organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3E,5E)-3,5-Bis(4-methyl­benzyl­­idene)-1-[3-(piperidin-1-yl)propano­yl]piperidin-4-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 9 July 2012; accepted 12 July 2012; online 18 July 2012)

In the title compound, C29H34N2O2, the central piperidine ring adopts a half-chair conformation, whereas the terminal one adopts a chair conformation. The mean plane of the central piperidine ring [maximum deviation = 0.384 (2) Å] makes dihedral angles of 64.82 (13) and 17.55 (13)° with the benzene rings. In the crystal, mol­ecules are linked into a tape along the b axis via C—H⋯O inter­actions, generating R22(20) and R21(6) graph-set motifs. C—H⋯π inter­actions are observed between the tapes.

Related literature

For biological activities of α,β-unsaturated ketones, see: Tanaka et al. (2003[Tanaka, T., Kawase, M. & Tani, S. (2003). Life Sci. 73, 2985-2990.]); Nakayachi et al. (2004[Nakayachi, T., Yasumoto, E., Nakano, K., Morshed, S. R. M., Hashimoto, K., Kikuchi, H., Nishikawa, H., Kawase, M. & Sakagami, H. (2004). Anticancer Res. 24, 737-742.]); Lee et al. (2004[Lee, K. H., Huang, E. S., Piantadosi, C., Pagano, J. S. & Geissman, T. A. (2004). Cancer Res. 31, 1649-1654.]); Hertzberg et al. (1989[Hertzberg, R. P., Caranfa, M. J., Holden, K. G., Jakas, D. R., Gallagher, G., Mattern, M. R., Mong, S. M., Bartus, J. O., Johnson, R. K. & Kingsbury, W. D. (1989). J. Med. Chem. 32, 715-720.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Aridoss et al. (2010[Aridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010). Acta Cryst. E66, o2005.]); Kia et al. (2011[Kia, Y., Osman, H., Murugaiyah, V., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1299-o1300.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the preparation of 1-acryloyl-3,5-dibenzyl­idenepiperidin-4-one, see: Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H.-B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavatha, E. K. (2001). J. Med. Chem. 44, 586-593.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C29H34N2O2

  • Mr = 442.58

  • Monoclinic, P 21 /c

  • a = 12.2913 (8) Å

  • b = 9.9753 (8) Å

  • c = 19.9993 (14) Å

  • β = 100.884 (4)°

  • V = 2408.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.46 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.985

  • 18968 measured reflections

  • 6852 independent reflections

  • 3483 reflections with I > I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.228

  • S = 1.04

  • 6852 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.95 2.51 3.346 (3) 147
C21—H21A⋯O2i 0.98 2.44 3.371 (4) 160
C21—H21C⋯O1ii 0.98 2.52 3.446 (3) 157
C4—H4ACg1iii 0.95 2.69 3.526 (3) 148
C27—H27ACg1iv 0.99 2.74 3.719 (3) 168
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Claisen-Schmidt condensation reaction between aldehyde and ketone, leads to biological active class of compound, namely α,β-unsaturated ketones. These compounds show a wide range of biological activities such as enzyme inhibitory (Tanaka et al., 2003), cytotoxic and antitumor (Nakayachi et al., 2004). This conjugated system, OCH—CHCH2 is the key moiety which promotes the bioactivities in the title compound (Lee et al., 2004). α, β-unsaturated ketones can be considered as a Michael acceptor which is an active moiety showing enzyme inhibitory activity (Hertzberg et al., 1989). Due to these reasons, the crystal structure determination of the title compound was carried out and the results are presented in this paper.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges and comparable to the related structures (Aridoss et al., 2010; Kia et al., 2011). The piperidine rings (N1/C8–C12 and N2/C25–C29) adopt different conformations (Cremer & Pople, 1975). N1/C8–C12 adopts a half-chair conformation [puckering parameters, Q= 0.556 (3) Å, Θ= 117.4 (3)° and Φ= 157.4 (3)°], whereas, N2/C25–C29 adopts a chair conformation [puckering parameters, Q= 0.573 (3) Å, Θ= 3.3 (3)° and Φ= 329 (5)°]. The least square plane through both rings form a dihedral angle of 18.29 (13)° between them. The least-square plane of the central piperidine ring [N1/C8–C12, maximum deviation of 0.384 (2) Å at atom N1] forms dihedral angles of 64.82 (13) and 17.55 (13)°, respectively, with the pendant benzene rings (C1–C6 and C14–C19).

In the crystal packing (Fig. 2), molecules are linked into a tape along the b axis via intermolecular C16—H16A···O2, C21—H21A···O2 and C21—H21C···O1 interactions (Table 1), generating R22(20) and R12(6) graph-set motifs (Bernstein et al., 1995). The crystal structure is further stabilized by the intermolecular C4—H4A···Cg1 and C27—H27A···Cg1 (Table 1) interactions (Cg1 is the centroid of the benzene ring, C14–C19).

Related literature top

For biological activities of α,β-unsaturated ketones, see: Tanaka et al. (2003); Nakayachi et al. (2004); Lee et al. (2004); Hertzberg et al. (1989). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Aridoss et al. (2010); Kia et al. (2011). For graph-set motifs, see: Bernstein et al. (1995). For the preparation of 1-acryloyl-3,5-dibenzylidenepiperidin-4-one, see: Dimmock et al. (2001). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

1-Acryloyl-3,5-dibenzylidenepiperidin-4-one was synthesized as reported in the literature (Dimmock et al., 2001). The title compound was prepared by refluxing 1-acryloyl-3,5-dibenzylidenepiperidin-4-one (0.6 mmol) with piperidine (0.6 mmol) in ethanol. After completion of the reaction as evident from TLC, the mixture was poured into ice. The precipitated solid was filtered and washed with water. The pure solid was then recrystallized from ethanol to afford the title compound as yellow crystals.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

Claisen-Schmidt condensation reaction between aldehyde and ketone, leads to biological active class of compound, namely α,β-unsaturated ketones. These compounds show a wide range of biological activities such as enzyme inhibitory (Tanaka et al., 2003), cytotoxic and antitumor (Nakayachi et al., 2004). This conjugated system, OCH—CHCH2 is the key moiety which promotes the bioactivities in the title compound (Lee et al., 2004). α, β-unsaturated ketones can be considered as a Michael acceptor which is an active moiety showing enzyme inhibitory activity (Hertzberg et al., 1989). Due to these reasons, the crystal structure determination of the title compound was carried out and the results are presented in this paper.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges and comparable to the related structures (Aridoss et al., 2010; Kia et al., 2011). The piperidine rings (N1/C8–C12 and N2/C25–C29) adopt different conformations (Cremer & Pople, 1975). N1/C8–C12 adopts a half-chair conformation [puckering parameters, Q= 0.556 (3) Å, Θ= 117.4 (3)° and Φ= 157.4 (3)°], whereas, N2/C25–C29 adopts a chair conformation [puckering parameters, Q= 0.573 (3) Å, Θ= 3.3 (3)° and Φ= 329 (5)°]. The least square plane through both rings form a dihedral angle of 18.29 (13)° between them. The least-square plane of the central piperidine ring [N1/C8–C12, maximum deviation of 0.384 (2) Å at atom N1] forms dihedral angles of 64.82 (13) and 17.55 (13)°, respectively, with the pendant benzene rings (C1–C6 and C14–C19).

In the crystal packing (Fig. 2), molecules are linked into a tape along the b axis via intermolecular C16—H16A···O2, C21—H21A···O2 and C21—H21C···O1 interactions (Table 1), generating R22(20) and R12(6) graph-set motifs (Bernstein et al., 1995). The crystal structure is further stabilized by the intermolecular C4—H4A···Cg1 and C27—H27A···Cg1 (Table 1) interactions (Cg1 is the centroid of the benzene ring, C14–C19).

For biological activities of α,β-unsaturated ketones, see: Tanaka et al. (2003); Nakayachi et al. (2004); Lee et al. (2004); Hertzberg et al. (1989). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Aridoss et al. (2010); Kia et al. (2011). For graph-set motifs, see: Bernstein et al. (1995). For the preparation of 1-acryloyl-3,5-dibenzylidenepiperidin-4-one, see: Dimmock et al. (2001). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(3E,5E)-3,5-Bis(4-methylbenzylidene)-1-[3-(piperidin-1- yl)propanoyl]piperidin-4-one top
Crystal data top
C29H34N2O2F(000) = 952
Mr = 442.58Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3337 reflections
a = 12.2913 (8) Åθ = 2.3–29.9°
b = 9.9753 (8) ŵ = 0.08 mm1
c = 19.9993 (14) ÅT = 100 K
β = 100.884 (4)°Block, yellow
V = 2408.0 (3) Å30.46 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6852 independent reflections
Radiation source: fine-focus sealed tube3483 reflections with I > I > 2σ(I)
Graphite monochromatorRint = 0.075
φ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.966, Tmax = 0.985k = 1311
18968 measured reflectionsl = 2628
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.097P)2 + 0.6841P]
where P = (Fo2 + 2Fc2)/3
6852 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C29H34N2O2V = 2408.0 (3) Å3
Mr = 442.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2913 (8) ŵ = 0.08 mm1
b = 9.9753 (8) ÅT = 100 K
c = 19.9993 (14) Å0.46 × 0.25 × 0.20 mm
β = 100.884 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6852 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3483 reflections with I > I > 2σ(I)
Tmin = 0.966, Tmax = 0.985Rint = 0.075
18968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
6852 reflectionsΔρmin = 0.37 e Å3
300 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33838 (15)0.3747 (2)0.18190 (10)0.0257 (5)
O20.26832 (17)0.1316 (2)0.11812 (11)0.0389 (6)
N10.39181 (18)0.0171 (2)0.19541 (11)0.0226 (5)
N20.58294 (18)0.2400 (2)0.05042 (11)0.0229 (5)
C10.6704 (2)0.2560 (3)0.07841 (14)0.0243 (6)
H1A0.61630.29640.04420.029*
C20.7717 (2)0.2198 (3)0.06313 (15)0.0249 (6)
H2A0.78540.23410.01850.030*
C30.8540 (2)0.1623 (3)0.11272 (15)0.0236 (6)
C40.8308 (2)0.1435 (3)0.17715 (14)0.0246 (6)
H4A0.88630.10650.21180.030*
C50.7293 (2)0.1768 (3)0.19258 (14)0.0243 (6)
H5A0.71550.16080.23710.029*
C60.6463 (2)0.2343 (3)0.14288 (13)0.0205 (6)
C70.5366 (2)0.2719 (3)0.15616 (13)0.0215 (6)
H7A0.50850.35620.13870.026*
C80.4717 (2)0.2015 (3)0.18984 (13)0.0192 (6)
C90.3625 (2)0.2580 (3)0.19813 (13)0.0199 (6)
C100.2861 (2)0.1705 (3)0.22883 (13)0.0191 (6)
C110.3075 (2)0.0209 (3)0.23378 (14)0.0222 (6)
H11A0.33200.00460.28210.027*
H11B0.23800.02790.21580.027*
C120.4938 (2)0.0595 (3)0.21510 (14)0.0234 (6)
H12A0.55360.01920.19470.028*
H12B0.51740.05900.26520.028*
C130.2031 (2)0.2322 (3)0.25215 (13)0.0203 (6)
H13A0.19850.32580.24310.024*
C140.1187 (2)0.1830 (3)0.28866 (13)0.0199 (6)
C150.0454 (2)0.2783 (3)0.30679 (14)0.0226 (6)
H15A0.05130.36890.29330.027*
C160.0347 (2)0.2446 (3)0.34341 (14)0.0225 (6)
H16A0.08280.31200.35470.027*
C170.0461 (2)0.1121 (3)0.36419 (14)0.0207 (6)
C180.0264 (2)0.0167 (3)0.34587 (14)0.0234 (6)
H18A0.01960.07390.35900.028*
C190.1072 (2)0.0493 (3)0.30944 (13)0.0220 (6)
H19A0.15520.01820.29830.026*
C200.9643 (2)0.1219 (3)0.09596 (16)0.0323 (7)
H20A1.02360.14170.13480.049*
H20B0.97710.17200.05600.049*
H20C0.96370.02560.08610.049*
C210.1308 (2)0.0747 (3)0.40574 (15)0.0285 (7)
H21A0.18060.15070.40760.043*
H21B0.09350.05110.45200.043*
H21C0.17370.00240.38480.043*
C220.3612 (2)0.0824 (3)0.13444 (15)0.0255 (7)
C230.4436 (2)0.0929 (3)0.08775 (14)0.0260 (7)
H23A0.49270.01340.09400.031*
H23B0.40360.09380.03990.031*
C240.5139 (2)0.2201 (3)0.10200 (14)0.0262 (7)
H24A0.56200.21330.14750.031*
H24B0.46460.29860.10220.031*
C250.6299 (2)0.3755 (3)0.05634 (14)0.0249 (6)
H25A0.56910.44180.05250.030*
H25B0.67770.38620.10170.030*
C260.6971 (2)0.4027 (3)0.00178 (15)0.0262 (7)
H26A0.64760.40220.04340.031*
H26B0.73150.49250.00910.031*
C270.7874 (2)0.2969 (3)0.00328 (16)0.0292 (7)
H27A0.84370.30690.04550.035*
H27B0.82450.31000.03610.035*
C280.7380 (2)0.1587 (3)0.00057 (16)0.0292 (7)
H28A0.68910.14470.04430.035*
H28B0.79790.09110.00570.035*
C290.6719 (2)0.1403 (3)0.05646 (15)0.0255 (6)
H29A0.72150.14950.10130.031*
H29B0.63960.04910.05360.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (10)0.0216 (11)0.0307 (11)0.0049 (9)0.0085 (9)0.0044 (9)
O20.0363 (12)0.0433 (15)0.0414 (13)0.0166 (11)0.0183 (11)0.0151 (11)
N10.0239 (11)0.0220 (13)0.0249 (12)0.0008 (10)0.0120 (10)0.0035 (10)
N20.0246 (11)0.0216 (14)0.0245 (12)0.0006 (10)0.0098 (10)0.0003 (10)
C10.0259 (14)0.0223 (16)0.0255 (14)0.0006 (12)0.0070 (12)0.0005 (12)
C20.0298 (15)0.0238 (16)0.0232 (14)0.0056 (12)0.0101 (12)0.0028 (12)
C30.0223 (13)0.0180 (15)0.0325 (16)0.0036 (11)0.0103 (12)0.0052 (12)
C40.0192 (13)0.0281 (17)0.0256 (15)0.0023 (12)0.0019 (11)0.0021 (13)
C50.0292 (15)0.0244 (16)0.0194 (14)0.0030 (12)0.0044 (12)0.0027 (12)
C60.0225 (13)0.0160 (14)0.0228 (14)0.0038 (11)0.0036 (11)0.0015 (11)
C70.0226 (13)0.0195 (15)0.0220 (14)0.0009 (11)0.0033 (11)0.0020 (11)
C80.0197 (13)0.0198 (15)0.0185 (13)0.0001 (11)0.0047 (11)0.0007 (11)
C90.0219 (13)0.0228 (16)0.0149 (12)0.0025 (11)0.0027 (10)0.0031 (11)
C100.0204 (13)0.0211 (15)0.0156 (13)0.0008 (11)0.0033 (10)0.0004 (11)
C110.0264 (14)0.0184 (15)0.0252 (14)0.0029 (12)0.0137 (12)0.0001 (12)
C120.0221 (13)0.0235 (16)0.0253 (15)0.0031 (11)0.0064 (12)0.0009 (12)
C130.0219 (13)0.0161 (14)0.0231 (14)0.0004 (11)0.0043 (11)0.0015 (11)
C140.0176 (12)0.0221 (15)0.0203 (13)0.0016 (11)0.0041 (11)0.0027 (11)
C150.0229 (13)0.0172 (15)0.0292 (15)0.0047 (11)0.0085 (12)0.0018 (12)
C160.0224 (13)0.0226 (16)0.0240 (14)0.0023 (12)0.0078 (11)0.0003 (12)
C170.0200 (13)0.0217 (16)0.0219 (14)0.0011 (11)0.0075 (11)0.0023 (12)
C180.0280 (14)0.0188 (15)0.0250 (14)0.0031 (12)0.0093 (12)0.0021 (12)
C190.0267 (14)0.0183 (15)0.0223 (14)0.0002 (11)0.0080 (12)0.0018 (11)
C200.0296 (15)0.0337 (19)0.0368 (18)0.0018 (14)0.0143 (14)0.0030 (15)
C210.0287 (15)0.0249 (17)0.0342 (17)0.0016 (13)0.0121 (13)0.0002 (13)
C220.0286 (15)0.0220 (16)0.0280 (15)0.0002 (12)0.0105 (12)0.0013 (13)
C230.0286 (14)0.0266 (17)0.0253 (15)0.0003 (13)0.0113 (12)0.0013 (13)
C240.0287 (15)0.0274 (17)0.0247 (15)0.0014 (13)0.0108 (12)0.0014 (13)
C250.0283 (14)0.0202 (16)0.0274 (15)0.0015 (12)0.0082 (12)0.0013 (12)
C260.0292 (15)0.0232 (16)0.0296 (15)0.0041 (12)0.0142 (13)0.0011 (13)
C270.0277 (15)0.0261 (17)0.0368 (17)0.0033 (13)0.0135 (13)0.0010 (14)
C280.0301 (15)0.0251 (17)0.0355 (17)0.0019 (13)0.0143 (14)0.0001 (14)
C290.0295 (14)0.0208 (16)0.0284 (15)0.0047 (12)0.0116 (13)0.0009 (12)
Geometric parameters (Å, º) top
O1—C91.230 (3)C15—C161.375 (4)
O2—C221.229 (3)C15—H15A0.9500
N1—C221.371 (4)C16—C171.400 (4)
N1—C111.451 (3)C16—H16A0.9500
N1—C121.457 (3)C17—C181.399 (4)
N2—C251.465 (4)C17—C211.496 (4)
N2—C291.466 (3)C18—C191.377 (4)
N2—C241.468 (4)C18—H18A0.9500
C1—C21.384 (4)C19—H19A0.9500
C1—C61.394 (4)C20—H20A0.9800
C1—H1A0.9500C20—H20B0.9800
C2—C31.399 (4)C20—H20C0.9800
C2—H2A0.9500C21—H21A0.9800
C3—C41.384 (4)C21—H21B0.9800
C3—C201.511 (4)C21—H21C0.9800
C4—C51.381 (4)C22—C231.505 (4)
C4—H4A0.9500C23—C241.532 (4)
C5—C61.405 (4)C23—H23A0.9900
C5—H5A0.9500C23—H23B0.9900
C6—C71.471 (4)C24—H24A0.9900
C7—C81.336 (4)C24—H24B0.9900
C7—H7A0.9500C25—C261.513 (4)
C8—C91.493 (4)C25—H25A0.9900
C8—C121.511 (4)C25—H25B0.9900
C9—C101.497 (4)C26—C271.527 (4)
C10—C131.349 (4)C26—H26A0.9900
C10—C111.515 (4)C26—H26B0.9900
C11—H11A0.9900C27—C281.504 (4)
C11—H11B0.9900C27—H27A0.9900
C12—H12A0.9900C27—H27B0.9900
C12—H12B0.9900C28—C291.512 (4)
C13—C141.462 (4)C28—H28A0.9900
C13—H13A0.9500C28—H28B0.9900
C14—C151.403 (4)C29—H29A0.9900
C14—C191.412 (4)C29—H29B0.9900
C22—N1—C11119.4 (2)C19—C18—C17122.5 (3)
C22—N1—C12124.6 (2)C19—C18—H18A118.8
C11—N1—C12112.6 (2)C17—C18—H18A118.8
C25—N2—C29110.1 (2)C18—C19—C14120.1 (3)
C25—N2—C24109.8 (2)C18—C19—H19A120.0
C29—N2—C24111.8 (2)C14—C19—H19A120.0
C2—C1—C6121.4 (3)C3—C20—H20A109.5
C2—C1—H1A119.3C3—C20—H20B109.5
C6—C1—H1A119.3H20A—C20—H20B109.5
C1—C2—C3120.7 (3)C3—C20—H20C109.5
C1—C2—H2A119.7H20A—C20—H20C109.5
C3—C2—H2A119.7H20B—C20—H20C109.5
C4—C3—C2117.8 (2)C17—C21—H21A109.5
C4—C3—C20121.4 (3)C17—C21—H21B109.5
C2—C3—C20120.7 (3)H21A—C21—H21B109.5
C5—C4—C3121.9 (3)C17—C21—H21C109.5
C5—C4—H4A119.0H21A—C21—H21C109.5
C3—C4—H4A119.0H21B—C21—H21C109.5
C4—C5—C6120.4 (3)O2—C22—N1120.8 (3)
C4—C5—H5A119.8O2—C22—C23120.5 (3)
C6—C5—H5A119.8N1—C22—C23118.7 (2)
C1—C6—C5117.7 (2)C22—C23—C24111.3 (2)
C1—C6—C7119.4 (2)C22—C23—H23A109.4
C5—C6—C7123.0 (3)C24—C23—H23A109.4
C8—C7—C6127.7 (3)C22—C23—H23B109.4
C8—C7—H7A116.1C24—C23—H23B109.4
C6—C7—H7A116.1H23A—C23—H23B108.0
C7—C8—C9119.5 (2)N2—C24—C23111.2 (2)
C7—C8—C12125.1 (2)N2—C24—H24A109.4
C9—C8—C12115.2 (2)C23—C24—H24A109.4
O1—C9—C8120.4 (3)N2—C24—H24B109.4
O1—C9—C10121.5 (2)C23—C24—H24B109.4
C8—C9—C10118.1 (2)H24A—C24—H24B108.0
C13—C10—C9116.7 (3)N2—C25—C26111.6 (2)
C13—C10—C11124.1 (2)N2—C25—H25A109.3
C9—C10—C11119.2 (2)C26—C25—H25A109.3
N1—C11—C10110.8 (2)N2—C25—H25B109.3
N1—C11—H11A109.5C26—C25—H25B109.3
C10—C11—H11A109.5H25A—C25—H25B108.0
N1—C11—H11B109.5C25—C26—C27110.8 (2)
C10—C11—H11B109.5C25—C26—H26A109.5
H11A—C11—H11B108.1C27—C26—H26A109.5
N1—C12—C8108.1 (2)C25—C26—H26B109.5
N1—C12—H12A110.1C27—C26—H26B109.5
C8—C12—H12A110.1H26A—C26—H26B108.1
N1—C12—H12B110.1C28—C27—C26110.2 (2)
C8—C12—H12B110.1C28—C27—H27A109.6
H12A—C12—H12B108.4C26—C27—H27A109.6
C10—C13—C14132.4 (3)C28—C27—H27B109.6
C10—C13—H13A113.8C26—C27—H27B109.6
C14—C13—H13A113.8H27A—C27—H27B108.1
C15—C14—C19117.3 (3)C27—C28—C29110.8 (3)
C15—C14—C13116.9 (3)C27—C28—H28A109.5
C19—C14—C13125.7 (3)C29—C28—H28A109.5
C16—C15—C14122.1 (3)C27—C28—H28B109.5
C16—C15—H15A119.0C29—C28—H28B109.5
C14—C15—H15A119.0H28A—C28—H28B108.1
C15—C16—C17120.7 (3)N2—C29—C28110.7 (2)
C15—C16—H16A119.6N2—C29—H29A109.5
C17—C16—H16A119.6C28—C29—H29A109.5
C18—C17—C16117.4 (3)N2—C29—H29B109.5
C18—C17—C21121.3 (3)C28—C29—H29B109.5
C16—C17—C21121.3 (3)H29A—C29—H29B108.1
C6—C1—C2—C31.2 (4)C11—C10—C13—C143.1 (4)
C1—C2—C3—C40.2 (4)C10—C13—C14—C15178.4 (3)
C1—C2—C3—C20179.6 (3)C10—C13—C14—C191.0 (5)
C2—C3—C4—C51.4 (4)C19—C14—C15—C160.2 (4)
C20—C3—C4—C5178.3 (3)C13—C14—C15—C16177.5 (2)
C3—C4—C5—C61.3 (4)C14—C15—C16—C170.0 (4)
C2—C1—C6—C51.3 (4)C15—C16—C17—C180.3 (4)
C2—C1—C6—C7178.7 (3)C15—C16—C17—C21178.3 (3)
C4—C5—C6—C10.0 (4)C16—C17—C18—C190.6 (4)
C4—C5—C6—C7179.9 (3)C21—C17—C18—C19178.0 (2)
C1—C6—C7—C8136.4 (3)C17—C18—C19—C140.5 (4)
C5—C6—C7—C843.5 (4)C15—C14—C19—C180.1 (4)
C6—C7—C8—C9179.7 (2)C13—C14—C19—C18177.6 (2)
C6—C7—C8—C127.0 (4)C11—N1—C22—O214.0 (4)
C7—C8—C9—O19.2 (4)C12—N1—C22—O2171.4 (3)
C12—C8—C9—O1176.9 (2)C11—N1—C22—C23166.0 (2)
C7—C8—C9—C10173.0 (2)C12—N1—C22—C238.7 (4)
C12—C8—C9—C101.0 (3)O2—C22—C23—C2489.8 (3)
O1—C9—C10—C1314.8 (4)N1—C22—C23—C2490.2 (3)
C8—C9—C10—C13163.1 (2)C25—N2—C24—C23167.5 (2)
O1—C9—C10—C11166.9 (2)C29—N2—C24—C2370.0 (3)
C8—C9—C10—C1115.3 (3)C22—C23—C24—N2171.9 (2)
C22—N1—C11—C10105.7 (3)C29—N2—C25—C2659.3 (3)
C12—N1—C11—C1054.2 (3)C24—N2—C25—C26177.2 (2)
C13—C10—C11—N1171.5 (2)N2—C25—C26—C2755.5 (3)
C9—C10—C11—N110.3 (3)C25—C26—C27—C2852.5 (3)
C22—N1—C12—C887.9 (3)C26—C27—C28—C2954.1 (3)
C11—N1—C12—C870.9 (3)C25—N2—C29—C2860.6 (3)
C7—C8—C12—N1132.5 (3)C24—N2—C29—C28177.1 (2)
C9—C8—C12—N141.0 (3)C27—C28—C29—N258.7 (3)
C9—C10—C13—C14175.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.952.513.346 (3)147
C21—H21A···O2i0.982.443.371 (4)160
C21—H21C···O1ii0.982.523.446 (3)157
C4—H4A···Cg1iii0.952.693.526 (3)148
C27—H27A···Cg1iv0.992.743.719 (3)168
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H34N2O2
Mr442.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.2913 (8), 9.9753 (8), 19.9993 (14)
β (°) 100.884 (4)
V3)2408.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.985
No. of measured, independent and
observed [I > I > 2σ(I)] reflections
18968, 6852, 3483
Rint0.075
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.228, 1.04
No. of reflections6852
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.952.513.346 (3)147
C21—H21A···O2i0.982.443.371 (4)160
C21—H21C···O1ii0.982.523.446 (3)157
C4—H4A···Cg1iii0.952.693.526 (3)148
C27—H27A···Cg1iv0.992.743.719 (3)168
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2.
 

Footnotes

Additional correspondence email: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for an FRGS grant (No. 203/PKIMIA/6711179) and an RU grant (No. 1001/PFIZIK/811151) to conduct this work. YK thanks USM for providing research facility. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme Fellowship.

References

First citationAridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010). Acta Cryst. E66, o2005.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H.-B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavatha, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHertzberg, R. P., Caranfa, M. J., Holden, K. G., Jakas, D. R., Gallagher, G., Mattern, M. R., Mong, S. M., Bartus, J. O., Johnson, R. K. & Kingsbury, W. D. (1989). J. Med. Chem. 32, 715–720.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKia, Y., Osman, H., Murugaiyah, V., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1299–o1300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, K. H., Huang, E. S., Piantadosi, C., Pagano, J. S. & Geissman, T. A. (2004). Cancer Res. 31, 1649–1654.  Google Scholar
First citationNakayachi, T., Yasumoto, E., Nakano, K., Morshed, S. R. M., Hashimoto, K., Kikuchi, H., Nishikawa, H., Kawase, M. & Sakagami, H. (2004). Anticancer Res. 24, 737–742.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, T., Kawase, M. & Tani, S. (2003). Life Sci. 73, 2985–2990.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds