organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-4-Fluoro­benzyl­­idene]-3,4-di­methyl­aniline

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 22 May 2012; accepted 4 July 2012; online 10 July 2012)

In the title Schiff base, C15H14FN, the N=C bond length of 1.263 (2) Å is shorter than the N—C bond [1.426 (2) Å], indicating a typical imine double bond. Moreover, the C—N—C angle is 118.5 (2)°. The benzene rings form a dihedral angle of 51.22 (5)°.

Related literature

For general background on the use of Schiff bases as ligands in inorganic and organometallic chemistry, see: Xia et al. (2009[Xia, D.-G., Ye, Y.-F. & Lei, K.-W. (2009). Acta Cryst. E65, o3168.]); Harries & Orford (1983[Harries, H. J. & Orford, B. F. (1983). Inorg. Chim. Acta, 68, 41-43.]); Rodriguez de Barbarin et al. (1994[Rodriguez de Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205-207.]). For similar structures, see: Xia et al. (2009[Xia, D.-G., Ye, Y.-F. & Lei, K.-W. (2009). Acta Cryst. E65, o3168.]); Lindeman et al. (1981[Lindeman, S. V., Shklover, V. E. & Struchkov, Yu. T. (1981). Acta Cryst. A37, C87.]). For a related synthetic procedure, see: Chen et al. (2005[Chen, C. L., Goforth, A. M., Smith, M. D., Su, C. Y. & Loye, H. C. (2005). Inorg. Chem. 44, 8762-8769.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14FN

  • Mr = 227.27

  • Orthorhombic, P 21 21 21

  • a = 7.7487 (3) Å

  • b = 11.3404 (3) Å

  • c = 14.2969 (4) Å

  • V = 1256.31 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.42 × 0.21 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.978, Tmax = 0.988

  • 10903 measured reflections

  • 1941 independent reflections

  • 1476 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.05

  • 1941 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases are among the most useful ligands in coordination chemistry as they readily form stable complexes with most transition metals (Xia et al., 2009; Harries & Orford, 1983; Rodriguez de Barbarin et al., 1994).

The molecular structure of the title compound is illustrated in Fig. 1. Bond angles and bond lengths are within normal ranges. The F1—C13 bond length is 1.361 (2) Å. The N1=C7 bond length of 1.263 (2) Å is shorter than the N1—C1 bond [1.426 (2) Å], indicating a typical imine double bond. Moreover, the C1—N1—C7 bond angle is 118.5 (2)°. The two benzene rings form a dihedral angle of 51.22 (5)° (Xia et al., 2009; Lindeman et al., 1981).

Related literature top

For general background on the use of Schiff bases as ligands in inorganic and organometallic chemistry, see: Xia et al. (2009); Harries & Orford (1983); Rodriguez de Barbarin et al. (1994). For similar structures, see: Xia et al. (2009); Lindeman et al. (1981). For a related synthetic method, see: Chen et al. (2005).

Experimental top

4-Fluorobenzaldehyde (20 mmol, 2.48 g) and 3,4-dimethylbenzenamine (20 mmol, 2.42 g) were dissolved in ethanol and the solution was refluxed for 1 h in a round bottom flask according to a procedure of Chen et al. (2005). After evaporation of the solvent the crude product was recrystallized twice from methanol to give a pure yellow product (yield: 82.5%). Elemental analysis calcd. for C15H14FN: C, 79.29; H, 6.21; N, 6.16; Found: C, 79.25; H, 6.22; N, 6.18%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93 Å) and Uiso(H) values equal to 1.2 Ueq(C).

Structure description top

Schiff bases are among the most useful ligands in coordination chemistry as they readily form stable complexes with most transition metals (Xia et al., 2009; Harries & Orford, 1983; Rodriguez de Barbarin et al., 1994).

The molecular structure of the title compound is illustrated in Fig. 1. Bond angles and bond lengths are within normal ranges. The F1—C13 bond length is 1.361 (2) Å. The N1=C7 bond length of 1.263 (2) Å is shorter than the N1—C1 bond [1.426 (2) Å], indicating a typical imine double bond. Moreover, the C1—N1—C7 bond angle is 118.5 (2)°. The two benzene rings form a dihedral angle of 51.22 (5)° (Xia et al., 2009; Lindeman et al., 1981).

For general background on the use of Schiff bases as ligands in inorganic and organometallic chemistry, see: Xia et al. (2009); Harries & Orford (1983); Rodriguez de Barbarin et al. (1994). For similar structures, see: Xia et al. (2009); Lindeman et al. (1981). For a related synthetic method, see: Chen et al. (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids on the 30% probability level.
N-[(E)-4-Fluorobenzylidene]-3,4-dimethylaniline top
Crystal data top
C15H14FNF(000) = 480
Mr = 227.27Dx = 1.202 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4863 reflections
a = 7.7487 (3) Åθ = 1.0–29.1°
b = 11.3404 (3) ŵ = 0.08 mm1
c = 14.2969 (4) ÅT = 293 K
V = 1256.31 (7) Å3Block, yellow
Z = 40.42 × 0.21 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1941 independent reflections
Radiation source: fine-focus sealed tube1476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 29.1°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 910
Tmin = 0.978, Tmax = 0.988k = 1414
10903 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.1023P]
where P = (Fo2 + 2Fc2)/3
1941 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H14FNV = 1256.31 (7) Å3
Mr = 227.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7487 (3) ŵ = 0.08 mm1
b = 11.3404 (3) ÅT = 293 K
c = 14.2969 (4) Å0.42 × 0.21 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1941 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1476 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.988Rint = 0.023
10903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.10 e Å3
1941 reflectionsΔρmin = 0.15 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5157 (2)0.33118 (14)0.66820 (10)0.0529 (4)
F10.3419 (2)0.37162 (14)1.10226 (9)0.0933 (5)
C60.5091 (2)0.27263 (16)0.50536 (13)0.0487 (4)
H3A0.45760.20240.52410.058*
C10.5509 (2)0.35665 (15)0.57238 (12)0.0472 (4)
C100.4210 (2)0.39849 (16)0.81944 (13)0.0502 (4)
C40.6225 (2)0.39542 (17)0.38272 (12)0.0503 (4)
C120.4505 (3)0.28949 (19)0.96341 (15)0.0638 (5)
H7A0.48770.22340.99620.077*
C70.4517 (2)0.41157 (16)0.71858 (13)0.0517 (4)
H8A0.42250.48270.69040.062*
C50.5424 (2)0.29105 (16)0.41079 (12)0.0488 (4)
C150.3412 (3)0.48874 (18)0.86852 (14)0.0636 (5)
H10A0.30620.55630.83680.076*
C20.6304 (2)0.46021 (16)0.54411 (13)0.0534 (4)
H11A0.66000.51730.58800.064*
C140.3125 (3)0.4801 (2)0.96400 (16)0.0696 (6)
H12A0.25710.54010.99670.083*
C90.6641 (3)0.4191 (2)0.28139 (13)0.0715 (6)
H13A0.71890.49480.27580.107*
H13B0.55960.41870.24540.107*
H13C0.74050.35910.25850.107*
C130.3683 (3)0.3808 (2)1.00840 (13)0.0629 (6)
C110.4761 (3)0.29881 (17)0.86783 (13)0.0571 (5)
H15A0.53060.23800.83570.068*
C30.6656 (2)0.47809 (16)0.45035 (13)0.0547 (4)
H16A0.71970.54760.43210.066*
C80.4925 (3)0.19754 (19)0.34034 (14)0.0686 (6)
H17A0.43920.13250.37210.103*
H17B0.59390.17050.30820.103*
H17C0.41290.23030.29590.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0567 (9)0.0536 (8)0.0484 (8)0.0007 (8)0.0001 (7)0.0004 (6)
F10.1076 (11)0.1181 (12)0.0544 (7)0.0131 (10)0.0177 (8)0.0034 (7)
C60.0467 (9)0.0448 (9)0.0546 (10)0.0030 (8)0.0043 (8)0.0006 (7)
C10.0444 (9)0.0478 (9)0.0495 (9)0.0035 (7)0.0015 (8)0.0031 (7)
C100.0439 (9)0.0534 (9)0.0532 (10)0.0025 (8)0.0008 (8)0.0032 (8)
C40.0431 (9)0.0556 (10)0.0521 (10)0.0019 (8)0.0011 (8)0.0055 (8)
C120.0736 (13)0.0594 (11)0.0584 (11)0.0070 (11)0.0023 (11)0.0069 (9)
C70.0494 (10)0.0533 (10)0.0525 (10)0.0010 (8)0.0048 (8)0.0036 (8)
C50.0407 (9)0.0535 (10)0.0521 (10)0.0003 (8)0.0012 (8)0.0025 (8)
C150.0624 (12)0.0614 (11)0.0669 (12)0.0131 (11)0.0063 (11)0.0003 (10)
C20.0556 (11)0.0486 (9)0.0560 (10)0.0047 (8)0.0050 (9)0.0011 (8)
C140.0643 (12)0.0753 (13)0.0691 (13)0.0067 (12)0.0145 (11)0.0122 (11)
C90.0788 (14)0.0785 (14)0.0573 (12)0.0087 (13)0.0069 (12)0.0099 (10)
C130.0626 (12)0.0767 (14)0.0492 (10)0.0163 (12)0.0079 (10)0.0067 (9)
C110.0664 (12)0.0501 (9)0.0548 (10)0.0025 (10)0.0011 (10)0.0039 (8)
C30.0549 (10)0.0489 (9)0.0601 (10)0.0072 (9)0.0002 (10)0.0062 (8)
C80.0717 (14)0.0724 (13)0.0616 (12)0.0123 (11)0.0099 (11)0.0150 (10)
Geometric parameters (Å, º) top
N1—C71.263 (2)C7—H8A0.9300
N1—C11.426 (2)C5—C81.513 (3)
F1—C131.361 (2)C15—C141.386 (3)
C6—C11.390 (3)C15—H10A0.9300
C6—C51.392 (2)C2—C31.383 (3)
C6—H3A0.9300C2—H11A0.9300
C1—C21.386 (2)C14—C131.364 (3)
C10—C151.387 (3)C14—H12A0.9300
C10—C111.392 (3)C9—H13A0.9600
C10—C71.469 (2)C9—H13B0.9600
C4—C31.387 (3)C9—H13C0.9600
C4—C51.395 (2)C11—H15A0.9300
C4—C91.508 (2)C3—H16A0.9300
C12—C131.375 (3)C8—H17A0.9600
C12—C111.385 (3)C8—H17B0.9600
C12—H7A0.9300C8—H17C0.9600
C7—N1—C1118.46 (16)C3—C2—H11A120.2
C1—C6—C5121.56 (16)C1—C2—H11A120.2
C1—C6—H3A119.2C13—C14—C15117.8 (2)
C5—C6—H3A119.2C13—C14—H12A121.1
C2—C1—C6118.92 (17)C15—C14—H12A121.1
C2—C1—N1122.44 (16)C4—C9—H13A109.5
C6—C1—N1118.60 (16)C4—C9—H13B109.5
C15—C10—C11118.99 (18)H13A—C9—H13B109.5
C15—C10—C7119.64 (18)C4—C9—H13C109.5
C11—C10—C7121.33 (17)H13A—C9—H13C109.5
C3—C4—C5118.67 (16)H13B—C9—H13C109.5
C3—C4—C9119.82 (17)F1—C13—C14118.3 (2)
C5—C4—C9121.51 (17)F1—C13—C12118.2 (2)
C13—C12—C11118.1 (2)C14—C13—C12123.44 (19)
C13—C12—H7A121.0C12—C11—C10120.55 (19)
C11—C12—H7A121.0C12—C11—H15A119.7
N1—C7—C10123.40 (17)C10—C11—H15A119.7
N1—C7—H8A118.3C2—C3—C4121.94 (17)
C10—C7—H8A118.3C2—C3—H16A119.0
C6—C5—C4119.28 (16)C4—C3—H16A119.0
C6—C5—C8119.61 (17)C5—C8—H17A109.5
C4—C5—C8121.11 (17)C5—C8—H17B109.5
C14—C15—C10121.2 (2)H17A—C8—H17B109.5
C14—C15—H10A119.4C5—C8—H17C109.5
C10—C15—H10A119.4H17A—C8—H17C109.5
C3—C2—C1119.62 (17)H17B—C8—H17C109.5

Experimental details

Crystal data
Chemical formulaC15H14FN
Mr227.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.7487 (3), 11.3404 (3), 14.2969 (4)
V3)1256.31 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.21 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.978, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10903, 1941, 1476
Rint0.023
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.05
No. of reflections1941
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.15

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, the Talent Fund of Ningbo Municipal Natural Science Foundation (grant No. 2010 A610187) and the Talent Fund of Ningbo University (grant No. Xkl09070).

References

First citationChen, C. L., Goforth, A. M., Smith, M. D., Su, C. Y. & Loye, H. C. (2005). Inorg. Chem. 44, 8762–8769.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarries, H. J. & Orford, B. F. (1983). Inorg. Chim. Acta, 68, 41–43.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLindeman, S. V., Shklover, V. E. & Struchkov, Yu. T. (1981). Acta Cryst. A37, C87.  CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRodriguez de Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205–207.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, D.-G., Ye, Y.-F. & Lei, K.-W. (2009). Acta Cryst. E65, o3168.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds