organic compounds
(2S,4R)-4-Fluoropyrrolidinium-2-carboxylate
aDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: dhobart@vt.edu
The 5H8FNO2, at 100 K, displays intermolecular N—H⋯O hydrogen bonding between the ammonium and carboxylate groups as a result of its zwitterionic nature in the solid state. The five-membered ring adopts an with the C atom at the 3-position as the flap. The compound is of interest with respect to the synthesis and structural properties of synthetic collagens. The was determined by comparison with the commercially available material.
of the title compound, CRelated literature
For the synthesis of the title compound, see: Gottlieb et al. (1965); Azad et al. (2012). For its applications and properties with respect to synthetic collagens, see: Hodges & Raines (2003, 2005); Holmgren et al. (1999); Kim et al. (2005); Mooney et al. (2002); Persikov et al. (2003); Raines (2005); Shoulders & Raines (2009); Shoulders et al. (2006); Takeuchi & Prockop (1969).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
https://doi.org/10.1107/S1600536812031741/im2392sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812031741/im2392Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812031741/im2392Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S1600536812031741/im2392Isup4.cml
The title compound was purchased commercially from Bachem Americas, Inc., 3132 Kashiwa Street, Torrance, CA 90505 USA. Single crystals suitable for diffraction were grown via slow evaporation from a 50/50 (v/v) solution of acetone and water.
No
is reported as Friedel pairs were merged via MERG3 instruction due to the absence of effects. Data collection was with Mo radiation and no heavy atoms are present. at each stereocenter was confirmed by comparison to the known stereochemistry of the commercially available material.Hydrogen atoms were located from Fourier maps (Q-peaks) and all hydrogen atom parameters were refined.
The title compound is a useful building block in the synthesis of synthetic collagens. Collagen is the most abundant protein found in animals and exists as a triple helix comprised of three strands. The amino acid encoding of the strands follows the X—Y-Gly pattern. Trans-4-fluoroproline has been shown to induce hyperstability of the triple helix when substituted for the Y codon.
For the synthesis of the title compound, see: Gottlieb et al. (1965); Azad et al. (2012). For its applications and properties with respect to synthetic collagens, see: Hodges & Raines (2003, 2005); Holmgren et al. (1999); Kim et al. (2005); Mooney et al. (2002); Persikov et al. (2003); Raines (2005); Shoulders & Raines (2009); Shoulders et al. (2006); Takeuchi & Prockop (1969).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C5H8FNO2 | Dx = 1.592 Mg m−3 |
Mr = 133.12 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1887 reflections |
a = 7.6530 (6) Å | θ = 3.6–30.0° |
b = 8.4128 (6) Å | µ = 0.14 mm−1 |
c = 8.6286 (6) Å | T = 100 K |
V = 555.54 (7) Å3 | Prism, clear light colourless |
Z = 4 | 0.26 × 0.05 × 0.03 mm |
F(000) = 280 |
Oxford Diffraction Gemini Ultra diffractometer | 959 independent reflections |
Radiation source: fine-focus sealed tube, fine-focus sealed tube | 832 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
Detector resolution: 16.0122 pixels mm-1 | θmax = 30.1°, θmin = 3.6° |
phi and ω scans | h = −10→10 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2011) | k = −11→11 |
Tmin = 0.977, Tmax = 0.996 | l = −12→12 |
10227 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | All H-atom parameters refined |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0203P)2 + 0.2288P] where P = (Fo2 + 2Fc2)/3 |
959 reflections | (Δ/σ)max < 0.001 |
114 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C5H8FNO2 | V = 555.54 (7) Å3 |
Mr = 133.12 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.6530 (6) Å | µ = 0.14 mm−1 |
b = 8.4128 (6) Å | T = 100 K |
c = 8.6286 (6) Å | 0.26 × 0.05 × 0.03 mm |
Oxford Diffraction Gemini Ultra diffractometer | 959 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2011) | 832 reflections with I > 2σ(I) |
Tmin = 0.977, Tmax = 0.996 | Rint = 0.082 |
10227 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.073 | All H-atom parameters refined |
S = 1.07 | Δρmax = 0.32 e Å−3 |
959 reflections | Δρmin = −0.23 e Å−3 |
114 parameters |
Experimental. Recrystallized from 50/50 acetone/water. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET) (compiled Jan 20 2011,15:58:25) Numerical absorption correction based on gaussian integration over a multifaceted crystal model |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.24111 (16) | 0.73474 (16) | 0.53792 (14) | 0.0194 (3) | |
O2 | 0.58809 (19) | 0.59578 (17) | 0.07960 (17) | 0.0143 (3) | |
O3 | 0.4982 (2) | 0.82996 (18) | −0.01402 (17) | 0.0177 (3) | |
N6 | 0.2662 (2) | 0.8837 (2) | 0.2162 (2) | 0.0109 (3) | |
C4 | 0.3974 (3) | 0.7510 (2) | 0.2345 (2) | 0.0104 (4) | |
C5 | 0.5019 (3) | 0.7239 (2) | 0.0854 (2) | 0.0104 (4) | |
C7 | 0.1571 (3) | 0.6913 (3) | 0.3970 (2) | 0.0130 (4) | |
C8 | 0.1078 (3) | 0.8427 (3) | 0.3133 (2) | 0.0124 (4) | |
C9 | 0.2903 (3) | 0.6117 (3) | 0.2947 (2) | 0.0137 (4) | |
H4 | 0.480 (3) | 0.787 (3) | 0.317 (3) | 0.010 (6)* | |
H8A | 0.011 (3) | 0.822 (3) | 0.247 (3) | 0.013 (6)* | |
H7 | 0.056 (3) | 0.629 (3) | 0.424 (3) | 0.011 (6)* | |
H8B | 0.084 (3) | 0.927 (3) | 0.387 (3) | 0.008 (6)* | |
H9A | 0.233 (3) | 0.560 (3) | 0.208 (3) | 0.020 (7)* | |
H9B | 0.358 (3) | 0.540 (3) | 0.353 (3) | 0.022 (7)* | |
H6A | 0.231 (3) | 0.895 (3) | 0.115 (3) | 0.026 (7)* | |
H6B | 0.314 (3) | 0.975 (3) | 0.256 (3) | 0.020 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0170 (6) | 0.0320 (8) | 0.0092 (6) | 0.0011 (6) | 0.0006 (5) | 0.0004 (5) |
O2 | 0.0151 (7) | 0.0142 (7) | 0.0136 (7) | 0.0048 (6) | 0.0027 (6) | 0.0023 (6) |
O3 | 0.0248 (8) | 0.0158 (7) | 0.0124 (7) | 0.0051 (7) | 0.0053 (7) | 0.0031 (6) |
N6 | 0.0115 (8) | 0.0101 (8) | 0.0112 (8) | 0.0008 (7) | 0.0000 (7) | −0.0014 (7) |
C4 | 0.0110 (8) | 0.0110 (9) | 0.0091 (8) | 0.0004 (8) | −0.0003 (7) | −0.0002 (8) |
C5 | 0.0094 (8) | 0.0113 (9) | 0.0106 (8) | −0.0034 (8) | 0.0000 (7) | −0.0015 (8) |
C7 | 0.0119 (9) | 0.0158 (10) | 0.0114 (9) | −0.0018 (8) | 0.0018 (8) | −0.0003 (8) |
C8 | 0.0106 (9) | 0.0153 (9) | 0.0112 (9) | 0.0017 (8) | 0.0007 (8) | −0.0022 (8) |
C9 | 0.0149 (10) | 0.0118 (9) | 0.0144 (10) | 0.0009 (8) | 0.0013 (8) | 0.0035 (9) |
F1—C7 | 1.423 (2) | C4—H4 | 1.00 (2) |
O2—C5 | 1.265 (2) | C7—C8 | 1.512 (3) |
O3—C5 | 1.238 (2) | C7—C9 | 1.505 (3) |
N6—C4 | 1.509 (3) | C7—H7 | 0.96 (2) |
N6—C8 | 1.513 (3) | C8—H8A | 0.95 (3) |
N6—H6A | 0.91 (3) | C8—H8B | 0.97 (2) |
N6—H6B | 0.92 (3) | C9—H9A | 0.97 (3) |
C4—C5 | 1.532 (3) | C9—H9B | 0.94 (3) |
C4—C9 | 1.521 (3) | ||
C4—N6—C8 | 107.85 (15) | F1—C7—H7 | 107.3 (14) |
C4—N6—H6A | 111.6 (17) | C8—C7—H7 | 111.6 (13) |
C4—N6—H6B | 108.2 (15) | C9—C7—C8 | 105.27 (17) |
C8—N6—H6A | 108.5 (17) | C9—C7—H7 | 116.6 (14) |
C8—N6—H6B | 107.5 (15) | N6—C8—H8A | 109.4 (15) |
H6A—N6—H6B | 113 (2) | N6—C8—H8B | 110.1 (13) |
N6—C4—C5 | 111.70 (16) | C7—C8—N6 | 104.86 (16) |
N6—C4—C9 | 104.28 (16) | C7—C8—H8A | 109.3 (15) |
N6—C4—H4 | 105.8 (13) | C7—C8—H8B | 110.5 (13) |
C5—C4—H4 | 108.2 (13) | H8A—C8—H8B | 112.4 (19) |
C9—C4—C5 | 116.93 (17) | C4—C9—H9A | 108.9 (15) |
C9—C4—H4 | 109.3 (13) | C4—C9—H9B | 112.4 (15) |
O2—C5—C4 | 115.64 (17) | C7—C9—C4 | 102.86 (17) |
O3—C5—O2 | 126.79 (19) | C7—C9—H9A | 110.3 (15) |
O3—C5—C4 | 117.53 (18) | C7—C9—H9B | 110.2 (15) |
F1—C7—C8 | 107.72 (17) | H9A—C9—H9B | 112 (2) |
F1—C7—C9 | 108.03 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6B···O2i | 0.92 (3) | 1.90 (3) | 2.744 (2) | 152 (2) |
N6—H6A···O2ii | 0.91 (3) | 2.01 (3) | 2.899 (2) | 164 (2) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x−1/2, −y+3/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C5H8FNO2 |
Mr | 133.12 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 7.6530 (6), 8.4128 (6), 8.6286 (6) |
V (Å3) | 555.54 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.26 × 0.05 × 0.03 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini Ultra |
Absorption correction | Gaussian (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.977, 0.996 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10227, 959, 832 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.073, 1.07 |
No. of reflections | 959 |
No. of parameters | 114 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.32, −0.23 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6B···O2i | 0.92 (3) | 1.90 (3) | 2.744 (2) | 152 (2) |
N6—H6A···O2ii | 0.91 (3) | 2.01 (3) | 2.899 (2) | 164 (2) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x−1/2, −y+3/2, −z. |
Acknowledgements
The authors would like to thank the Virginia Tech Department of Chemistry and the Virginia Tech Crystallography Laboratory for their support.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England. Google Scholar
Azad, B. B., Ashique, R., Labiris, N. R. & Chirakal, R. (2012). J. Labelled Compd. Radiopharm. 55, 23–28. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gottlieb, A. A., Fujita, Y., Udenfriend, S. & Witkop, B. (1965). Biochemistry, 4, 2507–2513. CrossRef CAS Web of Science Google Scholar
Hodges, J. A. & Raines, R. T. (2003). J. Am. Chem. Soc. 125, 9262–9263. Web of Science CrossRef PubMed CAS Google Scholar
Hodges, J. A. & Raines, R. T. (2005). J. Am. Chem. Soc. 127, 15923–15932. Web of Science CrossRef PubMed CAS Google Scholar
Holmgren, S. K., Bretscher, L. E., Taylor, K. M. & Raines, R. T. (1999). Chem. Biol. 6, 63–70. Web of Science CrossRef PubMed CAS Google Scholar
Kim, W., McMillan, R. A., Snyder, J. P. & Conticello, V. P. (2005). J. Am. Chem. Soc. 127, 18121–18132. Web of Science CrossRef PubMed CAS Google Scholar
Mooney, S. D., Kollman, P. A. & Klein, T. E. (2002). Biopolymers, 64, 63–71. Web of Science CrossRef PubMed CAS Google Scholar
Persikov, A. V., Ramshaw, J. A. M., Kirkpatrick, A. & Brodsky, B. (2003). J. Am. Chem. Soc. 125, 11500–11501. Web of Science CrossRef PubMed CAS Google Scholar
Raines, R. T. (2005). Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 46, 181–182. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shoulders, M. D., Hodges, J. A. & Raines, R. T. (2006). J. Am. Chem. Soc. 128, 8112–8113. Web of Science CrossRef PubMed CAS Google Scholar
Shoulders, M. D. & Raines, R. T. (2009). Adv. Exp. Med. Biol. 611, 251–252. Web of Science CrossRef PubMed CAS Google Scholar
Takeuchi, T. & Prockop, D. J. (1969). Biochim. Biophys. Acta Protein Struct. 175, 142–155. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is a useful building block in the synthesis of synthetic collagens. Collagen is the most abundant protein found in animals and exists as a triple helix comprised of three strands. The amino acid encoding of the strands follows the X—Y-Gly pattern. Trans-4-fluoroproline has been shown to induce hyperstability of the triple helix when substituted for the Y codon.