organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3R,8R)-2,2-Di­bromo-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodec-9-ene

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta BP 1014 Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma

(Received 11 July 2012; accepted 16 July 2012; online 21 July 2012)

The title compound, C16H24Br2, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzocyclo­heptene), which was isolated from the essential oil of the Atlas cedar (Cedrus Atlantica). The mol­ecule is built up from two fused six- and seven-membered rings and an additional three-membered ring from the reaction of β-himachalene with dibromo­carbene. The six-membered ring shows a screw-boat conformation, whereas the seven-membered ring displays a boat conformation; the dihedral angle between the mean planes through the rings is 57.9 (4)°. The absolute structure was established unambiguously from anomalous dispersion effects.

Related literature

For the isolation of β-himachalene, see: Joseph & Dev (1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3859.]); Plattier & Teiseire (1974[Plattier, M. & Teiseire, P. (1974). Recherche, 19, 131-144.]). For the reactivity of this sesquiterpene, see: Lassaba et al. (1997[Lassaba, E., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1997). Bull. Soc. Chim. Belg. 106, 281-288.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]); Dakir et al. (2004[Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). For its biological activity, see: Daoubi et al. (2004[Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24Br2

  • Mr = 376.17

  • Orthorhombic, P 21 21 21

  • a = 9.7464 (14) Å

  • b = 12.1633 (16) Å

  • c = 13.5352 (18) Å

  • V = 1604.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 298 K

  • 0.78 × 0.66 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.259, Tmax = 0.746

  • 17190 measured reflections

  • 3254 independent reflections

  • 2281 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.132

  • S = 1.06

  • 3254 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.05 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1380 Friedel pairs

  • Flack parameter: 0.07 (2)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (Plattier & Teiseire, 1974); Joseph & Dev, 1968). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties. Lassaba et al., 1997; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dibromocarbene, generated in situ from bromoform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces the title compound (I) with a yield of 22%. The structure of this new product was determined by its single-crystal X-ray structure analysis. The molecule is built up from two fused six-and seven- membered rings and an additional three-membered ring from the reaction with the carbene (Fig.1). The six-membered ring has a screw boat conformation, as indicated by the total puckering amplitude QT = 0.485 (19) Å and spherical polar angle θ = 128.1 (11)° with φ = 155.7 (14)°, whereas the seven-membered ring displays a boat conformation with QT = 1.1497 (1) Å, θ = 88.51 (5)°, φ2 = 311.8 (5)° and φ3 = 238.26 (19)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack, 1983) as C1(S), C3(R) and C8(R).

Related literature top

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teiseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1997); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

A solution containing 5 g (24 mmol) of β-himachalene and 3 ml (37 mmol) of CHBr3 in 30 ml of dichloromethane was added in dropwise fashion at 0°C over 30 min to 1,5 g (37 mmol) of pulverized sodium hydroxide and 50 mg of N– benzyltriethylammonium chloride placed in a 100 ml three – necked flask. After stirring at room temperature for 2 h, the mixture was filtered on celite and concentrated in vacuum. The residue obtained was chromatographed on silica gel using hexane as eluting agent to give 2 g (5,3 mmol) of (1S,3R,8R)-2,2-Dibromo-3,7,7,10-tetramethyl-tricyclo [6.4.0.01,3]dodec-9-ene with a yield of 22%. The title compound was recrystallized from pentane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) and with Uiso(H) = 1.2 Ueq(C) for methylene and methine hydrogen atoms or Uiso(H) = 1.5 Ueq(C) for methyl groups.

Structure description top

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (Plattier & Teiseire, 1974); Joseph & Dev, 1968). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties. Lassaba et al., 1997; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dibromocarbene, generated in situ from bromoform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces the title compound (I) with a yield of 22%. The structure of this new product was determined by its single-crystal X-ray structure analysis. The molecule is built up from two fused six-and seven- membered rings and an additional three-membered ring from the reaction with the carbene (Fig.1). The six-membered ring has a screw boat conformation, as indicated by the total puckering amplitude QT = 0.485 (19) Å and spherical polar angle θ = 128.1 (11)° with φ = 155.7 (14)°, whereas the seven-membered ring displays a boat conformation with QT = 1.1497 (1) Å, θ = 88.51 (5)°, φ2 = 311.8 (5)° and φ3 = 238.26 (19)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack, 1983) as C1(S), C3(R) and C8(R).

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teiseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1997); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
(1S,3R,8R)-2,2-Dibromo-3,7,7,10- tetramethyltricyclo[6.4.0.01,3]dodec-9-ene top
Crystal data top
C16H24Br2F(000) = 760
Mr = 376.17Dx = 1.557 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 17190 reflections
a = 9.7464 (14) Åθ = 2.6–26.4°
b = 12.1633 (16) ŵ = 5.04 mm1
c = 13.5352 (18) ÅT = 298 K
V = 1604.6 (4) Å3Prism, colourless
Z = 40.78 × 0.66 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
3254 independent reflections
Radiation source: fine-focus sealed tube2281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ω and φ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.259, Tmax = 0.746k = 1515
17190 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.6114P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3254 reflectionsΔρmax = 0.85 e Å3
167 parametersΔρmin = 1.05 e Å3
0 restraintsAbsolute structure: Flack (1983), 1380 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (2)
Crystal data top
C16H24Br2V = 1604.6 (4) Å3
Mr = 376.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.7464 (14) ŵ = 5.04 mm1
b = 12.1633 (16) ÅT = 298 K
c = 13.5352 (18) Å0.78 × 0.66 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
3254 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2281 reflections with I > 2σ(I)
Tmin = 0.259, Tmax = 0.746Rint = 0.086
17190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.132Δρmax = 0.85 e Å3
S = 1.06Δρmin = 1.05 e Å3
3254 reflectionsAbsolute structure: Flack (1983), 1380 Friedel pairs
167 parametersAbsolute structure parameter: 0.07 (2)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3347 (7)0.6855 (4)0.2295 (4)0.0321 (13)
C20.4162 (7)0.7675 (5)0.1685 (5)0.0368 (15)
C30.3869 (8)0.6562 (5)0.1251 (5)0.0413 (15)
C40.2801 (8)0.6488 (6)0.0455 (5)0.0486 (19)
H4A0.32510.64790.01850.058*
H4B0.22210.71350.04820.058*
C50.1901 (11)0.5455 (7)0.0554 (6)0.067 (2)
H5A0.23690.48420.02430.080*
H5B0.10490.55750.01990.080*
C60.1559 (10)0.5140 (6)0.1633 (6)0.062 (2)
H6A0.24040.49060.19480.074*
H6B0.09530.45070.16160.074*
C70.0886 (7)0.6022 (6)0.2302 (5)0.0480 (17)
C80.1814 (6)0.7070 (5)0.2427 (4)0.0340 (13)
H80.15500.75760.18970.041*
C90.1592 (8)0.7681 (5)0.3381 (5)0.0457 (17)
H90.07430.80160.34710.055*
C100.2497 (7)0.7784 (5)0.4100 (5)0.0424 (17)
C110.3862 (7)0.7238 (5)0.4053 (4)0.0399 (16)
H11A0.40290.68700.46780.048*
H11B0.45610.77980.39740.048*
C120.4011 (8)0.6409 (4)0.3229 (4)0.0349 (14)
H12A0.35760.57230.34170.042*
H12B0.49760.62650.31090.042*
C130.2240 (10)0.8474 (8)0.4997 (7)0.075 (3)
H13A0.13710.88390.49320.113*
H13B0.29550.90130.50600.113*
H13C0.22290.80140.55730.113*
C140.0598 (10)0.5426 (7)0.3284 (7)0.072 (3)
H14A0.00600.47790.31590.108*
H14B0.01030.59070.37180.108*
H14C0.14510.52190.35860.108*
C150.0479 (10)0.6373 (8)0.1882 (9)0.092 (3)
H15A0.03450.66720.12320.138*
H15B0.08800.69230.23010.138*
H15C0.10790.57490.18440.138*
C160.5021 (8)0.5748 (6)0.1134 (6)0.058 (2)
H16A0.54820.58760.05180.088*
H16B0.46560.50150.11420.088*
H16C0.56600.58340.16680.088*
Br10.33615 (9)0.89924 (6)0.11733 (6)0.0589 (3)
Br20.60263 (7)0.80174 (6)0.20570 (6)0.0556 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.027 (3)0.033 (3)0.000 (3)0.005 (3)0.001 (2)
C20.039 (4)0.036 (3)0.035 (3)0.004 (3)0.003 (3)0.006 (2)
C30.045 (4)0.043 (3)0.036 (3)0.005 (3)0.003 (4)0.002 (3)
C40.060 (6)0.056 (4)0.030 (3)0.016 (4)0.007 (4)0.002 (3)
C50.081 (7)0.074 (5)0.046 (4)0.020 (5)0.010 (5)0.015 (4)
C60.071 (6)0.056 (4)0.058 (4)0.021 (4)0.011 (5)0.006 (4)
C70.038 (4)0.058 (4)0.048 (4)0.012 (4)0.003 (4)0.004 (3)
C80.028 (4)0.040 (3)0.034 (3)0.000 (3)0.004 (3)0.003 (2)
C90.031 (4)0.041 (3)0.065 (4)0.007 (3)0.017 (4)0.008 (3)
C100.039 (4)0.048 (4)0.040 (4)0.012 (3)0.007 (3)0.007 (3)
C110.038 (4)0.052 (4)0.030 (3)0.001 (3)0.007 (3)0.002 (2)
C120.036 (4)0.033 (3)0.036 (3)0.002 (3)0.001 (3)0.002 (2)
C130.067 (6)0.089 (6)0.070 (6)0.011 (5)0.019 (5)0.045 (5)
C140.063 (6)0.076 (5)0.077 (6)0.025 (4)0.004 (5)0.013 (4)
C150.051 (6)0.099 (7)0.127 (9)0.014 (5)0.034 (7)0.009 (6)
C160.059 (5)0.057 (4)0.060 (5)0.009 (4)0.023 (4)0.012 (4)
Br10.0687 (6)0.0419 (3)0.0662 (5)0.0017 (4)0.0037 (4)0.0198 (3)
Br20.0369 (4)0.0639 (4)0.0661 (5)0.0149 (3)0.0047 (4)0.0019 (4)
Geometric parameters (Å, º) top
C1—C21.519 (8)C8—H80.9800
C1—C121.520 (8)C9—C101.319 (10)
C1—C81.527 (9)C9—H90.9300
C1—C31.545 (9)C10—C111.488 (10)
C2—C31.503 (8)C10—C131.497 (9)
C2—Br11.913 (6)C11—C121.510 (8)
C2—Br21.931 (7)C11—H11A0.9700
C3—C41.501 (10)C11—H11B0.9700
C3—C161.505 (10)C12—H12A0.9700
C4—C51.539 (11)C12—H12B0.9700
C4—H4A0.9700C13—H13A0.9600
C4—H4B0.9700C13—H13B0.9600
C5—C61.546 (12)C13—H13C0.9600
C5—H5A0.9700C14—H14A0.9600
C5—H5B0.9700C14—H14B0.9600
C6—C71.550 (11)C14—H14C0.9600
C6—H6A0.9700C15—H15A0.9600
C6—H6B0.9700C15—H15B0.9600
C7—C151.508 (12)C15—H15C0.9600
C7—C141.539 (11)C16—H16A0.9600
C7—C81.573 (9)C16—H16B0.9600
C8—C91.506 (9)C16—H16C0.9600
C2—C1—C12117.6 (6)C9—C8—H8106.2
C2—C1—C8117.5 (5)C1—C8—H8106.2
C12—C1—C8112.4 (5)C7—C8—H8106.2
C2—C1—C358.8 (4)C10—C9—C8125.7 (6)
C12—C1—C3122.6 (5)C10—C9—H9117.2
C8—C1—C3118.0 (5)C8—C9—H9117.2
C3—C2—C161.5 (4)C9—C10—C11121.6 (6)
C3—C2—Br1122.4 (5)C9—C10—C13122.6 (7)
C1—C2—Br1122.2 (5)C11—C10—C13115.7 (7)
C3—C2—Br2118.4 (5)C10—C11—C12114.6 (6)
C1—C2—Br2119.5 (4)C10—C11—H11A108.6
Br1—C2—Br2107.3 (3)C12—C11—H11A108.6
C4—C3—C2117.8 (6)C10—C11—H11B108.6
C4—C3—C16113.8 (6)C12—C11—H11B108.6
C2—C3—C16119.4 (7)H11A—C11—H11B107.6
C4—C3—C1116.3 (6)C11—C12—C1109.6 (5)
C2—C3—C159.8 (4)C11—C12—H12A109.8
C16—C3—C1119.6 (6)C1—C12—H12A109.8
C3—C4—C5112.4 (6)C11—C12—H12B109.8
C3—C4—H4A109.1C1—C12—H12B109.8
C5—C4—H4A109.1H12A—C12—H12B108.2
C3—C4—H4B109.1C10—C13—H13A109.5
C5—C4—H4B109.1C10—C13—H13B109.5
H4A—C4—H4B107.8H13A—C13—H13B109.5
C4—C5—C6114.1 (6)C10—C13—H13C109.5
C4—C5—H5A108.7H13A—C13—H13C109.5
C6—C5—H5A108.7H13B—C13—H13C109.5
C4—C5—H5B108.7C7—C14—H14A109.5
C6—C5—H5B108.7C7—C14—H14B109.5
H5A—C5—H5B107.6H14A—C14—H14B109.5
C5—C6—C7118.2 (7)C7—C14—H14C109.5
C5—C6—H6A107.8H14A—C14—H14C109.5
C7—C6—H6A107.8H14B—C14—H14C109.5
C5—C6—H6B107.8C7—C15—H15A109.5
C7—C6—H6B107.8C7—C15—H15B109.5
H6A—C6—H6B107.1H15A—C15—H15B109.5
C15—C7—C14107.4 (8)C7—C15—H15C109.5
C15—C7—C6110.4 (7)H15A—C15—H15C109.5
C14—C7—C6104.8 (6)H15B—C15—H15C109.5
C15—C7—C8108.6 (6)C3—C16—H16A109.5
C14—C7—C8113.2 (6)C3—C16—H16B109.5
C6—C7—C8112.3 (6)H16A—C16—H16B109.5
C9—C8—C1109.0 (5)C3—C16—H16C109.5
C9—C8—C7114.2 (5)H16A—C16—H16C109.5
C1—C8—C7114.3 (5)H16B—C16—H16C109.5

Experimental details

Crystal data
Chemical formulaC16H24Br2
Mr376.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.7464 (14), 12.1633 (16), 13.5352 (18)
V3)1604.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.04
Crystal size (mm)0.78 × 0.66 × 0.24
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.259, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17190, 3254, 2281
Rint0.086
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 1.06
No. of reflections3254
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 1.05
Absolute structureFlack (1983), 1380 Friedel pairs
Absolute structure parameter0.07 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS Google Scholar
First citationDaoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.  CrossRef CAS Web of Science Google Scholar
First citationLassaba, E., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1997). Bull. Soc. Chim. Belg. 106, 281–288.  CAS Google Scholar
First citationPlattier, M. & Teiseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds