organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2,6-Di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-3,4-di­methyl­pyrano[2,3-c]pyrazol-6(1H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, P.A. College of Engineering, Mangalore 574 153, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 June 2012; accepted 29 June 2012; online 7 July 2012)

In the title compound, C15H9Cl2F3N2O2, the 1,6-dihydro­pyrano[2,3-c]pyrazole ring system is almost planar, with a maximum deviation of 0.0226 (14) Å, and forms a dihedral angle of 69.90 (6)° with the benzene ring. In the crystal, mol­ecules are linked into a helical chain along the c axis by C—H⋯O hydrogen bonds.

Related literature

For background to and the biological activity of pyrazolone derivatives, see: Kokura et al. (2005[Kokura, S., Yoshida, N., Sakamoto, N., Ishikawa, T., Takagi, T., Higashihara, H., Nakabe, N., Handa, O., Naito, Y. & Yoshikawa, T. (2005). Cancer Lett. 229, 223-233.]); Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshan Raj, C. G., Barath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214-224.]); Vaid et al. (1986[Vaid, R. K., Dhindsa, G. S., Kaushik, B., Singh, S. P. & Dhawan, S. N. (1986). Indian J. Chem. Sect. B, 25, 569-570.]). For related structures, see: Ramsay & Steel (1985[Ramsay, C. G. & Steel, P. J. (1985). Acta Cryst. C41, 135-136.]); Ahmad et al. (2011[Ahmad, N., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2011). Acta Cryst. E67, o1021.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9Cl2F3N2O2

  • Mr = 377.14

  • Orthorhombic, P b c a

  • a = 13.3348 (2) Å

  • b = 14.2045 (2) Å

  • c = 15.9132 (3) Å

  • V = 3014.19 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 100 K

  • 0.44 × 0.31 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.819, Tmax = 0.888

  • 24894 measured reflections

  • 4382 independent reflections

  • 3706 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.03

  • 4382 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.95 2.44 3.3405 (18) 157
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolone moiety is a pyrazole derivative, containing a five-membered lactam ring with two nitrogen atoms and a ketone group in the same molecule. Edaravone, 3-methyl-1-phenyl-2-pyrazolin-5-one, is a strong novel free radical scavenger and was used for treatment of patients with acute brain infarction (Kokura et al., 2005). The radical scavenging capacity and molecular binding activities of various derivatives of pyrazol-5-ols were reported (Sarojini et al., 2010). In an attempt to synthesize pyrazolone derivative, the title compound was formed when ethyl acetoacetate was taken in 1: 2 molar ratio. Similar product formation was reported by Vaid et al. (1986). The crystal structure of 3,4-dimethyl-1-(2-pyridyl)pyrano[2,3-c]pyrazol-6(1H)-one was reported by Ramsay & Steel (1985) and the structure of 3,4-dimethyl-1-phenylpyrano[2,3-c]-pyrazol-6(1H)-one was reported by Ahmad et al. (2011). The title compound 1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,4- dimethylpyrano[2,3-c]pyrazol-6(1H)-one [C15H9Cl2F3N2O2], was prepared by the reaction of 2,6-dichloro-4-trifluoromethyl-phenyl hydrazine with excess of ethyl acetoacetate.

In the title compound, Fig. 1, the 1,6-dihydropyrano[2,3-c]pyrazole ring system (C1–C5/N1/N2/C6/O1) is almost planar with the maximum deviation of 0.0226 (14) Å at atom C2 and forms a dihedral angle of 69.90 (6)° with the benzene ring (C7–C12). Bond lengths (Allen et al., 1987) and angles are within the normal ranges.

In the crystal packing as shown in Fig. 2, the molecules are linked into chains along the c axis by the intermolecular C11—H11A···O2 hydrogen bonds (Table 1).

Related literature top

For background to and the biological activity of pyrazolone derivatives, see: Kokura et al. (2005); Sarojini et al. (2010); Vaid et al. (1986). For related structures, see: Ramsay & Steel (1985); Ahmad et al. (2011). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

(2,6-Dichloro-4-trifluoromethyl)phenyl hydrazine (1.225 g, 0.005 mol) was added to ethyl acetoacetate (1.3 g, 0.01 mol) and charged in a microwave for 3 minutes at 360 W. The reaction mixture was quenched into ether and kept for some time to get the residue. The residue was recrystallized by slow evaporation from ethanol to give block-shaped orange crystals suitable for X-ray diffraction. M.p. = 431 K.

Refinement top

All H atoms were positioned geometrically and were refined with a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) (C—H = 0.95 or 0.98 Å). A rotating group model was applied to the methyl groups.

Structure description top

Pyrazolone moiety is a pyrazole derivative, containing a five-membered lactam ring with two nitrogen atoms and a ketone group in the same molecule. Edaravone, 3-methyl-1-phenyl-2-pyrazolin-5-one, is a strong novel free radical scavenger and was used for treatment of patients with acute brain infarction (Kokura et al., 2005). The radical scavenging capacity and molecular binding activities of various derivatives of pyrazol-5-ols were reported (Sarojini et al., 2010). In an attempt to synthesize pyrazolone derivative, the title compound was formed when ethyl acetoacetate was taken in 1: 2 molar ratio. Similar product formation was reported by Vaid et al. (1986). The crystal structure of 3,4-dimethyl-1-(2-pyridyl)pyrano[2,3-c]pyrazol-6(1H)-one was reported by Ramsay & Steel (1985) and the structure of 3,4-dimethyl-1-phenylpyrano[2,3-c]-pyrazol-6(1H)-one was reported by Ahmad et al. (2011). The title compound 1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,4- dimethylpyrano[2,3-c]pyrazol-6(1H)-one [C15H9Cl2F3N2O2], was prepared by the reaction of 2,6-dichloro-4-trifluoromethyl-phenyl hydrazine with excess of ethyl acetoacetate.

In the title compound, Fig. 1, the 1,6-dihydropyrano[2,3-c]pyrazole ring system (C1–C5/N1/N2/C6/O1) is almost planar with the maximum deviation of 0.0226 (14) Å at atom C2 and forms a dihedral angle of 69.90 (6)° with the benzene ring (C7–C12). Bond lengths (Allen et al., 1987) and angles are within the normal ranges.

In the crystal packing as shown in Fig. 2, the molecules are linked into chains along the c axis by the intermolecular C11—H11A···O2 hydrogen bonds (Table 1).

For background to and the biological activity of pyrazolone derivatives, see: Kokura et al. (2005); Sarojini et al. (2010); Vaid et al. (1986). For related structures, see: Ramsay & Steel (1985); Ahmad et al. (2011). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the chain along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-3,4- dimethylpyrano[2,3-c]pyrazol-6(1H)-one top
Crystal data top
C15H9Cl2F3N2O2F(000) = 1520
Mr = 377.14Dx = 1.662 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9873 reflections
a = 13.3348 (2) Åθ = 2.5–32.6°
b = 14.2045 (2) ŵ = 0.48 mm1
c = 15.9132 (3) ÅT = 100 K
V = 3014.19 (8) Å3Block, orange
Z = 80.44 × 0.31 × 0.26 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4382 independent reflections
Radiation source: fine-focus sealed tube3706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.819, Tmax = 0.888k = 1919
24894 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0445P)2 + 2.1563P]
where P = (Fo2 + 2Fc2)/3
4382 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C15H9Cl2F3N2O2V = 3014.19 (8) Å3
Mr = 377.14Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.3348 (2) ŵ = 0.48 mm1
b = 14.2045 (2) ÅT = 100 K
c = 15.9132 (3) Å0.44 × 0.31 × 0.26 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4382 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3706 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.888Rint = 0.030
24894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
4382 reflectionsΔρmin = 0.51 e Å3
219 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05786 (3)0.14096 (3)0.71268 (2)0.02478 (10)
Cl20.32815 (3)0.42169 (3)0.68567 (2)0.02497 (10)
F10.01024 (12)0.35846 (9)0.97088 (8)0.0559 (4)
F20.14301 (8)0.44227 (10)0.97926 (7)0.0426 (3)
F30.01721 (9)0.49137 (8)0.91002 (6)0.0399 (3)
O10.20606 (8)0.33302 (7)0.52607 (6)0.0197 (2)
O20.18623 (9)0.41836 (8)0.41029 (7)0.0260 (2)
N10.29995 (9)0.15794 (8)0.66209 (8)0.0187 (2)
N20.23949 (9)0.23515 (8)0.64239 (7)0.0181 (2)
C10.23104 (11)0.35320 (10)0.44100 (9)0.0202 (3)
C20.30521 (11)0.29344 (10)0.40143 (9)0.0209 (3)
H2A0.32370.30700.34510.025*
C30.35023 (11)0.21887 (10)0.43997 (9)0.0189 (3)
C40.32303 (10)0.20139 (10)0.52589 (9)0.0166 (3)
C50.34852 (11)0.13725 (10)0.59193 (9)0.0180 (3)
C60.25427 (11)0.26101 (9)0.56213 (9)0.0174 (3)
C70.19107 (10)0.28382 (9)0.70869 (9)0.0167 (3)
C80.10967 (10)0.24338 (9)0.75021 (9)0.0173 (2)
C90.06951 (11)0.28556 (10)0.82140 (9)0.0184 (3)
H9A0.01490.25740.85030.022*
C100.11052 (11)0.36948 (10)0.84946 (9)0.0176 (3)
C110.18835 (11)0.41405 (10)0.80713 (9)0.0189 (3)
H11A0.21350.47300.82580.023*
C120.22825 (10)0.37016 (10)0.73692 (9)0.0179 (3)
C130.42522 (12)0.15731 (12)0.39669 (10)0.0247 (3)
H13A0.43140.17660.33780.037*
H13B0.40290.09160.39940.037*
H13C0.49050.16340.42450.037*
C140.41785 (12)0.05479 (11)0.59007 (10)0.0227 (3)
H14A0.41900.02470.64550.034*
H14B0.48560.07610.57550.034*
H14C0.39460.00940.54800.034*
C150.07067 (11)0.41500 (10)0.92787 (9)0.0199 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02666 (18)0.01914 (17)0.02854 (19)0.00419 (13)0.00424 (15)0.00636 (13)
Cl20.02532 (18)0.02462 (18)0.02499 (19)0.00624 (13)0.00913 (14)0.00204 (13)
F10.0876 (10)0.0374 (6)0.0427 (7)0.0230 (6)0.0449 (7)0.0153 (5)
F20.0261 (5)0.0781 (9)0.0235 (5)0.0124 (5)0.0059 (4)0.0203 (5)
F30.0531 (7)0.0427 (6)0.0240 (5)0.0310 (5)0.0038 (5)0.0093 (4)
O10.0229 (5)0.0196 (5)0.0166 (5)0.0040 (4)0.0025 (4)0.0000 (4)
O20.0315 (6)0.0244 (5)0.0221 (5)0.0033 (4)0.0003 (5)0.0033 (4)
N10.0205 (6)0.0167 (5)0.0190 (6)0.0034 (4)0.0012 (5)0.0010 (4)
N20.0219 (6)0.0168 (5)0.0156 (5)0.0033 (4)0.0039 (5)0.0012 (4)
C10.0234 (7)0.0205 (6)0.0169 (6)0.0023 (5)0.0004 (5)0.0000 (5)
C20.0216 (7)0.0246 (7)0.0166 (6)0.0021 (5)0.0025 (5)0.0023 (5)
C30.0173 (6)0.0214 (6)0.0180 (6)0.0031 (5)0.0024 (5)0.0052 (5)
C40.0160 (6)0.0171 (6)0.0168 (6)0.0003 (5)0.0019 (5)0.0028 (5)
C50.0174 (6)0.0169 (6)0.0196 (7)0.0006 (5)0.0001 (5)0.0037 (5)
C60.0193 (6)0.0162 (6)0.0167 (6)0.0000 (5)0.0014 (5)0.0017 (5)
C70.0182 (6)0.0171 (6)0.0147 (6)0.0033 (5)0.0013 (5)0.0016 (5)
C80.0181 (6)0.0158 (6)0.0179 (6)0.0003 (5)0.0001 (5)0.0013 (5)
C90.0181 (6)0.0190 (6)0.0182 (6)0.0014 (5)0.0029 (5)0.0007 (5)
C100.0195 (6)0.0180 (6)0.0152 (6)0.0050 (5)0.0022 (5)0.0014 (5)
C110.0218 (6)0.0167 (6)0.0182 (6)0.0010 (5)0.0018 (5)0.0027 (5)
C120.0183 (6)0.0181 (6)0.0174 (6)0.0001 (5)0.0038 (5)0.0001 (5)
C130.0230 (7)0.0294 (8)0.0216 (7)0.0033 (6)0.0062 (6)0.0045 (6)
C140.0231 (7)0.0208 (7)0.0241 (7)0.0059 (5)0.0004 (6)0.0032 (5)
C150.0229 (7)0.0212 (6)0.0157 (6)0.0027 (5)0.0025 (5)0.0020 (5)
Geometric parameters (Å, º) top
Cl1—C81.7176 (14)C4—C51.432 (2)
Cl2—C121.7249 (14)C5—C141.4926 (19)
F1—C151.3277 (18)C7—C81.3946 (19)
F2—C151.3227 (18)C7—C121.3971 (19)
F3—C151.3288 (17)C8—C91.3890 (19)
O1—C61.3375 (17)C9—C101.386 (2)
O1—C11.4233 (17)C9—H9A0.9500
O2—C11.2053 (18)C10—C111.390 (2)
N1—C51.3238 (18)C10—C151.5023 (19)
N1—N21.3967 (16)C11—C121.3858 (19)
N2—C61.3436 (18)C11—H11A0.9500
N2—C71.4170 (17)C13—H13A0.9800
C1—C21.448 (2)C13—H13B0.9800
C2—C31.363 (2)C13—H13C0.9800
C2—H2A0.9500C14—H14A0.9800
C3—C41.436 (2)C14—H14B0.9800
C3—C131.496 (2)C14—H14C0.9800
C4—C61.3749 (18)
C6—O1—C1116.71 (11)C10—C9—H9A120.6
C5—N1—N2105.51 (12)C8—C9—H9A120.6
C6—N2—N1110.08 (11)C9—C10—C11122.04 (13)
C6—N2—C7129.89 (12)C9—C10—C15119.89 (13)
N1—N2—C7118.62 (11)C11—C10—C15118.07 (13)
O2—C1—O1115.10 (13)C12—C11—C10118.21 (13)
O2—C1—C2127.79 (14)C12—C11—H11A120.9
O1—C1—C2117.11 (12)C10—C11—H11A120.9
C3—C2—C1124.11 (13)C11—C12—C7121.19 (13)
C3—C2—H2A117.9C11—C12—Cl2119.14 (11)
C1—C2—H2A117.9C7—C12—Cl2119.64 (11)
C2—C3—C4116.84 (13)C3—C13—H13A109.5
C2—C3—C13122.77 (14)C3—C13—H13B109.5
C4—C3—C13120.39 (13)H13A—C13—H13B109.5
C6—C4—C5104.03 (12)C3—C13—H13C109.5
C6—C4—C3117.46 (13)H13A—C13—H13C109.5
C5—C4—C3138.49 (13)H13B—C13—H13C109.5
N1—C5—C4111.20 (12)C5—C14—H14A109.5
N1—C5—C14119.61 (13)C5—C14—H14B109.5
C4—C5—C14129.18 (13)H14A—C14—H14B109.5
O1—C6—N2123.12 (12)C5—C14—H14C109.5
O1—C6—C4127.72 (13)H14A—C14—H14C109.5
N2—C6—C4109.15 (12)H14B—C14—H14C109.5
C8—C7—C12119.05 (12)F2—C15—F1107.52 (13)
C8—C7—N2120.43 (12)F2—C15—F3106.52 (13)
C12—C7—N2120.40 (12)F1—C15—F3106.16 (13)
C9—C8—C7120.59 (13)F2—C15—C10112.43 (12)
C9—C8—Cl1119.59 (11)F1—C15—C10112.49 (12)
C7—C8—Cl1119.82 (11)F3—C15—C10111.32 (12)
C10—C9—C8118.81 (13)
C5—N1—N2—C61.53 (16)C3—C4—C6—N2178.89 (12)
C5—N1—N2—C7169.29 (12)C6—N2—C7—C8122.18 (17)
C6—O1—C1—O2179.89 (13)N1—N2—C7—C872.87 (17)
C6—O1—C1—C20.64 (18)C6—N2—C7—C1262.0 (2)
O2—C1—C2—C3177.74 (15)N1—N2—C7—C12102.97 (16)
O1—C1—C2—C31.4 (2)C12—C7—C8—C93.5 (2)
C1—C2—C3—C41.7 (2)N2—C7—C8—C9172.37 (13)
C1—C2—C3—C13178.78 (14)C12—C7—C8—Cl1175.99 (11)
C2—C3—C4—C60.07 (19)N2—C7—C8—Cl18.11 (19)
C13—C3—C4—C6179.51 (13)C7—C8—C9—C101.3 (2)
C2—C3—C4—C5178.26 (16)Cl1—C8—C9—C10178.27 (11)
C13—C3—C4—C51.3 (3)C8—C9—C10—C112.0 (2)
N2—N1—C5—C41.45 (16)C8—C9—C10—C15178.05 (13)
N2—N1—C5—C14177.79 (12)C9—C10—C11—C122.9 (2)
C6—C4—C5—N10.87 (16)C15—C10—C11—C12177.19 (13)
C3—C4—C5—N1177.48 (16)C10—C11—C12—C70.5 (2)
C6—C4—C5—C14178.29 (14)C10—C11—C12—Cl2177.47 (11)
C3—C4—C5—C143.4 (3)C8—C7—C12—C112.6 (2)
C1—O1—C6—N2178.79 (13)N2—C7—C12—C11173.26 (13)
C1—O1—C6—C42.6 (2)C8—C7—C12—Cl2179.39 (11)
N1—N2—C6—O1179.89 (12)N2—C7—C12—Cl24.71 (19)
C7—N2—C6—O114.2 (2)C9—C10—C15—F2133.24 (15)
N1—N2—C6—C41.02 (16)C11—C10—C15—F246.84 (18)
C7—N2—C6—C4166.98 (14)C9—C10—C15—F111.7 (2)
C5—C4—C6—O1178.93 (14)C11—C10—C15—F1168.40 (14)
C3—C4—C6—O12.3 (2)C9—C10—C15—F3107.33 (16)
C5—C4—C6—N20.13 (15)C11—C10—C15—F372.59 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.952.443.3405 (18)157
Symmetry code: (i) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H9Cl2F3N2O2
Mr377.14
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)13.3348 (2), 14.2045 (2), 15.9132 (3)
V3)3014.19 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.44 × 0.31 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.819, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
24894, 4382, 3706
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.03
No. of reflections4382
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.952.443.3405 (18)157
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the position as Research Officer under the Research University Grant (1001/PFIZIK/811160). BKS gratefully acknowledges the Department of Atomic Energy (DAE)/BRNS, Government of India, for providing financial assistance for the BRNS project (No. 2011/34/20-BRNS/0846).

References

First citationAhmad, N., Tahir, M. N., Khan, M. A., Ather, A. Q. & Khan, M. N. (2011). Acta Cryst. E67, o1021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKokura, S., Yoshida, N., Sakamoto, N., Ishikawa, T., Takagi, T., Higashihara, H., Nakabe, N., Handa, O., Naito, Y. & Yoshikawa, T. (2005). Cancer Lett. 229, 223–233.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamsay, C. G. & Steel, P. J. (1985). Acta Cryst. C41, 135–136.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshan Raj, C. G., Barath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaid, R. K., Dhindsa, G. S., Kaushik, B., Singh, S. P. & Dhawan, S. N. (1986). Indian J. Chem. Sect. B, 25, 569–570.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds