organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(5,5-Di­methyl-3-oxo­cyclo­hex-1-en­yl)amino]­benzene­sulfonamide

aMedicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 June 2012; accepted 1 July 2012; online 7 July 2012)

In the title compound, C14H18N2O3S, the cyclo­hexene ring exhibits a distorted half-chair conformation and its mean plane makes a dihedral angle of 46.18 (8)° with the benzene ring. In the crystal, mol­ecules are linked via N—H⋯O, N—H⋯(O,O) and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For general background to and the pharmacological activities of related compounds, see: Drews (2000[Drews, J. (2000). Science, 287, 1960-1964.]); Supuran (2008[Supuran, C. T. (2008). Nat. Rev. Drug Discov. 7, 168-181.]); Supuran & Scozzafava (2000[Supuran, C. T. & Scozzafava, A. (2000). Expert Opin. Ther. Pat. 10, 575-600.]); Boyd (1988[Boyd, A. E. (1988). Diabetes, 37, 847-850.]); Ghorab et al. (2007[Ghorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & El-Hossary, E. M. (2007). Arzneimittelforschung, 57, 795-803.], 2009[Ghorab, M. M., Ragab, F. A. & Hamed, M. M. (2009). Eur. J. Med. Chem. 44, 4211-4217.], 2011[Ghorab, M. M., Al-Said, M. S. & El- Hossary, E. M. (2011). J. Heterocycl. Chem. 48, 563-571.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O3S

  • Mr = 294.36

  • Orthorhombic, P b c a

  • a = 11.0365 (3) Å

  • b = 13.4763 (3) Å

  • c = 20.0092 (6) Å

  • V = 2975.99 (14) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.02 mm−1

  • T = 296 K

  • 0.73 × 0.40 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.322, Tmax = 0.839

  • 10908 measured reflections

  • 2829 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.04

  • 2829 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.88 (2) 2.10 (2) 2.958 (2) 166 (2)
N2—H1N2⋯O3ii 0.89 (2) 2.02 (2) 2.900 (2) 169 (2)
N2—H2N2⋯O3iii 0.88 (2) 2.13 (2) 2.969 (2) 159 (2)
C6—H6A⋯O2iv 0.97 2.44 3.229 (2) 139
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

From literature survey, it was found that sulfonamides constitute an important class of drugs with several types of pharmacological activities including antibacterial (Drews, 2000), anti-carbonic anhydrase (Supuran, 2008), diuretic (Supuran & Scozzafava, 2000) and hypoglycemic (Boyd, 1988) properties. Also, some structurally novel sulfonamide derivatives have recently been reported to show substantial antitumor activity (Ghorab et al., 2011). Based on the above informations and due to our interest in the synthesizing novel sulfonamides (Ghorab et al., 2009), the present investigation deals with the design and synthesis of a novel 4-(5,5-dimethyl-3- oxocyclohex-1-enylamino) carrying a biologically active sulfonamide moiety for evaluation as an anticancer agent.

In the title molecule (Fig. 1), the cyclohexene ring (C1–C6) exhibits a distorted half-chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.4561 (19) Å, Θ = 52.5 (2)° and φ = 210.9 (3) Å, and its least square plane makes a dihedral angle of 46.18 (8)° with the benzene ring (C9–C14). Bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal (Fig. 2), molecules are linked via intermolecular N1—H1N1···O1, N2—H1N2···O3, N2—H2N2···O3 and C6—H6A···O2 hydrogen bonds (Table 1), forming a three-dimensional network.

Related literature top

For general background to and the pharmacological activities of the title compound, see: Drews (2000); Supuran (2008); Supuran & Scozzafava (2000); Boyd (1988); Ghorab et al. (2007, 2009, 2011). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).

Experimental top

4-(5,5-Dimethyl-3-oxocyclohex-1-enylamino)benzenesulfonamide was prepared according to the previously reported procedure (Ghorab et al., 2007). Single crystals suitable for an X-ray structural analysis was obtained by slow evaporation from ethanol at room temperature.

Refinement top

The N-bound hydrogen atoms was located in a difference Fourier map and refined freely [N—H = 0.88 (2)–0.89 (2) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.96–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

From literature survey, it was found that sulfonamides constitute an important class of drugs with several types of pharmacological activities including antibacterial (Drews, 2000), anti-carbonic anhydrase (Supuran, 2008), diuretic (Supuran & Scozzafava, 2000) and hypoglycemic (Boyd, 1988) properties. Also, some structurally novel sulfonamide derivatives have recently been reported to show substantial antitumor activity (Ghorab et al., 2011). Based on the above informations and due to our interest in the synthesizing novel sulfonamides (Ghorab et al., 2009), the present investigation deals with the design and synthesis of a novel 4-(5,5-dimethyl-3- oxocyclohex-1-enylamino) carrying a biologically active sulfonamide moiety for evaluation as an anticancer agent.

In the title molecule (Fig. 1), the cyclohexene ring (C1–C6) exhibits a distorted half-chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.4561 (19) Å, Θ = 52.5 (2)° and φ = 210.9 (3) Å, and its least square plane makes a dihedral angle of 46.18 (8)° with the benzene ring (C9–C14). Bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal (Fig. 2), molecules are linked via intermolecular N1—H1N1···O1, N2—H1N2···O3, N2—H2N2···O3 and C6—H6A···O2 hydrogen bonds (Table 1), forming a three-dimensional network.

For general background to and the pharmacological activities of the title compound, see: Drews (2000); Supuran (2008); Supuran & Scozzafava (2000); Boyd (1988); Ghorab et al. (2007, 2009, 2011). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
4-[(5,5-Dimethyl-3-oxocyclohex-1-enyl)amino]benzenesulfonamide top
Crystal data top
C14H18N2O3SF(000) = 1248
Mr = 294.36Dx = 1.314 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 2253 reflections
a = 11.0365 (3) Åθ = 4.4–70.1°
b = 13.4763 (3) ŵ = 2.02 mm1
c = 20.0092 (6) ÅT = 296 K
V = 2975.99 (14) Å3Plate, colourless
Z = 80.73 × 0.40 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2829 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 72.0°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1113
Tmin = 0.322, Tmax = 0.839k = 1610
10908 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0919P)2]
where P = (Fo2 + 2Fc2)/3
2829 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C14H18N2O3SV = 2975.99 (14) Å3
Mr = 294.36Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 11.0365 (3) ŵ = 2.02 mm1
b = 13.4763 (3) ÅT = 296 K
c = 20.0092 (6) Å0.73 × 0.40 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2829 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2361 reflections with I > 2σ(I)
Tmin = 0.322, Tmax = 0.839Rint = 0.036
10908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
2829 reflectionsΔρmin = 0.48 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00703 (4)0.12128 (3)0.35905 (2)0.04078 (17)
N10.30747 (13)0.19577 (10)0.24788 (7)0.0409 (3)
N20.04392 (17)0.09709 (12)0.43487 (8)0.0470 (4)
O10.06697 (14)0.20885 (9)0.36157 (7)0.0578 (4)
O20.11492 (13)0.12253 (11)0.31954 (8)0.0628 (4)
O30.33684 (13)0.09069 (10)0.02398 (6)0.0542 (4)
C10.33333 (14)0.20944 (11)0.18227 (8)0.0371 (3)
C20.31006 (16)0.14052 (12)0.13444 (8)0.0411 (4)
H2A0.27600.08010.14670.049*
C30.33664 (15)0.15894 (12)0.06597 (9)0.0419 (4)
C40.36612 (17)0.26403 (13)0.04640 (9)0.0480 (4)
H4A0.40440.26420.00280.058*
H4B0.29170.30200.04320.058*
C50.45074 (16)0.31347 (13)0.09715 (9)0.0440 (4)
C60.39348 (16)0.30700 (12)0.16681 (9)0.0429 (4)
H6A0.33380.35940.17110.052*
H6B0.45600.31900.19990.052*
C70.4679 (2)0.42291 (16)0.07882 (12)0.0677 (6)
H7A0.50990.42770.03690.102*
H7B0.39020.45440.07510.102*
H7C0.51450.45530.11300.102*
C80.57395 (17)0.26183 (16)0.09661 (12)0.0615 (5)
H8A0.60780.26490.05250.092*
H8B0.62730.29450.12750.092*
H8C0.56410.19370.10960.092*
C90.23173 (14)0.12110 (11)0.27412 (8)0.0356 (3)
C100.12181 (15)0.09880 (12)0.24388 (8)0.0402 (4)
H10A0.09750.13280.20570.048*
C110.04870 (14)0.02559 (12)0.27089 (8)0.0392 (4)
H11A0.02480.01000.25070.047*
C120.08487 (14)0.02434 (11)0.32787 (8)0.0365 (3)
C130.19250 (15)0.00026 (12)0.35958 (8)0.0400 (4)
H13A0.21530.03320.39840.048*
C140.26572 (15)0.07305 (12)0.33301 (8)0.0401 (4)
H14A0.33750.09030.35440.048*
H1N10.3431 (18)0.2337 (16)0.2774 (11)0.058 (6)*
H1N20.024 (2)0.1016 (15)0.4588 (12)0.053 (6)*
H2N20.090 (2)0.0441 (18)0.4374 (12)0.070 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0482 (3)0.0360 (3)0.0381 (3)0.00670 (16)0.00260 (16)0.00170 (14)
N10.0455 (7)0.0400 (7)0.0372 (7)0.0075 (6)0.0036 (6)0.0035 (6)
N20.0552 (10)0.0451 (8)0.0408 (8)0.0019 (7)0.0078 (7)0.0014 (6)
O10.0801 (10)0.0362 (6)0.0572 (8)0.0043 (6)0.0143 (7)0.0014 (5)
O20.0568 (8)0.0722 (9)0.0595 (9)0.0265 (7)0.0102 (7)0.0065 (7)
O30.0713 (9)0.0505 (7)0.0409 (7)0.0019 (6)0.0039 (6)0.0088 (5)
C10.0363 (8)0.0355 (8)0.0394 (8)0.0015 (6)0.0039 (6)0.0001 (6)
C20.0468 (9)0.0351 (8)0.0414 (8)0.0041 (7)0.0056 (7)0.0007 (6)
C30.0419 (8)0.0429 (9)0.0408 (8)0.0026 (7)0.0013 (7)0.0026 (7)
C40.0592 (11)0.0442 (9)0.0408 (8)0.0062 (8)0.0010 (8)0.0059 (7)
C50.0474 (9)0.0390 (8)0.0456 (9)0.0014 (7)0.0044 (7)0.0092 (7)
C60.0458 (9)0.0373 (8)0.0457 (9)0.0044 (7)0.0046 (7)0.0002 (7)
C70.0897 (16)0.0462 (11)0.0673 (13)0.0112 (11)0.0052 (12)0.0157 (10)
C80.0440 (10)0.0679 (12)0.0724 (13)0.0023 (9)0.0105 (9)0.0133 (10)
C90.0369 (8)0.0343 (8)0.0357 (8)0.0009 (6)0.0055 (6)0.0031 (5)
C100.0407 (8)0.0431 (8)0.0368 (8)0.0027 (7)0.0003 (6)0.0054 (6)
C110.0358 (8)0.0425 (8)0.0392 (8)0.0002 (7)0.0021 (6)0.0007 (6)
C120.0382 (8)0.0346 (7)0.0366 (8)0.0002 (6)0.0042 (6)0.0002 (6)
C130.0398 (8)0.0424 (8)0.0379 (8)0.0020 (7)0.0023 (6)0.0043 (6)
C140.0358 (8)0.0458 (9)0.0386 (8)0.0011 (7)0.0021 (6)0.0004 (6)
Geometric parameters (Å, º) top
S1—O21.4294 (15)C5—C61.533 (2)
S1—O11.4360 (14)C6—H6A0.9700
S1—N21.6044 (15)C6—H6B0.9700
S1—C121.7677 (15)C7—H7A0.9600
N1—C11.356 (2)C7—H7B0.9600
N1—C91.410 (2)C7—H7C0.9600
N1—H1N10.88 (2)C8—H8A0.9600
N2—H1N20.89 (2)C8—H8B0.9600
N2—H2N20.88 (2)C8—H8C0.9600
O3—C31.246 (2)C9—C101.389 (2)
C1—C21.358 (2)C9—C141.396 (2)
C1—C61.505 (2)C10—C111.384 (2)
C2—C31.423 (2)C10—H10A0.9300
C2—H2A0.9300C11—C121.383 (2)
C3—C41.505 (2)C11—H11A0.9300
C4—C51.532 (2)C12—C131.385 (2)
C4—H4A0.9700C13—C141.383 (2)
C4—H4B0.9700C13—H13A0.9300
C5—C81.528 (3)C14—H14A0.9300
C5—C71.532 (2)
O2—S1—O1118.92 (9)C5—C6—H6A108.6
O2—S1—N2108.30 (10)C1—C6—H6B108.6
O1—S1—N2106.15 (9)C5—C6—H6B108.6
O2—S1—C12106.95 (8)H6A—C6—H6B107.6
O1—S1—C12107.06 (8)C5—C7—H7A109.5
N2—S1—C12109.21 (8)C5—C7—H7B109.5
C1—N1—C9125.62 (14)H7A—C7—H7B109.5
C1—N1—H1N1118.7 (14)C5—C7—H7C109.5
C9—N1—H1N1115.6 (14)H7A—C7—H7C109.5
S1—N2—H1N2106.5 (15)H7B—C7—H7C109.5
S1—N2—H2N2111.5 (16)C5—C8—H8A109.5
H1N2—N2—H2N2121 (2)C5—C8—H8B109.5
N1—C1—C2123.34 (15)H8A—C8—H8B109.5
N1—C1—C6114.23 (14)C5—C8—H8C109.5
C2—C1—C6122.41 (15)H8A—C8—H8C109.5
C1—C2—C3121.35 (15)H8B—C8—H8C109.5
C1—C2—H2A119.3C10—C9—C14120.15 (14)
C3—C2—H2A119.3C10—C9—N1120.67 (14)
O3—C3—C2121.40 (16)C14—C9—N1119.09 (15)
O3—C3—C4121.27 (16)C11—C10—C9119.55 (15)
C2—C3—C4117.33 (15)C11—C10—H10A120.2
C3—C4—C5111.63 (14)C9—C10—H10A120.2
C3—C4—H4A109.3C12—C11—C10120.03 (15)
C5—C4—H4A109.3C12—C11—H11A120.0
C3—C4—H4B109.3C10—C11—H11A120.0
C5—C4—H4B109.3C11—C12—C13120.75 (14)
H4A—C4—H4B108.0C11—C12—S1119.01 (12)
C8—C5—C7109.08 (17)C13—C12—S1120.24 (12)
C8—C5—C4109.87 (17)C14—C13—C12119.51 (14)
C7—C5—C4109.60 (16)C14—C13—H13A120.2
C8—C5—C6110.33 (15)C12—C13—H13A120.2
C7—C5—C6108.87 (15)C13—C14—C9119.93 (15)
C4—C5—C6109.06 (14)C13—C14—H14A120.0
C1—C6—C5114.73 (14)C9—C14—H14A120.0
C1—C6—H6A108.6
C9—N1—C1—C214.4 (3)C1—N1—C9—C14139.55 (17)
C9—N1—C1—C6167.16 (15)C14—C9—C10—C112.8 (2)
N1—C1—C2—C3178.77 (15)N1—C9—C10—C11179.57 (14)
C6—C1—C2—C32.9 (3)C9—C10—C11—C120.4 (2)
C1—C2—C3—O3166.50 (17)C10—C11—C12—C131.7 (2)
C1—C2—C3—C412.7 (3)C10—C11—C12—S1177.15 (12)
O3—C3—C4—C5136.43 (17)O2—S1—C12—C115.87 (16)
C2—C3—C4—C542.8 (2)O1—S1—C12—C11122.63 (13)
C3—C4—C5—C865.7 (2)N2—S1—C12—C11122.86 (14)
C3—C4—C5—C7174.46 (16)O2—S1—C12—C13175.28 (13)
C3—C4—C5—C655.35 (19)O1—S1—C12—C1356.22 (15)
N1—C1—C6—C5165.84 (15)N2—S1—C12—C1358.29 (15)
C2—C1—C6—C512.6 (2)C11—C12—C13—C141.4 (2)
C8—C5—C6—C179.9 (2)S1—C12—C13—C14177.40 (12)
C7—C5—C6—C1160.42 (16)C12—C13—C14—C91.0 (2)
C4—C5—C6—C140.9 (2)C10—C9—C14—C133.1 (2)
C1—N1—C9—C1043.7 (2)N1—C9—C14—C13179.88 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.88 (2)2.10 (2)2.958 (2)166 (2)
N2—H1N2···O3ii0.89 (2)2.02 (2)2.900 (2)169 (2)
N2—H2N2···O3iii0.88 (2)2.13 (2)2.969 (2)159 (2)
C6—H6A···O2iv0.972.443.229 (2)139
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z+1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H18N2O3S
Mr294.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.0365 (3), 13.4763 (3), 20.0092 (6)
V3)2975.99 (14)
Z8
Radiation typeCu Kα
µ (mm1)2.02
Crystal size (mm)0.73 × 0.40 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.322, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
10908, 2829, 2361
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.04
No. of reflections2829
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.88 (2)2.10 (2)2.958 (2)166 (2)
N2—H1N2···O3ii0.89 (2)2.02 (2)2.900 (2)169 (2)
N2—H2N2···O3iii0.88 (2)2.13 (2)2.969 (2)159 (2)
C6—H6A···O2iv0.972.443.229 (2)139
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z+1/2; (iv) x, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy, and the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBoyd, A. E. (1988). Diabetes, 37, 847–850.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDrews, J. (2000). Science, 287, 1960–1964.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhorab, M. M., Al-Said, M. S. & El- Hossary, E. M. (2011). J. Heterocycl. Chem. 48, 563–571.  Web of Science CrossRef CAS Google Scholar
First citationGhorab, M. M., Ragab, F. A. & Hamed, M. M. (2009). Eur. J. Med. Chem. 44, 4211–4217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & El-Hossary, E. M. (2007). Arzneimittelforschung, 57, 795–803.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T. (2008). Nat. Rev. Drug Discov. 7, 168–181.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2000). Expert Opin. Ther. Pat. 10, 575–600.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds