organic compounds
(1S,3R,8R)-2,2-Dibromo-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-ene
aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta BP 1014 Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma
The title compound, C16H24Br2, was synthesized from β-himachalene (3,5,5,9-tetramethyl-2,4a,5,6,7,8-hexahydro-1H-benzocycloheptene), which was isolated from the essential oil of the Atlas cedar (Cedrus Atlantica). The molecule is built up from two fused six- and seven-membered rings and an additional three-membered ring from the reaction of β-himachalene with dibromocarbene. The six-membered ring shows a screw-boat conformation, whereas the seven-membered ring displays a boat conformation; the dihedral angle between the mean planes through the rings is 57.9 (4)°. The was established unambiguously from effects.
Related literature
For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teiseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1997); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812032333/im2394sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812032333/im2394Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812032333/im2394Isup3.cml
A solution containing 5 g (24 mmol) of β-himachalene and 3 ml (37 mmol) of CHBr3 in 30 ml of dichloromethane was added in dropwise fashion at 0°C over 30 min to 1,5 g (37 mmol) of pulverized sodium hydroxide and 50 mg of N– benzyltriethylammonium chloride placed in a 100 ml three – necked flask. After stirring at room temperature for 2 h, the mixture was filtered on celite and concentrated in vacuum. The residue obtained was chromatographed on silica gel using hexane as eluting agent to give 2 g (5,3 mmol) of (1S,3R,8R)-2,2-Dibromo-3,7,7,10-tetramethyl-tricyclo [6.4.0.01,3]dodec-9-ene with a yield of 22%. The title compound was recrystallized from pentane.
All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) and with Uiso(H) = 1.2 Ueq(C) for methylene and methine hydrogen atoms or Uiso(H) = 1.5 Ueq(C) for methyl groups.
The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (Plattier & Teiseire, 1974); Joseph & Dev, 1968). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties. Lassaba et al., 1997; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dibromocarbene, generated in situ from bromoform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces the title compound (I) with a yield of 22%. The structure of this new product was determined by its single-crystal X-ray structure analysis. The molecule is built up from two fused six-and seven- membered rings and an additional three-membered ring from the reaction with the carbene (Fig.1). The six-membered ring has a screw boat conformation, as indicated by the total puckering amplitude QT = 0.485 (19) Å and spherical polar angle θ = 128.1 (11)° with φ = 155.7 (14)°, whereas the seven-membered ring displays a boat conformation with QT = 1.1497 (1) Å, θ = 88.51 (5)°, φ2 = 311.8 (5)° and φ3 = 238.26 (19)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the could be fully confirmed, by refining the (Flack, 1983) as C1(S), C3(R) and C8(R).
For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teiseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1997); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For see: Cremer & Pople (1975).
Data collection: APEX2 (Bruker, 2009); cell
SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii. |
C16H24Br2 | F(000) = 760 |
Mr = 376.17 | Dx = 1.557 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 17190 reflections |
a = 9.7464 (14) Å | θ = 2.6–26.4° |
b = 12.1633 (16) Å | µ = 5.04 mm−1 |
c = 13.5352 (18) Å | T = 298 K |
V = 1604.6 (4) Å3 | Prism, colourless |
Z = 4 | 0.78 × 0.66 × 0.24 mm |
Bruker APEXII CCD diffractometer | 3254 independent reflections |
Radiation source: fine-focus sealed tube | 2281 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.086 |
ω and φ scans | θmax = 26.4°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −12→12 |
Tmin = 0.259, Tmax = 0.746 | k = −15→15 |
17190 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.132 | w = 1/[σ2(Fo2) + (0.0682P)2 + 0.6114P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3254 reflections | Δρmax = 0.85 e Å−3 |
167 parameters | Δρmin = −1.05 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1380 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.07 (2) |
C16H24Br2 | V = 1604.6 (4) Å3 |
Mr = 376.17 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.7464 (14) Å | µ = 5.04 mm−1 |
b = 12.1633 (16) Å | T = 298 K |
c = 13.5352 (18) Å | 0.78 × 0.66 × 0.24 mm |
Bruker APEXII CCD diffractometer | 3254 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2281 reflections with I > 2σ(I) |
Tmin = 0.259, Tmax = 0.746 | Rint = 0.086 |
17190 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.132 | Δρmax = 0.85 e Å−3 |
S = 1.06 | Δρmin = −1.05 e Å−3 |
3254 reflections | Absolute structure: Flack (1983), 1380 Friedel pairs |
167 parameters | Absolute structure parameter: 0.07 (2) |
0 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3347 (7) | 0.6855 (4) | 0.2295 (4) | 0.0321 (13) | |
C2 | 0.4162 (7) | 0.7675 (5) | 0.1685 (5) | 0.0368 (15) | |
C3 | 0.3869 (8) | 0.6562 (5) | 0.1251 (5) | 0.0413 (15) | |
C4 | 0.2801 (8) | 0.6488 (6) | 0.0455 (5) | 0.0486 (19) | |
H4A | 0.3251 | 0.6479 | −0.0185 | 0.058* | |
H4B | 0.2221 | 0.7135 | 0.0482 | 0.058* | |
C5 | 0.1901 (11) | 0.5455 (7) | 0.0554 (6) | 0.067 (2) | |
H5A | 0.2369 | 0.4842 | 0.0243 | 0.080* | |
H5B | 0.1049 | 0.5575 | 0.0199 | 0.080* | |
C6 | 0.1559 (10) | 0.5140 (6) | 0.1633 (6) | 0.062 (2) | |
H6A | 0.2404 | 0.4906 | 0.1948 | 0.074* | |
H6B | 0.0953 | 0.4507 | 0.1616 | 0.074* | |
C7 | 0.0886 (7) | 0.6022 (6) | 0.2302 (5) | 0.0480 (17) | |
C8 | 0.1814 (6) | 0.7070 (5) | 0.2427 (4) | 0.0340 (13) | |
H8 | 0.1550 | 0.7576 | 0.1897 | 0.041* | |
C9 | 0.1592 (8) | 0.7681 (5) | 0.3381 (5) | 0.0457 (17) | |
H9 | 0.0743 | 0.8016 | 0.3471 | 0.055* | |
C10 | 0.2497 (7) | 0.7784 (5) | 0.4100 (5) | 0.0424 (17) | |
C11 | 0.3862 (7) | 0.7238 (5) | 0.4053 (4) | 0.0399 (16) | |
H11A | 0.4029 | 0.6870 | 0.4678 | 0.048* | |
H11B | 0.4561 | 0.7798 | 0.3974 | 0.048* | |
C12 | 0.4011 (8) | 0.6409 (4) | 0.3229 (4) | 0.0349 (14) | |
H12A | 0.3576 | 0.5723 | 0.3417 | 0.042* | |
H12B | 0.4976 | 0.6265 | 0.3109 | 0.042* | |
C13 | 0.2240 (10) | 0.8474 (8) | 0.4997 (7) | 0.075 (3) | |
H13A | 0.1371 | 0.8839 | 0.4932 | 0.113* | |
H13B | 0.2955 | 0.9013 | 0.5060 | 0.113* | |
H13C | 0.2229 | 0.8014 | 0.5573 | 0.113* | |
C14 | 0.0598 (10) | 0.5426 (7) | 0.3284 (7) | 0.072 (3) | |
H14A | 0.0060 | 0.4779 | 0.3159 | 0.108* | |
H14B | 0.0103 | 0.5907 | 0.3718 | 0.108* | |
H14C | 0.1451 | 0.5219 | 0.3586 | 0.108* | |
C15 | −0.0479 (10) | 0.6373 (8) | 0.1882 (9) | 0.092 (3) | |
H15A | −0.0345 | 0.6672 | 0.1232 | 0.138* | |
H15B | −0.0880 | 0.6923 | 0.2301 | 0.138* | |
H15C | −0.1079 | 0.5749 | 0.1844 | 0.138* | |
C16 | 0.5021 (8) | 0.5748 (6) | 0.1134 (6) | 0.058 (2) | |
H16A | 0.5482 | 0.5876 | 0.0518 | 0.088* | |
H16B | 0.4656 | 0.5015 | 0.1142 | 0.088* | |
H16C | 0.5660 | 0.5834 | 0.1668 | 0.088* | |
Br1 | 0.33615 (9) | 0.89924 (6) | 0.11733 (6) | 0.0589 (3) | |
Br2 | 0.60263 (7) | 0.80174 (6) | 0.20570 (6) | 0.0556 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.037 (3) | 0.027 (3) | 0.033 (3) | 0.000 (3) | −0.005 (3) | 0.001 (2) |
C2 | 0.039 (4) | 0.036 (3) | 0.035 (3) | −0.004 (3) | −0.003 (3) | 0.006 (2) |
C3 | 0.045 (4) | 0.043 (3) | 0.036 (3) | −0.005 (3) | 0.003 (4) | −0.002 (3) |
C4 | 0.060 (6) | 0.056 (4) | 0.030 (3) | −0.016 (4) | −0.007 (4) | −0.002 (3) |
C5 | 0.081 (7) | 0.074 (5) | 0.046 (4) | −0.020 (5) | −0.010 (5) | −0.015 (4) |
C6 | 0.071 (6) | 0.056 (4) | 0.058 (4) | −0.021 (4) | −0.011 (5) | −0.006 (4) |
C7 | 0.038 (4) | 0.058 (4) | 0.048 (4) | −0.012 (4) | −0.003 (4) | 0.004 (3) |
C8 | 0.028 (4) | 0.040 (3) | 0.034 (3) | 0.000 (3) | −0.004 (3) | 0.003 (2) |
C9 | 0.031 (4) | 0.041 (3) | 0.065 (4) | 0.007 (3) | 0.017 (4) | −0.008 (3) |
C10 | 0.039 (4) | 0.048 (4) | 0.040 (4) | −0.012 (3) | 0.007 (3) | −0.007 (3) |
C11 | 0.038 (4) | 0.052 (4) | 0.030 (3) | −0.001 (3) | −0.007 (3) | −0.002 (2) |
C12 | 0.036 (4) | 0.033 (3) | 0.036 (3) | 0.002 (3) | −0.001 (3) | 0.002 (2) |
C13 | 0.067 (6) | 0.089 (6) | 0.070 (6) | −0.011 (5) | 0.019 (5) | −0.045 (5) |
C14 | 0.063 (6) | 0.076 (5) | 0.077 (6) | −0.025 (4) | −0.004 (5) | 0.013 (4) |
C15 | 0.051 (6) | 0.099 (7) | 0.127 (9) | −0.014 (5) | −0.034 (7) | 0.009 (6) |
C16 | 0.059 (5) | 0.057 (4) | 0.060 (5) | 0.009 (4) | 0.023 (4) | −0.012 (4) |
Br1 | 0.0687 (6) | 0.0419 (3) | 0.0662 (5) | −0.0017 (4) | −0.0037 (4) | 0.0198 (3) |
Br2 | 0.0369 (4) | 0.0639 (4) | 0.0661 (5) | −0.0149 (3) | 0.0047 (4) | 0.0019 (4) |
C1—C2 | 1.519 (8) | C8—H8 | 0.9800 |
C1—C12 | 1.520 (8) | C9—C10 | 1.319 (10) |
C1—C8 | 1.527 (9) | C9—H9 | 0.9300 |
C1—C3 | 1.545 (9) | C10—C11 | 1.488 (10) |
C2—C3 | 1.503 (8) | C10—C13 | 1.497 (9) |
C2—Br1 | 1.913 (6) | C11—C12 | 1.510 (8) |
C2—Br2 | 1.931 (7) | C11—H11A | 0.9700 |
C3—C4 | 1.501 (10) | C11—H11B | 0.9700 |
C3—C16 | 1.505 (10) | C12—H12A | 0.9700 |
C4—C5 | 1.539 (11) | C12—H12B | 0.9700 |
C4—H4A | 0.9700 | C13—H13A | 0.9600 |
C4—H4B | 0.9700 | C13—H13B | 0.9600 |
C5—C6 | 1.546 (12) | C13—H13C | 0.9600 |
C5—H5A | 0.9700 | C14—H14A | 0.9600 |
C5—H5B | 0.9700 | C14—H14B | 0.9600 |
C6—C7 | 1.550 (11) | C14—H14C | 0.9600 |
C6—H6A | 0.9700 | C15—H15A | 0.9600 |
C6—H6B | 0.9700 | C15—H15B | 0.9600 |
C7—C15 | 1.508 (12) | C15—H15C | 0.9600 |
C7—C14 | 1.539 (11) | C16—H16A | 0.9600 |
C7—C8 | 1.573 (9) | C16—H16B | 0.9600 |
C8—C9 | 1.506 (9) | C16—H16C | 0.9600 |
C2—C1—C12 | 117.6 (6) | C9—C8—H8 | 106.2 |
C2—C1—C8 | 117.5 (5) | C1—C8—H8 | 106.2 |
C12—C1—C8 | 112.4 (5) | C7—C8—H8 | 106.2 |
C2—C1—C3 | 58.8 (4) | C10—C9—C8 | 125.7 (6) |
C12—C1—C3 | 122.6 (5) | C10—C9—H9 | 117.2 |
C8—C1—C3 | 118.0 (5) | C8—C9—H9 | 117.2 |
C3—C2—C1 | 61.5 (4) | C9—C10—C11 | 121.6 (6) |
C3—C2—Br1 | 122.4 (5) | C9—C10—C13 | 122.6 (7) |
C1—C2—Br1 | 122.2 (5) | C11—C10—C13 | 115.7 (7) |
C3—C2—Br2 | 118.4 (5) | C10—C11—C12 | 114.6 (6) |
C1—C2—Br2 | 119.5 (4) | C10—C11—H11A | 108.6 |
Br1—C2—Br2 | 107.3 (3) | C12—C11—H11A | 108.6 |
C4—C3—C2 | 117.8 (6) | C10—C11—H11B | 108.6 |
C4—C3—C16 | 113.8 (6) | C12—C11—H11B | 108.6 |
C2—C3—C16 | 119.4 (7) | H11A—C11—H11B | 107.6 |
C4—C3—C1 | 116.3 (6) | C11—C12—C1 | 109.6 (5) |
C2—C3—C1 | 59.8 (4) | C11—C12—H12A | 109.8 |
C16—C3—C1 | 119.6 (6) | C1—C12—H12A | 109.8 |
C3—C4—C5 | 112.4 (6) | C11—C12—H12B | 109.8 |
C3—C4—H4A | 109.1 | C1—C12—H12B | 109.8 |
C5—C4—H4A | 109.1 | H12A—C12—H12B | 108.2 |
C3—C4—H4B | 109.1 | C10—C13—H13A | 109.5 |
C5—C4—H4B | 109.1 | C10—C13—H13B | 109.5 |
H4A—C4—H4B | 107.8 | H13A—C13—H13B | 109.5 |
C4—C5—C6 | 114.1 (6) | C10—C13—H13C | 109.5 |
C4—C5—H5A | 108.7 | H13A—C13—H13C | 109.5 |
C6—C5—H5A | 108.7 | H13B—C13—H13C | 109.5 |
C4—C5—H5B | 108.7 | C7—C14—H14A | 109.5 |
C6—C5—H5B | 108.7 | C7—C14—H14B | 109.5 |
H5A—C5—H5B | 107.6 | H14A—C14—H14B | 109.5 |
C5—C6—C7 | 118.2 (7) | C7—C14—H14C | 109.5 |
C5—C6—H6A | 107.8 | H14A—C14—H14C | 109.5 |
C7—C6—H6A | 107.8 | H14B—C14—H14C | 109.5 |
C5—C6—H6B | 107.8 | C7—C15—H15A | 109.5 |
C7—C6—H6B | 107.8 | C7—C15—H15B | 109.5 |
H6A—C6—H6B | 107.1 | H15A—C15—H15B | 109.5 |
C15—C7—C14 | 107.4 (8) | C7—C15—H15C | 109.5 |
C15—C7—C6 | 110.4 (7) | H15A—C15—H15C | 109.5 |
C14—C7—C6 | 104.8 (6) | H15B—C15—H15C | 109.5 |
C15—C7—C8 | 108.6 (6) | C3—C16—H16A | 109.5 |
C14—C7—C8 | 113.2 (6) | C3—C16—H16B | 109.5 |
C6—C7—C8 | 112.3 (6) | H16A—C16—H16B | 109.5 |
C9—C8—C1 | 109.0 (5) | C3—C16—H16C | 109.5 |
C9—C8—C7 | 114.2 (5) | H16A—C16—H16C | 109.5 |
C1—C8—C7 | 114.3 (5) | H16B—C16—H16C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | C16H24Br2 |
Mr | 376.17 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 9.7464 (14), 12.1633 (16), 13.5352 (18) |
V (Å3) | 1604.6 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.04 |
Crystal size (mm) | 0.78 × 0.66 × 0.24 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.259, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17190, 3254, 2281 |
Rint | 0.086 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.132, 1.06 |
No. of reflections | 3254 |
No. of parameters | 167 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.85, −1.05 |
Absolute structure | Flack (1983), 1380 Friedel pairs |
Absolute structure parameter | 0.07 (2) |
Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008. Web of Science CrossRef CAS Google Scholar
Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932. Web of Science CrossRef PubMed CAS Google Scholar
El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859. CrossRef CAS Web of Science Google Scholar
Lassaba, E., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1997). Bull. Soc. Chim. Belg. 106, 281–288. CAS Google Scholar
Plattier, M. & Teiseire, P. (1974). Recherche, 19, 131–144. CAS Google Scholar
Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (Plattier & Teiseire, 1974); Joseph & Dev, 1968). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties. Lassaba et al., 1997; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dibromocarbene, generated in situ from bromoform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces the title compound (I) with a yield of 22%. The structure of this new product was determined by its single-crystal X-ray structure analysis. The molecule is built up from two fused six-and seven- membered rings and an additional three-membered ring from the reaction with the carbene (Fig.1). The six-membered ring has a screw boat conformation, as indicated by the total puckering amplitude QT = 0.485 (19) Å and spherical polar angle θ = 128.1 (11)° with φ = 155.7 (14)°, whereas the seven-membered ring displays a boat conformation with QT = 1.1497 (1) Å, θ = 88.51 (5)°, φ2 = 311.8 (5)° and φ3 = 238.26 (19)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack, 1983) as C1(S), C3(R) and C8(R).