organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(4-Fluoro­benz­yl)imino­meth­yl]-6-meth­­oxy­phenol

aState Key Lab. Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 5 June 2012; accepted 17 June 2012; online 10 July 2012)

In the title Schiff base, C15H14FNO2, the dihedral angle between the benzene rings is 53.32 (8)°. In the crystal, mol­ecules related by a twofold rotation axis are linked by pairs of C—H⋯O hydrogen bonds into dimers with R22(18) ring motifs. An intra­molecular O—H⋯N hydrogen bond is also observed.

Related literature

For general background to Schiff base complexs which show photochromism and thermochromism in the solid state, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2043.]). For a related structure, see: Li et al. (2007[Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007). Acta Cryst. E63, o3930.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14FNO2

  • Mr = 259.27

  • Monoclinic, C 2

  • a = 20.5577 (15) Å

  • b = 5.5281 (3) Å

  • c = 13.1315 (9) Å

  • β = 118.477 (9)°

  • V = 1311.77 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.43 × 0.25 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.971, Tmax = 0.985

  • 5883 measured reflections

  • 1902 independent reflections

  • 1525 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.17

  • 1902 reflections

  • 175 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (4) 1.81 (4) 2.597 (4) 154 (3)
C15—H15A⋯O1i 0.93 2.53 3.442 (4) 166
Symmetry code: (i) -x+2, y, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases ligands have been used with remarkable success in inorganic and organometallic chemistry over past decades. Some of the reasons are that Schiff bases have good coordination ability with transition metals and that Schiff bases complexs show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen et al., 1964). Here, we report the structure of a new Schiff base. A similar Schiff base molecule has been reported by Li et al. (2007). The molecular structure is illustrated in Fig. 1. The dihedral angle between two benzenes rings is 53.32 (8)°. There are an intramolecular O1—H1···N1 hydrogen bond and an intermolecular C15—H15A···O1 hydrogen bond (Table 1).

Related literature top

For general background to Schiff base complexs which show photochromism and thermochromism in the solid state, see: Cohen et al. (1964). For a related structure, see: Li et al. (2007).

Experimental top

2-Hydroxy-3-methoxybenzaldehyde (20 mmol,3.0 g) and (4-fluorophenyl)methanamine (20 mmol,2.5 g) dissolved in ethanol respectively. Then put them together and the solution was refluxed for 1 h. After evaporation, a crude product was recrystallized twice from ethanol to give a pure yellow product (yield 88.3%). Calcd. for C15H14FNO2: C 69.49, H 5.44, O 12.34, N 5.40%; Found: C 69.71, H 5.46, O 12.35, N 5.41%

Refinement top

O-bound H atom was located in a difference Fourier map and its position was refined with a restraint of O—H = 0.82 (2) Å and with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl) .

Structure description top

Schiff bases ligands have been used with remarkable success in inorganic and organometallic chemistry over past decades. Some of the reasons are that Schiff bases have good coordination ability with transition metals and that Schiff bases complexs show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen et al., 1964). Here, we report the structure of a new Schiff base. A similar Schiff base molecule has been reported by Li et al. (2007). The molecular structure is illustrated in Fig. 1. The dihedral angle between two benzenes rings is 53.32 (8)°. There are an intramolecular O1—H1···N1 hydrogen bond and an intermolecular C15—H15A···O1 hydrogen bond (Table 1).

For general background to Schiff base complexs which show photochromism and thermochromism in the solid state, see: Cohen et al. (1964). For a related structure, see: Li et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2-[(E)-(4-Fluorobenzyl)iminomethyl]-6-methoxyphenol top
Crystal data top
C15H14FNO2F(000) = 544
Mr = 259.27Dx = 1.313 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 3354 reflections
a = 20.5577 (15) Åθ = 1.0–28.9°
b = 5.5281 (3) ŵ = 0.10 mm1
c = 13.1315 (9) ÅT = 293 K
β = 118.477 (9)°Block, yellow
V = 1311.77 (19) Å30.43 × 0.25 × 0.16 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1902 independent reflections
Radiation source: fine-focus sealed tube1525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 28.9°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2527
Tmin = 0.971, Tmax = 0.985k = 67
5883 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.049P)2 + 0.4613P]
where P = (Fo2 + 2Fc2)/3
1902 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.12 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H14FNO2V = 1311.77 (19) Å3
Mr = 259.27Z = 4
Monoclinic, C2Mo Kα radiation
a = 20.5577 (15) ŵ = 0.10 mm1
b = 5.5281 (3) ÅT = 293 K
c = 13.1315 (9) Å0.43 × 0.25 × 0.16 mm
β = 118.477 (9)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1902 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1525 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.985Rint = 0.021
5883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.12 e Å3
1902 reflectionsΔρmin = 0.15 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.61623 (12)0.1593 (6)0.32616 (19)0.1177 (10)
O11.02596 (11)0.0073 (5)0.12995 (15)0.0681 (6)
H10.9934 (18)0.112 (6)0.091 (3)0.102*
O21.12802 (12)0.2598 (5)0.29122 (16)0.0744 (6)
N10.93995 (12)0.3831 (5)0.07357 (19)0.0660 (7)
C11.18810 (18)0.3918 (8)0.3777 (3)0.0859 (11)
H1C1.20440.51100.34170.129*
H1D1.17250.47060.42760.129*
H1E1.22810.28320.42250.129*
C21.09825 (14)0.0822 (6)0.3284 (2)0.0560 (6)
C31.11648 (16)0.0370 (6)0.4429 (2)0.0656 (8)
H3A1.15040.13620.50130.079*
C41.08473 (18)0.1536 (8)0.4710 (2)0.0787 (10)
H4A1.09710.18010.54800.094*
C51.03524 (16)0.3046 (7)0.3869 (2)0.0712 (9)
H5A1.01540.43550.40720.085*
C61.01464 (13)0.2608 (6)0.2699 (2)0.0560 (6)
C71.04497 (13)0.0636 (5)0.24101 (19)0.0523 (6)
C80.96436 (14)0.4252 (6)0.1806 (2)0.0622 (7)
H8A0.94960.56590.20270.075*
C90.89012 (17)0.5601 (7)0.0103 (3)0.0749 (9)
H9A0.91260.62350.05500.090*
H9B0.88250.69390.03070.090*
C100.81621 (15)0.4466 (6)0.0912 (2)0.0582 (7)
C110.75116 (18)0.5559 (7)0.1113 (3)0.0716 (8)
H11A0.75240.69620.07130.086*
C120.68320 (17)0.4581 (8)0.1912 (3)0.0822 (11)
H12A0.63920.53320.20550.099*
C130.68242 (18)0.2542 (8)0.2471 (3)0.0759 (9)
C140.7451 (2)0.1359 (7)0.2279 (3)0.0770 (9)
H14A0.74270.00690.26690.092*
C150.81264 (17)0.2330 (7)0.1487 (2)0.0698 (8)
H15A0.85610.15360.13390.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0827 (12)0.156 (3)0.0899 (13)0.0452 (16)0.0215 (11)0.0028 (16)
O10.0649 (11)0.0837 (15)0.0414 (9)0.0055 (11)0.0138 (8)0.0017 (10)
O20.0735 (12)0.0749 (14)0.0549 (10)0.0165 (12)0.0144 (9)0.0033 (10)
N10.0544 (12)0.0786 (17)0.0537 (12)0.0012 (12)0.0166 (10)0.0137 (12)
C10.0739 (19)0.088 (3)0.0702 (18)0.022 (2)0.0138 (15)0.0022 (19)
C20.0492 (12)0.0625 (16)0.0497 (12)0.0032 (12)0.0182 (10)0.0007 (12)
C30.0625 (15)0.080 (2)0.0453 (12)0.0042 (16)0.0181 (11)0.0115 (14)
C40.083 (2)0.107 (3)0.0460 (13)0.017 (2)0.0306 (14)0.0048 (17)
C50.0669 (16)0.092 (2)0.0543 (14)0.0140 (17)0.0285 (13)0.0026 (16)
C60.0465 (12)0.0715 (18)0.0467 (11)0.0016 (13)0.0196 (10)0.0037 (13)
C70.0447 (11)0.0636 (16)0.0421 (11)0.0078 (11)0.0154 (9)0.0000 (11)
C80.0511 (13)0.0699 (18)0.0619 (14)0.0007 (14)0.0240 (11)0.0071 (14)
C90.0664 (16)0.076 (2)0.0617 (16)0.0017 (16)0.0134 (13)0.0197 (16)
C100.0582 (14)0.0603 (17)0.0491 (12)0.0050 (13)0.0199 (11)0.0135 (12)
C110.0760 (18)0.0661 (18)0.0674 (17)0.0123 (16)0.0300 (15)0.0097 (15)
C120.0578 (16)0.100 (3)0.085 (2)0.0137 (19)0.0313 (15)0.023 (2)
C130.0671 (18)0.092 (3)0.0594 (15)0.014 (2)0.0224 (14)0.0133 (19)
C140.093 (2)0.071 (2)0.0661 (16)0.012 (2)0.0372 (16)0.0023 (17)
C150.0680 (17)0.0727 (19)0.0660 (16)0.0116 (17)0.0297 (14)0.0089 (16)
Geometric parameters (Å, º) top
F1—C131.363 (4)C5—H5A0.9300
O1—C71.354 (3)C6—C71.396 (4)
O1—H10.846 (19)C6—C81.454 (4)
O2—C21.364 (4)C8—H8A0.9300
O2—C11.418 (4)C9—C101.514 (4)
N1—C81.269 (4)C9—H9A0.9700
N1—C91.464 (4)C9—H9B0.9700
C1—H1C0.9600C10—C111.374 (4)
C1—H1D0.9600C10—C151.384 (5)
C1—H1E0.9600C11—C121.396 (5)
C2—C31.388 (4)C11—H11A0.9300
C2—C71.403 (4)C12—C131.341 (6)
C3—C41.379 (5)C12—H12A0.9300
C3—H3A0.9300C13—C141.356 (5)
C4—C51.371 (5)C14—C151.386 (4)
C4—H4A0.9300C14—H14A0.9300
C5—C61.406 (4)C15—H15A0.9300
C7—O1—H1103 (3)N1—C8—C6122.2 (3)
C2—O2—C1116.9 (2)N1—C8—H8A118.9
C8—N1—C9118.4 (3)C6—C8—H8A118.9
O2—C1—H1C109.5N1—C9—C10111.1 (3)
O2—C1—H1D109.5N1—C9—H9A109.4
H1C—C1—H1D109.5C10—C9—H9A109.4
O2—C1—H1E109.5N1—C9—H9B109.4
H1C—C1—H1E109.5C10—C9—H9B109.4
H1D—C1—H1E109.5H9A—C9—H9B108.0
O2—C2—C3125.6 (3)C11—C10—C15118.5 (3)
O2—C2—C7115.4 (2)C11—C10—C9120.8 (3)
C3—C2—C7119.0 (3)C15—C10—C9120.7 (3)
C4—C3—C2120.6 (3)C10—C11—C12120.5 (3)
C4—C3—H3A119.7C10—C11—H11A119.7
C2—C3—H3A119.7C12—C11—H11A119.7
C5—C4—C3121.0 (3)C13—C12—C11118.9 (3)
C5—C4—H4A119.5C13—C12—H12A120.5
C3—C4—H4A119.5C11—C12—H12A120.5
C4—C5—C6119.7 (3)C12—C13—C14122.8 (3)
C4—C5—H5A120.1C12—C13—F1119.2 (4)
C6—C5—H5A120.1C14—C13—F1118.1 (4)
C7—C6—C5119.4 (3)C13—C14—C15118.4 (3)
C7—C6—C8120.5 (2)C13—C14—H14A120.8
C5—C6—C8120.1 (3)C15—C14—H14A120.8
O1—C7—C6122.4 (2)C10—C15—C14120.9 (3)
O1—C7—C2117.4 (2)C10—C15—H15A119.6
C6—C7—C2120.2 (2)C14—C15—H15A119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (4)1.81 (4)2.597 (4)154 (3)
C15—H15A···O1i0.932.533.442 (4)166
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC15H14FNO2
Mr259.27
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)20.5577 (15), 5.5281 (3), 13.1315 (9)
β (°) 118.477 (9)
V3)1311.77 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.25 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.971, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5883, 1902, 1525
Rint0.021
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.17
No. of reflections1902
No. of parameters175
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (4)1.81 (4)2.597 (4)154 (3)
C15—H15A···O1i0.932.533.442 (4)166
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Talent Fund of Ningbo Municipal Natural Science Foundation (No. 2010 A610187) and the Talent Fund of Ningbo University (No. Xkl09070).

References

First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2043.  CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007). Acta Cryst. E63, o3930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds