organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,5-Tri­phenyl-2H-tetra­zol-3-ium bromide ethanol monosolvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 19 July 2012; accepted 20 July 2012; online 28 July 2012)

In the title compound, C19H15N4+·Br·C2H5OH, the tetra­zole ring makes dihedral angles of 57.44 (9), 50.92 (9) and 4.65 (8)° with the attached phenyl rings. In the crystal, the cation and the anion are linked to each other by inter­molecular C—H⋯Br hydrogen bonds into an infinite chain along the b axis. The anion and the ethanol solvent mol­ecule are linked by an O—H⋯Br hydrogen bond. The crystal studied was an inversion twin with a refined component ratio of 0.632 (5):0.368 (5).

Related literature

For the biological activity of the triphenyl­tetra­zolium ion, see: Mostafa (2007[Mostafa, G. A. E. (2007). Talanta, 71, 1449-1454.]); Hassanien et al. (2003[Hassanien, M. M., Abou-El-Sherbini, Kh. S. & Mostafa, G. A. E. (2003). Talanta, 59, 383-392.]); Abbas et al. (2001[Abbas, M. N., Mostafa, G. A. E. & Homoda, A. M. A. (2001). Talanta, 55, 647-656.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N4+·Br·C2H6O

  • Mr = 425.33

  • Orthorhombic, P 21 21 21

  • a = 10.0870 (11) Å

  • b = 12.1904 (13) Å

  • c = 16.5045 (18) Å

  • V = 2029.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 100 K

  • 0.38 × 0.28 × 0.10 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.514, Tmax = 0.816

  • 16773 measured reflections

  • 5967 independent reflections

  • 5611 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.05

  • 5967 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2613 Friedel pairs

  • Flack parameter: 0.368 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯Br1 0.77 (2) 2.59 (2) 3.3434 (15) 167 (2)
C9—H9A⋯Br1i 0.93 2.83 3.7010 (18) 157
C11—H11A⋯Br1ii 0.93 2.86 3.6041 (17) 138
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,3,5-Triphenyltetrazolium ion is used as indicator of bacterial dehydrogenase activity and as a reagent in colorimetric determination method for glucose dehydrogenase. Moreover, triphenyltetrazolium ion is used as ion-pair reagent for determination of antimony in waste water (Mostafa, 2007; Hassanien et al., 2003; Abbas et al., 2001).

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound, C19H15N4+.Br-.C2H6O, consists of a 2,3,5-triphenyl-2H-tetrazol-3-ium cation, a bromine anion and an ethanol molecule. The three phenyl rings (C1–C6, C7–C12 and C14–C19) are twisted from the central tetrazole ring (N1–N4/C13; r.m.s. deviation = 0.004 Å) with dihedral angles of 57.44 (9), 50.92 (9) and 4.65 (8)°, respectively. The dihedral angles between the C1–C6 and C7–C12 rings, C1–C6 and C14–C19 rings, and C7–C12 and C14–C19 rings are 61.79 (8), 54.28 (8) and 47.03 (8)°, respectively.

In the crystal (Fig. 2), the cation and the anion are linked to each other by intermolecular C9—H9A···Br1 and C11—H11A···Br1 hydrogen bonds into an infinite chain, running along the b axis, with atom Br1 as the bifurcated acceptor. The crystal packing is further stabilized by the intermolecular O1—H1O1···Br1 hydrogen bond, involving the ethanol O atom.

Related literature top

For the biological activity of the triphenyltetrazolium ion, see: Mostafa (2007); Hassanien et al. (2003); Abbas et al. (2001). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Upon the addition of triphenyltetrazolium chloride solution (50 ml, 1×10-2 M) to a solution of potassium bromide (50 ml), a whitish precipitate was formed. The precipitate was filtered off, washed with cold deionized water until no chloride ion was detected in the washing solution. The precipitate was dried under vacuum to give the title ion-pairs complex. Colourless blocks suitable for an X-ray structural analysis were obtained by slow evaporation from ethanol.

Refinement top

The O-bound H atom was located in a difference Fourier map and refined freely [O1—H1O1 = 0.77 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93, 0.96 and 0.97 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group. Seven outliers, (085), (022), (084), (043), (011), (042) and (094), were omitted in the final refinement. The crystal studied was an inversion twin with BASF of 0.368 (5).

Structure description top

2,3,5-Triphenyltetrazolium ion is used as indicator of bacterial dehydrogenase activity and as a reagent in colorimetric determination method for glucose dehydrogenase. Moreover, triphenyltetrazolium ion is used as ion-pair reagent for determination of antimony in waste water (Mostafa, 2007; Hassanien et al., 2003; Abbas et al., 2001).

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound, C19H15N4+.Br-.C2H6O, consists of a 2,3,5-triphenyl-2H-tetrazol-3-ium cation, a bromine anion and an ethanol molecule. The three phenyl rings (C1–C6, C7–C12 and C14–C19) are twisted from the central tetrazole ring (N1–N4/C13; r.m.s. deviation = 0.004 Å) with dihedral angles of 57.44 (9), 50.92 (9) and 4.65 (8)°, respectively. The dihedral angles between the C1–C6 and C7–C12 rings, C1–C6 and C14–C19 rings, and C7–C12 and C14–C19 rings are 61.79 (8), 54.28 (8) and 47.03 (8)°, respectively.

In the crystal (Fig. 2), the cation and the anion are linked to each other by intermolecular C9—H9A···Br1 and C11—H11A···Br1 hydrogen bonds into an infinite chain, running along the b axis, with atom Br1 as the bifurcated acceptor. The crystal packing is further stabilized by the intermolecular O1—H1O1···Br1 hydrogen bond, involving the ethanol O atom.

For the biological activity of the triphenyltetrazolium ion, see: Mostafa (2007); Hassanien et al. (2003); Abbas et al. (2001). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
2,3,5-Triphenyl-2H-tetrazol-3-ium bromide ethanol monosolvate top
Crystal data top
C19H15N4+·Br·C2H6OF(000) = 872
Mr = 425.33Dx = 1.392 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8468 reflections
a = 10.0870 (11) Åθ = 2.9–30.0°
b = 12.1904 (13) ŵ = 2.04 mm1
c = 16.5045 (18) ÅT = 100 K
V = 2029.5 (4) Å3Block, colourless
Z = 40.38 × 0.28 × 0.10 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5967 independent reflections
Radiation source: fine-focus sealed tube5611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 30.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1314
Tmin = 0.514, Tmax = 0.816k = 1714
16773 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0382P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
5967 reflectionsΔρmax = 0.47 e Å3
250 parametersΔρmin = 0.45 e Å3
0 restraintsAbsolute structure: Flack (1983), 2613 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.368 (5)
Crystal data top
C19H15N4+·Br·C2H6OV = 2029.5 (4) Å3
Mr = 425.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0870 (11) ŵ = 2.04 mm1
b = 12.1904 (13) ÅT = 100 K
c = 16.5045 (18) Å0.38 × 0.28 × 0.10 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5967 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5611 reflections with I > 2σ(I)
Tmin = 0.514, Tmax = 0.816Rint = 0.038
16773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064Δρmax = 0.47 e Å3
S = 1.05Δρmin = 0.45 e Å3
5967 reflectionsAbsolute structure: Flack (1983), 2613 Friedel pairs
250 parametersAbsolute structure parameter: 0.368 (5)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.730298 (16)0.424198 (13)0.338351 (9)0.02060 (5)
N10.83546 (15)0.70430 (11)0.62577 (8)0.0186 (3)
N20.78691 (14)0.60438 (11)0.62408 (8)0.0170 (3)
N30.65478 (14)0.60760 (11)0.62923 (8)0.0165 (3)
N40.61392 (14)0.70935 (11)0.63297 (9)0.0179 (3)
C10.84147 (17)0.43874 (14)0.54944 (10)0.0220 (3)
H1A0.77430.45430.51260.026*
C20.92042 (19)0.34627 (14)0.54097 (11)0.0241 (3)
H2A0.90640.29920.49750.029*
C31.01944 (18)0.32303 (15)0.59610 (10)0.0236 (3)
H3A1.07100.26030.58990.028*
C41.04212 (17)0.39356 (15)0.66111 (11)0.0251 (3)
H4A1.10900.37780.69810.030*
C50.96535 (16)0.48744 (14)0.67099 (10)0.0215 (3)
H5A0.97990.53550.71390.026*
C60.86633 (16)0.50657 (13)0.61442 (10)0.0172 (3)
C70.46152 (18)0.51865 (15)0.57514 (11)0.0228 (3)
H7A0.45240.57600.53840.027*
C80.37032 (17)0.43310 (16)0.57769 (10)0.0257 (3)
H8A0.29760.43350.54300.031*
C90.38758 (18)0.34711 (15)0.63185 (10)0.0239 (3)
H9A0.32640.29000.63310.029*
C100.49526 (18)0.34559 (14)0.68415 (10)0.0233 (3)
H10A0.50650.28690.71950.028*
C110.58660 (17)0.43126 (15)0.68419 (9)0.0210 (3)
H11A0.65830.43190.71960.025*
C120.56621 (16)0.51535 (13)0.62922 (10)0.0177 (3)
C130.72672 (18)0.76812 (13)0.63093 (9)0.0177 (3)
C140.72985 (18)0.88840 (12)0.63244 (9)0.0172 (3)
C150.85120 (17)0.94347 (13)0.63515 (9)0.0189 (3)
H15A0.93030.90430.63570.023*
C160.85250 (18)1.05748 (14)0.63703 (10)0.0212 (3)
H16A0.93271.09500.63870.025*
C170.7332 (2)1.11546 (13)0.63649 (10)0.0219 (3)
H17A0.73441.19170.63810.026*
C180.61291 (17)1.06055 (15)0.63361 (10)0.0228 (3)
H18A0.53391.09980.63330.027*
C190.61083 (17)0.94650 (14)0.63126 (10)0.0213 (3)
H19A0.53050.90920.62890.026*
O10.66840 (16)0.64500 (12)0.45240 (8)0.0318 (3)
C200.7317 (3)0.74038 (17)0.42248 (12)0.0414 (5)
H20A0.82650.73270.43050.050*
H20B0.70240.80280.45430.050*
C210.7067 (2)0.76420 (17)0.33541 (12)0.0350 (4)
H21A0.75190.83050.32040.053*
H21B0.61320.77300.32670.053*
H21C0.73900.70450.30300.053*
H1O10.680 (2)0.6005 (18)0.4199 (13)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01918 (7)0.02057 (7)0.02204 (7)0.00001 (6)0.00178 (6)0.00324 (6)
N10.0194 (7)0.0158 (6)0.0206 (6)0.0008 (5)0.0009 (5)0.0006 (5)
N20.0151 (7)0.0164 (6)0.0195 (6)0.0001 (5)0.0012 (5)0.0001 (5)
N30.0154 (6)0.0162 (6)0.0180 (5)0.0003 (5)0.0001 (5)0.0004 (5)
N40.0177 (7)0.0155 (6)0.0204 (6)0.0000 (5)0.0009 (5)0.0006 (5)
C10.0232 (8)0.0218 (8)0.0210 (7)0.0027 (6)0.0037 (6)0.0004 (6)
C20.0298 (9)0.0176 (7)0.0250 (8)0.0004 (7)0.0008 (7)0.0065 (6)
C30.0215 (8)0.0195 (7)0.0297 (8)0.0037 (6)0.0063 (7)0.0038 (7)
C40.0193 (7)0.0321 (9)0.0239 (7)0.0072 (6)0.0006 (7)0.0022 (7)
C50.0177 (7)0.0267 (8)0.0201 (7)0.0012 (6)0.0010 (6)0.0033 (7)
C60.0173 (7)0.0152 (7)0.0192 (7)0.0017 (6)0.0008 (6)0.0008 (6)
C70.0223 (8)0.0224 (8)0.0236 (7)0.0024 (6)0.0013 (6)0.0006 (6)
C80.0214 (8)0.0295 (9)0.0263 (7)0.0047 (8)0.0023 (6)0.0022 (8)
C90.0242 (8)0.0201 (8)0.0274 (8)0.0068 (6)0.0064 (7)0.0058 (7)
C100.0284 (9)0.0180 (7)0.0236 (7)0.0032 (7)0.0048 (7)0.0007 (6)
C110.0215 (7)0.0195 (7)0.0220 (7)0.0014 (7)0.0008 (5)0.0002 (6)
C120.0167 (7)0.0167 (7)0.0198 (7)0.0035 (6)0.0014 (6)0.0035 (6)
C130.0174 (6)0.0183 (6)0.0173 (6)0.0017 (7)0.0003 (6)0.0007 (5)
C140.0183 (7)0.0161 (6)0.0173 (6)0.0008 (6)0.0002 (6)0.0001 (5)
C150.0180 (7)0.0188 (8)0.0200 (6)0.0001 (6)0.0003 (6)0.0017 (6)
C160.0209 (8)0.0183 (8)0.0243 (7)0.0030 (6)0.0006 (6)0.0013 (6)
C170.0252 (8)0.0162 (6)0.0244 (6)0.0001 (7)0.0016 (7)0.0008 (6)
C180.0208 (8)0.0188 (8)0.0287 (7)0.0041 (6)0.0013 (6)0.0002 (7)
C190.0165 (8)0.0207 (9)0.0267 (7)0.0006 (6)0.0003 (6)0.0003 (6)
O10.0459 (9)0.0234 (6)0.0261 (6)0.0004 (6)0.0077 (6)0.0030 (5)
C200.0565 (14)0.0350 (10)0.0326 (9)0.0145 (11)0.0001 (10)0.0063 (8)
C210.0472 (12)0.0300 (9)0.0279 (8)0.0026 (8)0.0066 (10)0.0048 (8)
Geometric parameters (Å, º) top
N1—N21.3131 (18)C10—C111.393 (2)
N1—C131.348 (2)C10—H10A0.9300
N2—N31.3360 (19)C11—C121.384 (2)
N2—C61.445 (2)C11—H11A0.9300
N3—N41.3085 (19)C13—C141.467 (2)
N3—C121.436 (2)C14—C191.394 (2)
N4—C131.345 (2)C14—C151.397 (2)
C1—C61.377 (2)C15—C161.390 (2)
C1—C21.387 (2)C15—H15A0.9300
C1—H1A0.9300C16—C171.395 (3)
C2—C31.380 (3)C16—H16A0.9300
C2—H2A0.9300C17—C181.387 (3)
C3—C41.394 (3)C17—H17A0.9300
C3—H3A0.9300C18—C191.391 (2)
C4—C51.391 (2)C18—H18A0.9300
C4—H4A0.9300C19—H19A0.9300
C5—C61.387 (2)O1—C201.415 (2)
C5—H5A0.9300O1—H1O10.77 (2)
C7—C121.383 (2)C20—C211.487 (3)
C7—C81.391 (2)C20—H20A0.9700
C7—H7A0.9300C20—H20B0.9700
C8—C91.389 (3)C21—H21A0.9600
C8—H8A0.9300C21—H21B0.9600
C9—C101.388 (3)C21—H21C0.9600
C9—H9A0.9300
N2—N1—C13103.49 (14)C12—C11—H11A121.4
N1—N2—N3110.09 (13)C10—C11—H11A121.4
N1—N2—C6124.11 (14)C7—C12—C11123.91 (16)
N3—N2—C6125.75 (14)C7—C12—N3116.88 (15)
N4—N3—N2110.19 (14)C11—C12—N3119.16 (15)
N4—N3—C12123.11 (14)N4—C13—N1112.50 (13)
N2—N3—C12126.69 (14)N4—C13—C14123.39 (16)
N3—N4—C13103.73 (14)N1—C13—C14124.11 (16)
C6—C1—C2117.50 (16)C19—C14—C15120.73 (14)
C6—C1—H1A121.2C19—C14—C13119.28 (16)
C2—C1—H1A121.2C15—C14—C13119.99 (16)
C3—C2—C1121.04 (16)C16—C15—C14119.30 (16)
C3—C2—H2A119.5C16—C15—H15A120.3
C1—C2—H2A119.5C14—C15—H15A120.3
C2—C3—C4119.97 (16)C15—C16—C17119.87 (16)
C2—C3—H3A120.0C15—C16—H16A120.1
C4—C3—H3A120.0C17—C16—H16A120.1
C5—C4—C3120.41 (16)C18—C17—C16120.68 (15)
C5—C4—H4A119.8C18—C17—H17A119.7
C3—C4—H4A119.8C16—C17—H17A119.7
C6—C5—C4117.40 (16)C17—C18—C19119.77 (16)
C6—C5—H5A121.3C17—C18—H18A120.1
C4—C5—H5A121.3C19—C18—H18A120.1
C1—C6—C5123.67 (15)C18—C19—C14119.63 (16)
C1—C6—N2118.71 (15)C18—C19—H19A120.2
C5—C6—N2117.62 (14)C14—C19—H19A120.2
C12—C7—C8117.61 (16)C20—O1—H1O1105.3 (16)
C12—C7—H7A121.2O1—C20—C21114.90 (19)
C8—C7—H7A121.2O1—C20—H20A108.5
C9—C8—C7120.16 (16)C21—C20—H20A108.5
C9—C8—H8A119.9O1—C20—H20B108.5
C7—C8—H8A119.9C21—C20—H20B108.5
C10—C9—C8120.57 (16)H20A—C20—H20B107.5
C10—C9—H9A119.7C20—C21—H21A109.5
C8—C9—H9A119.7C20—C21—H21B109.5
C9—C10—C11120.55 (16)H21A—C21—H21B109.5
C9—C10—H10A119.7C20—C21—H21C109.5
C11—C10—H10A119.7H21A—C21—H21C109.5
C12—C11—C10117.17 (15)H21B—C21—H21C109.5
C13—N1—N2—N30.90 (17)C8—C7—C12—C111.3 (3)
C13—N1—N2—C6176.61 (14)C8—C7—C12—N3176.24 (15)
N1—N2—N3—N41.10 (19)C10—C11—C12—C70.0 (3)
C6—N2—N3—N4176.36 (13)C10—C11—C12—N3177.52 (15)
N1—N2—N3—C12179.91 (13)N4—N3—C12—C749.6 (2)
C6—N2—N3—C122.5 (2)N2—N3—C12—C7129.11 (18)
N2—N3—N4—C130.76 (17)N4—N3—C12—C11128.14 (17)
C12—N3—N4—C13179.62 (14)N2—N3—C12—C1153.2 (2)
C6—C1—C2—C30.5 (3)N3—N4—C13—N10.20 (17)
C1—C2—C3—C40.6 (3)N3—N4—C13—C14178.98 (14)
C2—C3—C4—C50.1 (3)N2—N1—C13—N40.43 (17)
C3—C4—C5—C60.5 (3)N2—N1—C13—C14178.33 (13)
C2—C1—C6—C50.2 (3)N4—C13—C14—C193.8 (2)
C2—C1—C6—N2179.09 (15)N1—C13—C14—C19174.82 (15)
C4—C5—C6—C10.7 (3)N4—C13—C14—C15176.09 (14)
C4—C5—C6—N2179.57 (15)N1—C13—C14—C155.3 (2)
N1—N2—C6—C1120.81 (18)C19—C14—C15—C160.3 (2)
N3—N2—C6—C156.3 (2)C13—C14—C15—C16179.62 (15)
N1—N2—C6—C558.2 (2)C14—C15—C16—C170.2 (2)
N3—N2—C6—C5124.72 (17)C15—C16—C17—C180.4 (2)
C12—C7—C8—C91.4 (3)C16—C17—C18—C190.0 (2)
C7—C8—C9—C100.3 (3)C17—C18—C19—C140.5 (3)
C8—C9—C10—C111.1 (3)C15—C14—C19—C180.6 (2)
C9—C10—C11—C121.2 (2)C13—C14—C19—C18179.27 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Br10.77 (2)2.59 (2)3.3434 (15)167 (2)
C9—H9A···Br1i0.932.833.7010 (18)157
C11—H11A···Br1ii0.932.863.6041 (17)138
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H15N4+·Br·C2H6O
Mr425.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.0870 (11), 12.1904 (13), 16.5045 (18)
V3)2029.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.38 × 0.28 × 0.10
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.514, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
16773, 5967, 5611
Rint0.038
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.05
No. of reflections5967
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.45
Absolute structureFlack (1983), 2613 Friedel pairs
Absolute structure parameter0.368 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Br10.77 (2)2.59 (2)3.3434 (15)167 (2)
C9—H9A···Br1i0.932.833.7010 (18)157
C11—H11A···Br1ii0.932.863.6041 (17)138
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors thank the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-037.

References

First citationAbbas, M. N., Mostafa, G. A. E. & Homoda, A. M. A. (2001). Talanta, 55, 647–656.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHassanien, M. M., Abou-El-Sherbini, Kh. S. & Mostafa, G. A. E. (2003). Talanta, 59, 383–392.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMostafa, G. A. E. (2007). Talanta, 71, 1449–1454.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds