organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Benzyl-2-[(2-phenyl­cyclo­hex-2-en­yl)imino]-1,3-thia­zolidin-4-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 July 2012; accepted 23 July 2012; online 28 July 2012)

The title compound, C22H22N2OS, exists in a Z configuration with respect to the N=C bond. The cyclo­hexene ring adopts a distorted sofa conformation. The thia­zolidine ring is essentially planar, with a maximum deviation of 0.030 (2) Å, and forms dihedral angles of 76.66 (6) and 74.55 (6)° with the terminal phenyl rings. The dihedral angle between the phenyl rings is 71.55 (7)°. In the crystal, a C—H⋯π inter­action is observed.

Related literature

For the bioactivity of thia­zolidin-4-one derivatives, see: Previtera et al. (1994[Previtera, T., Vigorita, M. G., Bisila, M., Orsini, F., Benetolla, F. & Bombieri, G. (1994). Eur. J. Med. Chem. 29, 317-324.]); Sharma et al. (2000[Sharma, R. C. & Kumar, D. (2000). J. Indian Chem. Soc. 77, 492-493.]); Kato, Ozaki & Tamura (1999[Kato, T., Ozaki, T. & Tamura, K. (1999). J. Med. Chem. 42, 3134-3146.]); Kato, Ozaki & Ohi (1999[Kato, T., Ozaki, T. & Ohi, N. (1999). Tetrahedron Asymmetry, 10, 3963-3968.]); Tanabe et al. (1991[Tanabe, Y., Suzukamo, G., Komuro, Y., Imanishi, N., Morooka, S., Enomoto, M., Kojima, A., Sanemitsu, Y. & Mizutani, M. (1991). Tetrahedron Lett. 32, 379-382.]); Rawal et al. (2005[Rawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771-6776.]); Voss et al. (2003[Voss, M. E., Carter, P. H., Tebben, A. J., Scherle, P. A., Brown, G. D. & Thompson, L. A. (2003). Bioorg. Med. Chem. Lett. 13, 533-538.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.]); Ooi et al. (2012a[Ooi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012a). Acta Cryst. E68, o1796-o1797.],b[Ooi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012b). Acta Cryst. E68, o1994.],c[Ooi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012c). Acta Cryst. E68, o1999-o2000.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22N2OS

  • Mr = 362.48

  • Monoclinic, P 21 /c

  • a = 12.8400 (2) Å

  • b = 8.9261 (1) Å

  • c = 17.9634 (3) Å

  • β = 118.476 (1)°

  • V = 1809.72 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.39 × 0.32 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.960

  • 22263 measured reflections

  • 6670 independent reflections

  • 4979 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.03

  • 6670 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22ACg1 0.93 2.97 3.7662 (15) 143

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazolidin-4-one derivatives are known to exhibit diverse bioactivities such as anti-histaminic (Previtera et al., 1994), anti-microbial (Sharma et al., 2000; Kato, Ozaki & Tamura, 1999), PAF antagonist (Tanabe et al., 1991), cardioprotective (Kato, Ozaki & Ohi, 1999), anti HIV (Rawal et al., 2005), and tumor necrosis factor-α antagonist activities (Voss et al., 2003).

The title compound (Fig. 1) exists in cis configuration with respect to the N1 C13 bond [N1 C13 = 1.2660 (15) Å]. The cyclohexene (C7–C12) ring adopts a distorted sofa conformation and the puckering parameters are Q = 0.5050 (15) Å, θ = 51.07 (16)° and φ = 201.6 (2)° (Cremer & Pople, 1975). The thiazolidine (S1/N2/C13–C15) ring is essentially planar with a maximum deviation of 0.030 (2) Å at atom C14 and forms dihedral angles of 76.66 (6) and 74.55 (6)°, respectively, with terminal benzene rings (C1–C6 & C17–C22). The dihedral angle between terminal benzene rings is 71.55 (7)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2011; Ooi et al., 2012a,b,c).

In the crystal packing (Fig. 2), no significant intermolecular hydrogen bond interactions are observed. The crystal is stabilized by C22—H22A···Cg1 interactions (Table 1), involving the centroid of the benzene ring (C1–C6; Cg1).

Related literature top

For the bioactivity of thiazolidin-4-one derivatives, see: Previtera et al. (1994); Sharma et al. (2000); Kato, Ozaki & Tamura (1999); Kato, Ozaki & Ohi (1999); Tanabe et al. (1991); Rawal et al. (2005); Voss et al. (2003). For related structures, see: Fun et al. (2011); Ooi et al. (2012a,b,c). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 1-benzyl-3-(2-phenylcyclohex-2-enyl)thiourea (0.5 g, 2.3 mmol) and chloro acetylchloride (0.35 g, 4.6 mmol) was heated to reflux in 1,4-dioxane (10 ml) at 100°C for 5 h. The reaction mixture was washed with diluted sodium bicarbonate solution (25 ml) and dried over anhydrous sodium sulfate. The solvent was then evaporated under reduced pressure and the resulting residue was subjected to column chromatography using silica gel (60–120 mesh) as the stationary phase and petroleum ether-ethyl acetate (90:10) as the mobile phase to give the pure product. Yield: 0.69 g (83%); M.p.: 132–133 °C. Crystals suitable for X-ray study were obtained by recrystallization in dichloromethane.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93, 0.97 and 0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). In the final refinement, one outlier (-11 5 25) was omitted.

Structure description top

Thiazolidin-4-one derivatives are known to exhibit diverse bioactivities such as anti-histaminic (Previtera et al., 1994), anti-microbial (Sharma et al., 2000; Kato, Ozaki & Tamura, 1999), PAF antagonist (Tanabe et al., 1991), cardioprotective (Kato, Ozaki & Ohi, 1999), anti HIV (Rawal et al., 2005), and tumor necrosis factor-α antagonist activities (Voss et al., 2003).

The title compound (Fig. 1) exists in cis configuration with respect to the N1 C13 bond [N1 C13 = 1.2660 (15) Å]. The cyclohexene (C7–C12) ring adopts a distorted sofa conformation and the puckering parameters are Q = 0.5050 (15) Å, θ = 51.07 (16)° and φ = 201.6 (2)° (Cremer & Pople, 1975). The thiazolidine (S1/N2/C13–C15) ring is essentially planar with a maximum deviation of 0.030 (2) Å at atom C14 and forms dihedral angles of 76.66 (6) and 74.55 (6)°, respectively, with terminal benzene rings (C1–C6 & C17–C22). The dihedral angle between terminal benzene rings is 71.55 (7)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2011; Ooi et al., 2012a,b,c).

In the crystal packing (Fig. 2), no significant intermolecular hydrogen bond interactions are observed. The crystal is stabilized by C22—H22A···Cg1 interactions (Table 1), involving the centroid of the benzene ring (C1–C6; Cg1).

For the bioactivity of thiazolidin-4-one derivatives, see: Previtera et al. (1994); Sharma et al. (2000); Kato, Ozaki & Tamura (1999); Kato, Ozaki & Ohi (1999); Tanabe et al. (1991); Rawal et al. (2005); Voss et al. (2003). For related structures, see: Fun et al. (2011); Ooi et al. (2012a,b,c). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound.
(Z)-3-Benzyl-2-[(2-phenylcyclohex-2-enyl)imino]-1,3-thiazolidin-4-one top
Crystal data top
C22H22N2OSF(000) = 768
Mr = 362.48Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6720 reflections
a = 12.8400 (2) Åθ = 2.6–32.7°
b = 8.9261 (1) ŵ = 0.19 mm1
c = 17.9634 (3) ÅT = 100 K
β = 118.476 (1)°Block, colourless
V = 1809.72 (5) Å30.39 × 0.32 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6670 independent reflections
Radiation source: fine-focus sealed tube4979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 32.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.929, Tmax = 0.960k = 1113
22263 measured reflectionsl = 2527
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.6514P]
where P = (Fo2 + 2Fc2)/3
6670 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C22H22N2OSV = 1809.72 (5) Å3
Mr = 362.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8400 (2) ŵ = 0.19 mm1
b = 8.9261 (1) ÅT = 100 K
c = 17.9634 (3) Å0.39 × 0.32 × 0.21 mm
β = 118.476 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6670 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4979 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.960Rint = 0.034
22263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
6670 reflectionsΔρmin = 0.29 e Å3
235 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36793 (3)0.30018 (4)0.40002 (2)0.02412 (8)
O10.40661 (8)0.70672 (11)0.34194 (6)0.0271 (2)
N10.16966 (8)0.40320 (11)0.40509 (6)0.01676 (19)
N20.28594 (8)0.57353 (12)0.37911 (6)0.01740 (19)
C10.27121 (10)0.31490 (14)0.59927 (8)0.0202 (2)
H1A0.31360.26570.57670.024*
C20.33166 (11)0.38392 (16)0.67770 (8)0.0246 (3)
H2A0.41390.37810.70780.030*
C30.27033 (12)0.46163 (16)0.71150 (8)0.0260 (3)
H3A0.31100.50910.76370.031*
C40.14737 (12)0.46752 (16)0.66629 (8)0.0251 (3)
H4A0.10560.52010.68830.030*
C50.08622 (11)0.39566 (15)0.58865 (8)0.0210 (2)
H5A0.00390.39910.55970.025*
C60.14702 (10)0.31810 (13)0.55349 (7)0.0171 (2)
C70.08369 (9)0.24054 (14)0.47038 (7)0.0168 (2)
C80.01735 (10)0.16544 (14)0.44784 (8)0.0204 (2)
H8A0.04940.16780.48460.025*
C90.08255 (10)0.07754 (15)0.36700 (8)0.0238 (3)
H9A0.15000.13510.32660.029*
H9B0.11210.01490.37840.029*
C100.00165 (11)0.04137 (15)0.32905 (8)0.0238 (3)
H10A0.05640.03300.36360.029*
H10B0.04790.00070.27250.029*
C110.06081 (11)0.18384 (15)0.32531 (8)0.0215 (2)
H11A0.00210.25860.29220.026*
H11B0.10760.16270.29720.026*
C120.14166 (10)0.24639 (14)0.41394 (7)0.0170 (2)
H12A0.21520.18820.44020.020*
C130.25958 (9)0.42884 (13)0.39558 (7)0.0165 (2)
C140.43819 (12)0.44070 (16)0.36673 (10)0.0288 (3)
H14A0.52170.44770.40740.035*
H14B0.43090.41420.31210.035*
C150.37776 (10)0.58888 (15)0.36075 (8)0.0212 (2)
C160.21796 (10)0.70455 (14)0.38096 (7)0.0183 (2)
H16A0.13990.67260.37050.022*
H16B0.20790.77340.33620.022*
C170.27962 (9)0.78435 (13)0.46541 (7)0.0172 (2)
C180.34360 (10)0.91455 (14)0.47333 (8)0.0197 (2)
H18A0.34750.95240.42650.024*
C190.40185 (10)0.98879 (15)0.55063 (8)0.0226 (2)
H19A0.44471.07560.55550.027*
C200.39554 (11)0.93244 (16)0.62022 (8)0.0248 (3)
H20A0.43320.98270.67170.030*
C210.33340 (11)0.80141 (16)0.61358 (8)0.0249 (3)
H21A0.33070.76320.66080.030*
C220.27519 (10)0.72727 (15)0.53625 (8)0.0208 (2)
H22A0.23330.63970.53170.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02555 (14)0.01899 (15)0.03463 (18)0.00580 (11)0.01988 (13)0.00295 (13)
O10.0295 (4)0.0247 (5)0.0331 (5)0.0013 (4)0.0198 (4)0.0046 (4)
N10.0181 (4)0.0166 (5)0.0159 (4)0.0006 (3)0.0083 (3)0.0002 (4)
N20.0179 (4)0.0166 (5)0.0192 (5)0.0021 (3)0.0101 (3)0.0010 (4)
C10.0202 (5)0.0209 (6)0.0193 (5)0.0006 (4)0.0093 (4)0.0007 (5)
C20.0244 (5)0.0275 (7)0.0197 (6)0.0027 (5)0.0086 (4)0.0002 (5)
C30.0366 (7)0.0245 (7)0.0168 (6)0.0034 (5)0.0127 (5)0.0021 (5)
C40.0372 (7)0.0233 (6)0.0209 (6)0.0042 (5)0.0188 (5)0.0016 (5)
C50.0232 (5)0.0214 (6)0.0209 (6)0.0035 (4)0.0126 (4)0.0038 (5)
C60.0191 (5)0.0165 (5)0.0166 (5)0.0010 (4)0.0093 (4)0.0022 (4)
C70.0173 (4)0.0163 (5)0.0166 (5)0.0020 (4)0.0079 (4)0.0014 (4)
C80.0196 (5)0.0208 (6)0.0205 (6)0.0004 (4)0.0091 (4)0.0020 (5)
C90.0208 (5)0.0223 (6)0.0243 (6)0.0032 (4)0.0075 (4)0.0001 (5)
C100.0241 (5)0.0188 (6)0.0233 (6)0.0003 (4)0.0070 (4)0.0040 (5)
C110.0241 (5)0.0217 (6)0.0191 (6)0.0011 (4)0.0105 (4)0.0033 (5)
C120.0178 (4)0.0157 (5)0.0181 (5)0.0009 (4)0.0090 (4)0.0004 (4)
C130.0184 (4)0.0161 (5)0.0149 (5)0.0025 (4)0.0078 (4)0.0001 (4)
C140.0308 (6)0.0245 (7)0.0426 (8)0.0042 (5)0.0269 (6)0.0031 (6)
C150.0208 (5)0.0246 (6)0.0207 (6)0.0012 (4)0.0118 (4)0.0007 (5)
C160.0168 (4)0.0169 (5)0.0190 (5)0.0029 (4)0.0069 (4)0.0012 (4)
C170.0146 (4)0.0164 (5)0.0197 (5)0.0034 (4)0.0076 (4)0.0007 (4)
C180.0198 (5)0.0166 (6)0.0226 (6)0.0021 (4)0.0101 (4)0.0017 (4)
C190.0186 (5)0.0181 (6)0.0279 (6)0.0007 (4)0.0084 (4)0.0023 (5)
C200.0231 (5)0.0249 (7)0.0204 (6)0.0067 (5)0.0055 (4)0.0032 (5)
C210.0279 (6)0.0257 (7)0.0215 (6)0.0073 (5)0.0122 (5)0.0034 (5)
C220.0208 (5)0.0197 (6)0.0234 (6)0.0023 (4)0.0118 (4)0.0014 (5)
Geometric parameters (Å, º) top
S1—C131.7762 (12)C9—H9B0.9700
S1—C141.8054 (14)C10—C111.5220 (18)
O1—C151.2153 (16)C10—H10A0.9700
N1—C131.2660 (15)C10—H10B0.9700
N1—C121.4724 (16)C11—C121.5323 (16)
N2—C151.3742 (15)C11—H11A0.9700
N2—C131.4020 (16)C11—H11B0.9700
N2—C161.4691 (15)C12—H12A0.9800
C1—C21.3872 (17)C14—C151.5112 (18)
C1—C61.4033 (16)C14—H14A0.9700
C1—H1A0.9300C14—H14B0.9700
C2—C31.388 (2)C16—C171.5133 (17)
C2—H2A0.9300C16—H16A0.9700
C3—C41.3900 (19)C16—H16B0.9700
C3—H3A0.9300C17—C181.3909 (17)
C4—C51.3888 (18)C17—C221.3968 (18)
C4—H4A0.9300C18—C191.3915 (18)
C5—C61.3992 (17)C18—H18A0.9300
C5—H5A0.9300C19—C201.385 (2)
C6—C71.4873 (16)C19—H19A0.9300
C7—C81.3401 (16)C20—C211.389 (2)
C7—C121.5178 (17)C20—H20A0.9300
C8—C91.5053 (18)C21—C221.3915 (18)
C8—H8A0.9300C21—H21A0.9300
C9—C101.5241 (19)C22—H22A0.9300
C9—H9A0.9700
C13—S1—C1492.31 (6)C12—C11—H11B109.3
C13—N1—C12118.15 (10)H11A—C11—H11B108.0
C15—N2—C13117.62 (10)N1—C12—C7109.12 (10)
C15—N2—C16120.86 (10)N1—C12—C11108.27 (10)
C13—N2—C16121.51 (9)C7—C12—C11112.11 (9)
C2—C1—C6121.02 (12)N1—C12—H12A109.1
C2—C1—H1A119.5C7—C12—H12A109.1
C6—C1—H1A119.5C11—C12—H12A109.1
C1—C2—C3120.45 (12)N1—C13—N2121.50 (10)
C1—C2—H2A119.8N1—C13—S1128.48 (10)
C3—C2—H2A119.8N2—C13—S1110.02 (8)
C2—C3—C4119.12 (12)C15—C14—S1108.11 (9)
C2—C3—H3A120.4C15—C14—H14A110.1
C4—C3—H3A120.4S1—C14—H14A110.1
C5—C4—C3120.67 (12)C15—C14—H14B110.1
C5—C4—H4A119.7S1—C14—H14B110.1
C3—C4—H4A119.7H14A—C14—H14B108.4
C4—C5—C6120.79 (11)O1—C15—N2124.27 (12)
C4—C5—H5A119.6O1—C15—C14124.27 (11)
C6—C5—H5A119.6N2—C15—C14111.46 (11)
C5—C6—C1117.92 (11)N2—C16—C17111.40 (9)
C5—C6—C7121.86 (10)N2—C16—H16A109.3
C1—C6—C7120.22 (11)C17—C16—H16A109.3
C8—C7—C6121.55 (11)N2—C16—H16B109.3
C8—C7—C12121.86 (11)C17—C16—H16B109.3
C6—C7—C12116.55 (10)H16A—C16—H16B108.0
C7—C8—C9124.42 (12)C18—C17—C22119.36 (11)
C7—C8—H8A117.8C18—C17—C16119.80 (11)
C9—C8—H8A117.8C22—C17—C16120.83 (11)
C8—C9—C10110.96 (10)C17—C18—C19120.68 (12)
C8—C9—H9A109.4C17—C18—H18A119.7
C10—C9—H9A109.4C19—C18—H18A119.7
C8—C9—H9B109.4C20—C19—C18119.52 (12)
C10—C9—H9B109.4C20—C19—H19A120.2
H9A—C9—H9B108.0C18—C19—H19A120.2
C11—C10—C9109.18 (11)C19—C20—C21120.45 (12)
C11—C10—H10A109.8C19—C20—H20A119.8
C9—C10—H10A109.8C21—C20—H20A119.8
C11—C10—H10B109.8C20—C21—C22119.96 (13)
C9—C10—H10B109.8C20—C21—H21A120.0
H10A—C10—H10B108.3C22—C21—H21A120.0
C10—C11—C12111.64 (10)C21—C22—C17120.02 (12)
C10—C11—H11A109.3C21—C22—H22A120.0
C12—C11—H11A109.3C17—C22—H22A120.0
C10—C11—H11B109.3
C6—C1—C2—C31.9 (2)C12—N1—C13—S15.83 (16)
C1—C2—C3—C41.0 (2)C15—N2—C13—N1173.23 (11)
C2—C3—C4—C50.6 (2)C16—N2—C13—N16.54 (17)
C3—C4—C5—C61.2 (2)C15—N2—C13—S16.76 (13)
C4—C5—C6—C10.25 (19)C16—N2—C13—S1173.47 (8)
C4—C5—C6—C7179.85 (12)C14—S1—C13—N1173.49 (12)
C2—C1—C6—C51.27 (19)C14—S1—C13—N26.49 (9)
C2—C1—C6—C7178.63 (12)C13—S1—C14—C154.84 (10)
C5—C6—C7—C839.26 (18)C13—N2—C15—O1176.88 (12)
C1—C6—C7—C8140.65 (13)C16—N2—C15—O12.89 (18)
C5—C6—C7—C12142.81 (12)C13—N2—C15—C143.02 (15)
C1—C6—C7—C1237.29 (16)C16—N2—C15—C14177.21 (11)
C6—C7—C8—C9176.52 (11)S1—C14—C15—O1178.04 (11)
C12—C7—C8—C91.30 (19)S1—C14—C15—N22.07 (14)
C7—C8—C9—C1018.81 (18)C15—N2—C16—C1783.38 (13)
C8—C9—C10—C1149.49 (14)C13—N2—C16—C1796.86 (12)
C9—C10—C11—C1263.30 (13)N2—C16—C17—C18101.26 (12)
C13—N1—C12—C7148.59 (10)N2—C16—C17—C2277.43 (13)
C13—N1—C12—C1189.14 (12)C22—C17—C18—C190.68 (17)
C8—C7—C12—N1130.49 (12)C16—C17—C18—C19179.39 (10)
C6—C7—C12—N151.58 (13)C17—C18—C19—C200.22 (18)
C8—C7—C12—C1110.56 (16)C18—C19—C20—C211.14 (18)
C6—C7—C12—C11171.51 (10)C19—C20—C21—C221.14 (18)
C10—C11—C12—N1163.06 (10)C20—C21—C22—C170.22 (18)
C10—C11—C12—C742.63 (14)C18—C17—C22—C210.68 (17)
C12—N1—C13—N2174.16 (10)C16—C17—C22—C21179.37 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C22—H22A···Cg10.932.973.7662 (15)143

Experimental details

Crystal data
Chemical formulaC22H22N2OS
Mr362.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.8400 (2), 8.9261 (1), 17.9634 (3)
β (°) 118.476 (1)
V3)1809.72 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.39 × 0.32 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.929, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
22263, 6670, 4979
Rint0.034
(sin θ/λ)max1)0.762
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.03
No. of reflections6670
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C22—H22A···Cg10.932.973.7662 (15)143
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

CWO, HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, T., Ozaki, T. & Ohi, N. (1999). Tetrahedron Asymmetry, 10, 3963–3968.  Web of Science CrossRef CAS Google Scholar
First citationKato, T., Ozaki, T. & Tamura, K. (1999). J. Med. Chem. 42, 3134–3146.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOoi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012a). Acta Cryst. E68, o1796–o1797.  CSD CrossRef IUCr Journals Google Scholar
First citationOoi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012b). Acta Cryst. E68, o1994.  CSD CrossRef IUCr Journals Google Scholar
First citationOoi, C. W., Fun, H.-K., Quah, C. K., Sathishkumar, M. & Ponnuswamy, A. (2012c). Acta Cryst. E68, o1999–o2000.  CSD CrossRef IUCr Journals Google Scholar
First citationPrevitera, T., Vigorita, M. G., Bisila, M., Orsini, F., Benetolla, F. & Bombieri, G. (1994). Eur. J. Med. Chem. 29, 317–324.  CrossRef CAS Web of Science Google Scholar
First citationRawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771–6776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, R. C. & Kumar, D. (2000). J. Indian Chem. Soc. 77, 492–493.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanabe, Y., Suzukamo, G., Komuro, Y., Imanishi, N., Morooka, S., Enomoto, M., Kojima, A., Sanemitsu, Y. & Mizutani, M. (1991). Tetrahedron Lett. 32, 379–382.  CrossRef CAS Web of Science Google Scholar
First citationVoss, M. E., Carter, P. H., Tebben, A. J., Scherle, P. A., Brown, G. D. & Thompson, L. A. (2003). Bioorg. Med. Chem. Lett. 13, 533–538.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds