(Received 27 June 2012; accepted 8 July 2012; online 25 July 2012)

The title compound, [Cu(NCS)2(C11H11N3O)2], contains two independent CuII atoms. Each CuII atom, lying on an inversion center, is coordinated by two N atoms from two NCS anions and two N atoms from two monodentate 1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one ligands in a distorted square-planar geometry. Two S atoms from adjacent mol­ecules occupy the axial positions with long Cu⋯S distances [3.0495 (10) and 3.1045 (9) Å] and complete the overall distorted octahedral coordination sphere. Weak inter­molecular C—H⋯O hydrogen bonds are present.

Related literature

For related structures, see: Guo & Cai (2007[Guo, J.-H. & Cai, H. (2007). Acta Cryst. E63, m1322-m1324.]); Yue et al. (2008[Yue, Y.-F., Gao, E.-Q., Fang, C.-J., Zheng, T., Liang, J. & Yan, C.-H. (2008). Cryst. Growth Des. 9, 3295-3301.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)2(C11H11N3O)2]

  • Mr = 582.16

  • Triclinic, [P \overline 1]

  • a = 9.8643 (8) Å

  • b = 10.1267 (9) Å

  • c = 14.3538 (12) Å

  • α = 91.149 (1)°

  • β = 101.270 (1)°

  • γ = 110.857 (1)°

  • V = 1307.75 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.749, Tmax = 0.848

  • 7171 measured reflections

  • 4559 independent reflections

  • 3860 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.091

  • S = 1.08

  • 4559 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.93 2.58 3.330 (3) 138

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pseudohalide anions N3-, NCS- and NCO- are known as extremely versatile ligands in coordination chemistry because of their multiple bridging modes (Yue et al., 2008). Recently, we have initiated a research program of synthesizing supermolecules based on pseudohalide and flexible ligands that consist of a propanone unit substituted with an imidazole and a phenyl group (Guo & Cai, 2007). To further explore this series, we synthesized the title compound, a new CuII complex based on the mixed ligands, thiocyanato and 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (L) which consists of a propanone unit substituted with a triazole and a phenyl group. In the mononuclear title complex (Fig. 1), each CuII atom is four-coordinated by two monodentate L ligands and two NCS- anions, forming a square-planar geometry. Weak intermolecular C—H···O hydrogen bonds are present (Table 1).

Related literature top

For related structures, see: Guo & Cai (2007); Yue et al. (2008).

Experimental top

NH4SCN (15.2 mg, 0.2 mmol) was added into an acetonitrile solution of L (25.6 mg, 0.1 mmol) with stirring. The acetonitrile solution was added into a solution of CuCl2.2H2O (17.0 mg, 0.1 mmol) in acetonitrile/H2O (10 ml, v/v 1:1) with vigorous stirring for ca 30 min. The reaction solution was filtered and left to stand at room temperature. Blue block crystals of the title compound suitable for X-ray analysis were obtained in 65% yield by slow evaporation of the solvent over a period of 1 week. Analysis, calculated for Cu2C48H44N16O4S4: C 49.52, H 3.81, N 19.25%; found: C 49.45, H 3.89, N 19.36%.

Refinement top

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å, and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Pseudohalide anions N3-, NCS- and NCO- are known as extremely versatile ligands in coordination chemistry because of their multiple bridging modes (Yue et al., 2008). Recently, we have initiated a research program of synthesizing supermolecules based on pseudohalide and flexible ligands that consist of a propanone unit substituted with an imidazole and a phenyl group (Guo & Cai, 2007). To further explore this series, we synthesized the title compound, a new CuII complex based on the mixed ligands, thiocyanato and 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (L) which consists of a propanone unit substituted with a triazole and a phenyl group. In the mononuclear title complex (Fig. 1), each CuII atom is four-coordinated by two monodentate L ligands and two NCS- anions, forming a square-planar geometry. Weak intermolecular C—H···O hydrogen bonds are present (Table 1).

For related structures, see: Guo & Cai (2007); Yue et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the 50% probability ellipsoids. [Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, -y, -z.]
Bis[1-phenyl-3-(1H-1,2,4-triazol-1-yl-κN4)propan-1- one]bis(thiocyanato-κN)copper(II) top
Crystal data top
[Cu(NCS)2(C11H11N3O)2]Z = 2
Mr = 582.16F(000) = 598
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8643 (8) ÅCell parameters from 3208 reflections
b = 10.1267 (9) Åθ = 2.5–27.7°
c = 14.3538 (12) ŵ = 1.03 mm1
α = 91.149 (1)°T = 293 K
β = 101.270 (1)°Block, blue
γ = 110.857 (1)°0.28 × 0.24 × 0.16 mm
V = 1307.75 (19) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4559 independent reflections
Radiation source: fine-focus sealed tube3860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.749, Tmax = 0.848k = 1012
7171 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.6431P]
where P = (Fo2 + 2Fc2)/3
4559 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(NCS)2(C11H11N3O)2]γ = 110.857 (1)°
Mr = 582.16V = 1307.75 (19) Å3
Triclinic, P1Z = 2
a = 9.8643 (8) ÅMo Kα radiation
b = 10.1267 (9) ŵ = 1.03 mm1
c = 14.3538 (12) ÅT = 293 K
α = 91.149 (1)°0.28 × 0.24 × 0.16 mm
β = 101.270 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4559 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3860 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.848Rint = 0.013
7171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.08Δρmax = 0.52 e Å3
4559 reflectionsΔρmin = 0.41 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.03694 (13)
Cu20.50000.00000.00000.04017 (13)
S10.48000 (8)0.29758 (9)0.06142 (7)0.0654 (2)
S20.06035 (8)0.21058 (9)0.10990 (6)0.0600 (2)
O10.4874 (2)0.1466 (2)0.35980 (13)0.0532 (5)
O20.87681 (19)0.03667 (17)0.56084 (12)0.0431 (4)
N10.0706 (2)0.4157 (2)0.11707 (14)0.0378 (5)
N20.0832 (3)0.3365 (3)0.26177 (17)0.0553 (6)
N30.1774 (2)0.3051 (2)0.21618 (14)0.0397 (5)
N40.6443 (2)0.0025 (2)0.11758 (14)0.0389 (5)
N50.7402 (2)0.0004 (2)0.26570 (13)0.0349 (4)
N60.8416 (2)0.0119 (3)0.21731 (15)0.0511 (6)
N70.1992 (2)0.4382 (2)0.02640 (15)0.0429 (5)
N80.3355 (2)0.0705 (2)0.06659 (15)0.0470 (5)
C10.1693 (3)0.3532 (3)0.13169 (17)0.0419 (6)
H10.22490.34450.08820.050*
C20.0219 (3)0.4019 (3)0.19914 (19)0.0530 (7)
H20.04980.43630.21030.064*
C30.2643 (3)0.2222 (3)0.25970 (19)0.0491 (6)
H3A0.34700.23600.22910.059*
H3B0.20230.12210.24990.059*
C40.3223 (3)0.2669 (3)0.36542 (17)0.0398 (6)
H4A0.36290.36980.37560.048*
H4B0.24030.23300.39760.048*
C50.4406 (3)0.2112 (2)0.40930 (18)0.0366 (5)
C60.5010 (2)0.2403 (2)0.51463 (17)0.0346 (5)
C70.4606 (3)0.3234 (3)0.57345 (19)0.0425 (6)
H70.39200.36360.54750.051*
C80.5217 (3)0.3471 (3)0.6704 (2)0.0482 (6)
H80.49290.40200.70940.058*
C90.6246 (3)0.2897 (3)0.7096 (2)0.0499 (7)
H90.66650.30700.77470.060*
C100.6655 (3)0.2065 (3)0.6520 (2)0.0495 (7)
H100.73510.16770.67820.059*
C110.6040 (3)0.1811 (3)0.55633 (18)0.0421 (6)
H110.63100.12340.51830.050*
C120.7786 (3)0.0106 (3)0.12931 (18)0.0486 (7)
H120.82190.01810.07840.058*
C130.6252 (3)0.0090 (3)0.20563 (16)0.0372 (5)
H130.54290.01880.22280.045*
C140.7671 (3)0.0026 (3)0.36889 (16)0.0360 (5)
H14A0.79830.07510.38870.043*
H14B0.67580.01000.38970.043*
C150.8855 (3)0.1414 (2)0.41492 (16)0.0364 (5)
H15A0.97200.15950.38740.044*
H15B0.84880.21750.40110.044*
C160.9308 (2)0.1423 (2)0.52113 (16)0.0314 (5)
C171.0427 (2)0.2750 (2)0.57691 (16)0.0316 (5)
C181.0867 (3)0.2771 (3)0.67518 (17)0.0398 (6)
H181.04510.19660.70530.048*
C191.1913 (3)0.3976 (3)0.72822 (19)0.0496 (7)
H191.22110.39790.79380.060*
C201.2523 (3)0.5184 (3)0.6840 (2)0.0528 (7)
H201.32230.60000.72010.063*
C211.2093 (3)0.5178 (3)0.5862 (2)0.0490 (7)
H211.25020.59920.55680.059*
C221.1058 (3)0.3970 (3)0.53216 (19)0.0399 (6)
H221.07810.39640.46640.048*
C230.3161 (3)0.3805 (3)0.03986 (17)0.0383 (5)
C240.2211 (3)0.1283 (3)0.08425 (16)0.0389 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0272 (2)0.0509 (3)0.0339 (2)0.01463 (18)0.00743 (16)0.01850 (18)
Cu20.0257 (2)0.0606 (3)0.0262 (2)0.00673 (19)0.00434 (16)0.01022 (18)
S10.0396 (4)0.0621 (5)0.0905 (6)0.0055 (3)0.0312 (4)0.0025 (4)
S20.0370 (4)0.0830 (5)0.0544 (4)0.0093 (4)0.0220 (3)0.0063 (4)
O10.0587 (12)0.0689 (13)0.0468 (11)0.0412 (10)0.0110 (9)0.0079 (9)
O20.0478 (10)0.0405 (9)0.0342 (9)0.0092 (8)0.0059 (8)0.0096 (7)
N10.0362 (11)0.0484 (12)0.0335 (11)0.0195 (9)0.0093 (9)0.0135 (9)
N20.0566 (15)0.0827 (17)0.0481 (13)0.0430 (13)0.0246 (11)0.0305 (12)
N30.0417 (12)0.0471 (12)0.0368 (11)0.0239 (10)0.0080 (9)0.0110 (9)
N40.0322 (10)0.0539 (13)0.0287 (10)0.0148 (9)0.0040 (8)0.0041 (9)
N50.0339 (10)0.0441 (11)0.0282 (10)0.0166 (9)0.0058 (8)0.0038 (8)
N60.0455 (13)0.0842 (17)0.0347 (12)0.0363 (12)0.0103 (10)0.0066 (11)
N70.0316 (11)0.0507 (12)0.0449 (12)0.0125 (10)0.0092 (9)0.0139 (10)
N80.0356 (12)0.0636 (14)0.0350 (11)0.0089 (10)0.0086 (9)0.0146 (10)
C10.0421 (14)0.0592 (16)0.0326 (13)0.0273 (13)0.0097 (11)0.0109 (11)
C20.0566 (17)0.083 (2)0.0437 (15)0.0475 (16)0.0212 (13)0.0292 (14)
C30.0595 (17)0.0524 (16)0.0441 (15)0.0351 (14)0.0031 (13)0.0099 (12)
C40.0398 (13)0.0432 (14)0.0411 (14)0.0208 (11)0.0077 (11)0.0132 (11)
C50.0314 (12)0.0349 (12)0.0463 (14)0.0131 (10)0.0116 (11)0.0139 (10)
C60.0292 (12)0.0348 (12)0.0418 (13)0.0126 (10)0.0098 (10)0.0140 (10)
C70.0386 (13)0.0413 (14)0.0508 (15)0.0190 (11)0.0076 (11)0.0102 (11)
C80.0498 (16)0.0441 (15)0.0499 (16)0.0176 (12)0.0085 (13)0.0001 (12)
C90.0457 (15)0.0522 (16)0.0431 (15)0.0118 (13)0.0013 (12)0.0059 (12)
C100.0400 (14)0.0588 (17)0.0522 (16)0.0237 (13)0.0039 (12)0.0136 (13)
C110.0383 (14)0.0491 (15)0.0455 (15)0.0222 (12)0.0116 (11)0.0126 (11)
C120.0466 (15)0.0775 (19)0.0302 (13)0.0323 (14)0.0097 (11)0.0047 (12)
C130.0321 (12)0.0490 (14)0.0308 (12)0.0154 (11)0.0059 (10)0.0064 (10)
C140.0366 (13)0.0448 (13)0.0275 (12)0.0157 (11)0.0070 (10)0.0069 (10)
C150.0399 (13)0.0397 (13)0.0296 (12)0.0143 (11)0.0077 (10)0.0082 (10)
C160.0306 (12)0.0372 (12)0.0319 (12)0.0178 (10)0.0087 (9)0.0078 (10)
C170.0303 (12)0.0354 (12)0.0339 (12)0.0170 (10)0.0087 (9)0.0036 (9)
C180.0411 (14)0.0434 (14)0.0386 (14)0.0188 (11)0.0109 (11)0.0018 (11)
C190.0485 (16)0.0588 (17)0.0396 (14)0.0210 (13)0.0045 (12)0.0120 (12)
C200.0409 (15)0.0437 (15)0.068 (2)0.0114 (12)0.0084 (13)0.0138 (13)
C210.0400 (14)0.0375 (14)0.071 (2)0.0130 (12)0.0187 (13)0.0059 (13)
C220.0359 (13)0.0403 (13)0.0466 (14)0.0163 (11)0.0111 (11)0.0085 (11)
C230.0367 (14)0.0402 (13)0.0372 (13)0.0137 (11)0.0066 (10)0.0031 (10)
C240.0365 (14)0.0503 (14)0.0264 (12)0.0132 (12)0.0040 (10)0.0059 (10)
Geometric parameters (Å, º) top
Cu1—N7i1.955 (2)C4—H4B0.9700
Cu1—N71.955 (2)C5—C61.494 (3)
Cu1—N1i2.0150 (18)C6—C71.387 (3)
Cu1—N12.0150 (18)C6—C111.400 (3)
Cu2—N8ii1.966 (2)C7—C81.383 (4)
Cu2—N81.966 (2)C7—H70.9300
Cu2—N41.9771 (19)C8—C91.377 (4)
Cu2—N4ii1.9771 (19)C8—H80.9300
S1—C231.629 (3)C9—C101.379 (4)
S2—C241.626 (3)C9—H90.9300
O1—C51.213 (3)C10—C111.367 (4)
O2—C161.221 (3)C10—H100.9300
N1—C11.325 (3)C11—H110.9300
N1—C21.348 (3)C12—H120.9300
N2—C21.307 (3)C13—H130.9300
N2—N31.355 (3)C14—C151.506 (3)
N3—C11.315 (3)C14—H14A0.9700
N3—C31.466 (3)C14—H14B0.9700
N4—C131.318 (3)C15—C161.501 (3)
N4—C121.356 (3)C15—H15A0.9700
N5—C131.318 (3)C15—H15B0.9700
N5—N61.359 (3)C16—C171.490 (3)
N5—C141.451 (3)C17—C181.390 (3)
N6—C121.297 (3)C17—C221.402 (3)
N7—C231.149 (3)C18—C191.375 (4)
N8—C241.152 (3)C18—H180.9300
C1—H10.9300C19—C201.385 (4)
C2—H20.9300C19—H190.9300
C3—C41.511 (4)C20—C211.384 (4)
C3—H3A0.9700C20—H200.9300
C3—H3B0.9700C21—C221.380 (4)
C4—C51.507 (3)C21—H210.9300
C4—H4A0.9700C22—H220.9300
N7i—Cu1—N7180.00 (18)C6—C7—H7119.8
N7i—Cu1—N1i90.26 (8)C9—C8—C7120.4 (3)
N7—Cu1—N1i89.74 (8)C9—C8—H8119.8
N7i—Cu1—N189.74 (8)C7—C8—H8119.8
N7—Cu1—N190.26 (8)C8—C9—C10119.7 (3)
N1i—Cu1—N1180.00 (11)C8—C9—H9120.1
N8ii—Cu2—N8180.00 (19)C10—C9—H9120.1
N8ii—Cu2—N489.33 (8)C11—C10—C9120.1 (2)
N8—Cu2—N490.67 (8)C11—C10—H10119.9
N8ii—Cu2—N4ii90.67 (8)C9—C10—H10119.9
N8—Cu2—N4ii89.33 (8)C10—C11—C6121.2 (2)
N4—Cu2—N4ii180.00 (16)C10—C11—H11119.4
C1—N1—C2102.3 (2)C6—C11—H11119.4
C1—N1—Cu1129.55 (16)N6—C12—N4114.5 (2)
C2—N1—Cu1128.06 (16)N6—C12—H12122.8
C2—N2—N3102.5 (2)N4—C12—H12122.8
C1—N3—N2109.74 (19)N4—C13—N5109.8 (2)
C1—N3—C3129.3 (2)N4—C13—H13125.1
N2—N3—C3120.9 (2)N5—C13—H13125.1
C13—N4—C12103.1 (2)N5—C14—C15110.65 (18)
C13—N4—Cu2126.30 (16)N5—C14—H14A109.5
C12—N4—Cu2130.52 (16)C15—C14—H14A109.5
C13—N5—N6110.04 (19)N5—C14—H14B109.5
C13—N5—C14128.9 (2)C15—C14—H14B109.5
N6—N5—C14121.02 (19)H14A—C14—H14B108.1
C12—N6—N5102.6 (2)C16—C15—C14112.52 (18)
C23—N7—Cu1169.1 (2)C16—C15—H15A109.1
C24—N8—Cu2163.5 (2)C14—C15—H15A109.1
N3—C1—N1110.6 (2)C16—C15—H15B109.1
N3—C1—H1124.7C14—C15—H15B109.1
N1—C1—H1124.7H15A—C15—H15B107.8
N2—C2—N1114.9 (2)O2—C16—C17120.8 (2)
N2—C2—H2122.6O2—C16—C15120.6 (2)
N1—C2—H2122.6C17—C16—C15118.55 (19)
N3—C3—C4110.8 (2)C18—C17—C22119.4 (2)
N3—C3—H3A109.5C18—C17—C16119.2 (2)
C4—C3—H3A109.5C22—C17—C16121.4 (2)
N3—C3—H3B109.5C19—C18—C17120.4 (2)
C4—C3—H3B109.5C19—C18—H18119.8
H3A—C3—H3B108.1C17—C18—H18119.8
C5—C4—C3113.0 (2)C18—C19—C20120.1 (3)
C5—C4—H4A109.0C18—C19—H19120.0
C3—C4—H4A109.0C20—C19—H19120.0
C5—C4—H4B109.0C21—C20—C19120.1 (2)
C3—C4—H4B109.0C21—C20—H20120.0
H4A—C4—H4B107.8C19—C20—H20120.0
O1—C5—C6120.9 (2)C22—C21—C20120.3 (3)
O1—C5—C4120.6 (2)C22—C21—H21119.8
C6—C5—C4118.5 (2)C20—C21—H21119.8
C7—C6—C11118.1 (2)C21—C22—C17119.7 (2)
C7—C6—C5123.3 (2)C21—C22—H22120.2
C11—C6—C5118.6 (2)C17—C22—H22120.2
C8—C7—C6120.4 (2)N7—C23—S1178.5 (2)
C8—C7—H7119.8N8—C24—S2179.5 (3)
N7i—Cu1—N1—C134.9 (2)C11—C6—C7—C80.3 (4)
N7—Cu1—N1—C1145.1 (2)C5—C6—C7—C8179.5 (2)
N7i—Cu1—N1—C2149.3 (2)C6—C7—C8—C90.8 (4)
N7—Cu1—N1—C230.7 (2)C7—C8—C9—C100.9 (4)
C2—N2—N3—C10.7 (3)C8—C9—C10—C110.1 (4)
C2—N2—N3—C3176.3 (3)C9—C10—C11—C61.2 (4)
N8ii—Cu2—N4—C13157.5 (2)C7—C6—C11—C101.3 (4)
N8—Cu2—N4—C1322.5 (2)C5—C6—C11—C10178.5 (2)
N8ii—Cu2—N4—C1227.2 (2)N5—N6—C12—N40.7 (3)
N8—Cu2—N4—C12152.8 (2)C13—N4—C12—N60.3 (3)
C13—N5—N6—C120.9 (3)Cu2—N4—C12—N6176.39 (19)
C14—N5—N6—C12179.9 (2)C12—N4—C13—N50.3 (3)
N1i—Cu1—N7—C23117.2 (11)Cu2—N4—C13—N5176.02 (16)
N1—Cu1—N7—C2362.8 (11)N6—N5—C13—N40.8 (3)
N4—Cu2—N8—C24146.7 (8)C14—N5—C13—N4179.7 (2)
N4ii—Cu2—N8—C2433.3 (8)C13—N5—C14—C15107.1 (3)
N2—N3—C1—N10.7 (3)N6—N5—C14—C1571.7 (3)
C3—N3—C1—N1176.0 (2)N5—C14—C15—C16172.76 (19)
C2—N1—C1—N30.4 (3)C14—C15—C16—O22.3 (3)
Cu1—N1—C1—N3176.23 (17)C14—C15—C16—C17177.49 (19)
N3—N2—C2—N10.5 (4)O2—C16—C17—C180.7 (3)
C1—N1—C2—N20.1 (3)C15—C16—C17—C18179.5 (2)
Cu1—N1—C2—N2176.8 (2)O2—C16—C17—C22179.9 (2)
C1—N3—C3—C4143.1 (3)C15—C16—C17—C220.3 (3)
N2—N3—C3—C440.5 (3)C22—C17—C18—C190.1 (3)
N3—C3—C4—C5166.5 (2)C16—C17—C18—C19179.1 (2)
C3—C4—C5—O15.0 (3)C17—C18—C19—C200.8 (4)
C3—C4—C5—C6176.4 (2)C18—C19—C20—C210.6 (4)
O1—C5—C6—C7174.5 (2)C19—C20—C21—C220.2 (4)
C4—C5—C6—C74.1 (3)C20—C21—C22—C170.9 (4)
O1—C5—C6—C115.3 (3)C18—C17—C22—C210.8 (3)
C4—C5—C6—C11176.0 (2)C16—C17—C22—C21179.9 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.583.330 (3)138

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C11H11N3O)2]
Mr582.16
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8643 (8), 10.1267 (9), 14.3538 (12)
α, β, γ (°)91.149 (1), 101.270 (1), 110.857 (1)
V3)1307.75 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.28 × 0.24 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.749, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
7171, 4559, 3860
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.091, 1.08
No. of reflections4559
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.583.330 (3)138
 

Acknowledgements

The authors acknowledge financial support from the Special Fund for Central Universities (grant No. ZXH2009D011), the Natural Science Foundation of Tianjin (grant No. 09JCYBJC04200), the National Natural Science Foundation of China Civil Aviation Administration of China (grant No. 61079010) and the Scientific Research Foundation of Civil Aviation University of China (grant No. 2011KYS05).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, J.-H. & Cai, H. (2007). Acta Cryst. E63, m1322–m1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYue, Y.-F., Gao, E.-Q., Fang, C.-J., Zheng, T., Liang, J. & Yan, C.-H. (2008). Cryst. Growth Des. 9, 3295–3301.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds