organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,2′-(1,4-phenyl­enedi­­oxy)­di­acetate

aInstitute UTINAM UMR CNRS 6213, University of Franche-Comté, 16 Route de Gray, Besançon 25030, France, and bICMUB UMR CNRS 5260, University of Bourgogne, 9 Avenue A. Savary, Dijon 21078, France
*Correspondence e-mail: marek.kubicki@u-bourgogne.fr

(Received 19 April 2012; accepted 5 July 2012; online 10 July 2012)

In the title compound, C14H18O6, a crystallographic center at the centroid of the aromatic ring generates the complete mol­ecule which is planar within 0.085 (1) Å for the non-H atoms. In the crystal, weak C—H⋯O and C—H⋯π inter­actions link the molecules.

Related literature

For the syntheses and applications of aryl­oxyacetic acid derivatives, see: Carter & Lawrence (1900[Carter, W. & Lawrence, W. T. (1900). J. Chem. Soc. 77, 1222-1227.]); Moser (1950[Moser, C. M. (1950). J. Am. Chem. Soc. 72, 1413-1415.]); Kassem (1997[Kassem, A. A. (1997). Polym. Degrad. Stabil. 56, 203-207.]); Hodge et al. (2000[Hodge, P., Monvisade, P., Owen, G. J., Heatley, F. & Pang, Y. (2000). New J. Chem. 24, 703-709.]). For related crystal structures, see: Zhuang & Wang (2009[Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o403.]); Du et al. (2006[Du, M., Zhang, Z.-H., Zhao, X.-J. & Cai, H. (2006). Cryst. Growth Des. 6, 114-121.]); Gao et al. (2004[Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m1370-m1371.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18O6

  • Mr = 282.28

  • Monoclinic, P 21 /c

  • a = 4.9254 (3) Å

  • b = 9.7194 (5) Å

  • c = 14.9170 (11) Å

  • β = 108.313 (3)°

  • V = 677.94 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 115 K

  • 0.40 × 0.27 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 2560 measured reflections

  • 1536 independent reflections

  • 1344 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.09

  • 1536 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C3/C1i–C3i ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4BCgi 0.99 2.57 3.426 (2) 145
C6—H6B⋯O1ii 0.99 2.65 3.340 (2) 127
C6—H6B⋯O2ii 0.99 2.68 3.401 (2) 130
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, the Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound has been synthesized by different paths including the reaction of hydroquinone with sodium ethoxide followed by a Williamson reaction of the resulting dianion with ethyl bromoacetate (Carter & Lawrence, 1900), or the esterification of the corresponding diacid in the presence of BF3—Et2O complex as a catalyst (Moser, 1950). It has been used in the preparation of polymers (Kassem, 1997) and polyrotaxanes (Hodge et al., 2000).

A crystallographic center at the centroid of the central aromatic ring generates the complete molecule which is planar within 0.085 (1)Å without the H atoms (Fig. 1). The largest deviation from planarity among the ten non-hydrogen atoms is derived from O1 (0.085 (1) Å). A similar molecular geometry has been reported for the analogous dimethyl 1,4-(p-phenylenedioxy)diacetate molecule (Zhuang & Wang, 2009) as well as for the corresponding diacid (Du et al., 2006) and dianion (Gao et al., 2004). Weak intermolecular C—H···O and C—H··· π-ring (methylene···aryl) interactions (Table 1, Cg is the centroid of the C1-C3/C1i-C3i π-ring) are observed which contribute to crystal packing in the crystal (Fig. 2).

Related literature top

For the syntheses and applications of aryloxyacetic acid derivatives, see: Carter & Lawrence (1900); Moser (1950); Kassem (1997); Hodge et al. (2000). For related crystal structures, see: Zhuang & Wang (2009); Du et al. (2006); Gao et al. (2004).

Experimental top

Sodium (4.60 g; 0.2 mol) was added portionwise to absolute ethanol (250 ml). Once all sodium reacted, hydroquinone (11.00 g; 0.1 mol) was added and the solution refluxed for five minutes. After cooling to room temperature, ethyl chloroacetate (21.3 ml; 0.1 mol) was added and the reaction mixture refluxed for five hours. The mixture was then poured onto distilled water (250 ml) and pH adjusted to 3 by addition of few drops of concentrated hydrochloric acid. The aqueous layer was extracted with methyl-tertbutyl ether (4τimes100 ml). The organic layers were then combined, washed with saturated sodium hydrogencarbonate (3τimes100 ml) and water (100 ml). The ethereal layer was dried over calcium sulfate and concentrated under vacuum to afford the title compound as a beige solid. The crude product was recrystallized from dilute ethanol to afford the pure compound as colorless needles (5.58 g, 47%).

Refinement top

All H atoms were placed in calculated positions and treated in a riding model. C–H distances were set to 0.95 Å (aromatic), 0.99 Å (methylene) and 0.98 Å (methyl) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for aromatic and methylene H atoms.

Structure description top

The title compound has been synthesized by different paths including the reaction of hydroquinone with sodium ethoxide followed by a Williamson reaction of the resulting dianion with ethyl bromoacetate (Carter & Lawrence, 1900), or the esterification of the corresponding diacid in the presence of BF3—Et2O complex as a catalyst (Moser, 1950). It has been used in the preparation of polymers (Kassem, 1997) and polyrotaxanes (Hodge et al., 2000).

A crystallographic center at the centroid of the central aromatic ring generates the complete molecule which is planar within 0.085 (1)Å without the H atoms (Fig. 1). The largest deviation from planarity among the ten non-hydrogen atoms is derived from O1 (0.085 (1) Å). A similar molecular geometry has been reported for the analogous dimethyl 1,4-(p-phenylenedioxy)diacetate molecule (Zhuang & Wang, 2009) as well as for the corresponding diacid (Du et al., 2006) and dianion (Gao et al., 2004). Weak intermolecular C—H···O and C—H··· π-ring (methylene···aryl) interactions (Table 1, Cg is the centroid of the C1-C3/C1i-C3i π-ring) are observed which contribute to crystal packing in the crystal (Fig. 2).

For the syntheses and applications of aryloxyacetic acid derivatives, see: Carter & Lawrence (1900); Moser (1950); Kassem (1997); Hodge et al. (2000). For related crystal structures, see: Zhuang & Wang (2009); Du et al. (2006); Gao et al. (2004).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound(I) showing the atom labeling scheme of the asymmetric unit and 50% probability displacement ellipsoids. A crystallographic inversion center at the centroid of the central aromatic ring generates the complete molecule.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed roughly along the a axis. Dashed lines indicate weak C—H···π (represented by the centroid of aromatic ring) and C—H···O intermoleclar interactions. Hydrogen atoms not involved in these interactions have been removed for clarity.
Diethyl 2,2'-(1,4-phenylenedioxy)diacetate top
Crystal data top
C14H18O6F(000) = 300
Mr = 282.28Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1387 reflections
a = 4.9254 (3) Åθ = 1.0–27.5°
b = 9.7194 (5) ŵ = 0.11 mm1
c = 14.9170 (11) ÅT = 115 K
β = 108.313 (3)°Prism, colourless
V = 677.94 (7) Å30.40 × 0.27 × 0.15 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1344 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.029
Horizonally mounted graphite crystal monochromatorθmax = 27.4°, θmin = 2.5°
Detector resolution: 9 pixels mm-1h = 66
CCD rotation images, thick slices scansk = 912
2560 measured reflectionsl = 1919
1536 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.4496P]
where P = (Fo2 + 2Fc2)/3
1536 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
0 constraints
Crystal data top
C14H18O6V = 677.94 (7) Å3
Mr = 282.28Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.9254 (3) ŵ = 0.11 mm1
b = 9.7194 (5) ÅT = 115 K
c = 14.9170 (11) Å0.40 × 0.27 × 0.15 mm
β = 108.313 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1344 reflections with I > 2σ(I)
2560 measured reflectionsRint = 0.029
1536 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
1536 reflectionsΔρmin = 0.26 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2542 (2)0.85579 (11)0.61485 (7)0.0183 (3)
O20.0149 (3)0.73769 (12)0.73286 (7)0.0253 (3)
O30.2554 (2)0.60124 (11)0.61710 (7)0.0204 (3)
C10.3679 (3)0.92498 (14)0.55420 (10)0.0153 (3)
C20.2808 (3)0.90691 (14)0.45650 (10)0.0160 (3)
H20.13210.84400.42680.019*
C30.4152 (3)0.98254 (15)0.40315 (10)0.0162 (3)
H30.35750.97060.33660.019*
C40.0340 (3)0.76022 (14)0.57334 (10)0.0164 (3)
H4A0.10660.68600.54150.020*
H4B0.12690.80660.52590.020*
C50.0652 (3)0.70087 (15)0.65171 (10)0.0174 (3)
C60.3690 (3)0.53564 (16)0.68587 (10)0.0207 (3)
H6A0.47250.60390.71220.025*
H6B0.21120.49650.73840.025*
C70.5696 (4)0.42320 (16)0.63551 (11)0.0235 (3)
H7A0.72260.46280.58290.035*
H7B0.65300.37860.67970.035*
H7C0.46390.35500.61120.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (5)0.0212 (5)0.0149 (5)0.0062 (4)0.0106 (4)0.0001 (4)
O20.0311 (6)0.0298 (6)0.0172 (6)0.0089 (5)0.0106 (5)0.0001 (5)
O30.0268 (6)0.0205 (5)0.0179 (5)0.0062 (4)0.0128 (4)0.0005 (4)
C10.0176 (7)0.0154 (6)0.0170 (7)0.0024 (5)0.0114 (5)0.0030 (5)
C20.0177 (7)0.0154 (6)0.0175 (7)0.0001 (5)0.0091 (5)0.0011 (5)
C30.0182 (7)0.0183 (7)0.0141 (6)0.0007 (5)0.0080 (5)0.0008 (5)
C40.0198 (7)0.0157 (6)0.0167 (7)0.0023 (5)0.0099 (5)0.0001 (5)
C50.0187 (7)0.0169 (7)0.0193 (7)0.0013 (5)0.0100 (5)0.0031 (5)
C60.0254 (8)0.0218 (7)0.0190 (7)0.0027 (6)0.0130 (6)0.0041 (6)
C70.0268 (8)0.0194 (7)0.0263 (8)0.0036 (6)0.0111 (6)0.0008 (6)
Geometric parameters (Å, º) top
O1—C11.3796 (16)C3—H30.9500
O1—C41.4145 (17)C4—C51.5157 (19)
O2—C51.2037 (18)C4—H4A0.9900
O3—C51.3334 (18)C4—H4B0.9900
O3—C61.4603 (16)C6—C71.506 (2)
C1—C3i1.388 (2)C6—H6A0.9900
C1—C21.395 (2)C6—H6B0.9900
C2—C31.3939 (19)C7—H7A0.9800
C2—H20.9500C7—H7B0.9800
C3—C1i1.388 (2)C7—H7C0.9800
C1—O1—C4116.52 (11)H4A—C4—H4B108.5
C5—O3—C6115.01 (11)O2—C5—O3125.01 (13)
O1—C1—C3i115.31 (12)O2—C5—C4125.40 (13)
O1—C1—C2124.67 (13)O3—C5—C4109.59 (12)
C3i—C1—C2120.02 (13)O3—C6—C7107.61 (12)
C3—C2—C1118.99 (13)O3—C6—H6A110.2
C3—C2—H2120.5C7—C6—H6A110.2
C1—C2—H2120.5O3—C6—H6B110.2
C1i—C3—C2120.99 (13)C7—C6—H6B110.2
C1i—C3—H3119.5H6A—C6—H6B108.5
C2—C3—H3119.5C6—C7—H7A109.5
O1—C4—C5107.51 (11)C6—C7—H7B109.5
O1—C4—H4A110.2H7A—C7—H7B109.5
C5—C4—H4A110.2C6—C7—H7C109.5
O1—C4—H4B110.2H7A—C7—H7C109.5
C5—C4—H4B110.2H7B—C7—H7C109.5
C4—O1—C1—C3i179.61 (12)C6—O3—C5—O20.2 (2)
C4—O1—C1—C20.03 (19)C6—O3—C5—C4179.79 (11)
O1—C1—C2—C3179.44 (13)O1—C4—C5—O25.5 (2)
C3i—C1—C2—C30.2 (2)O1—C4—C5—O3174.54 (11)
C1—C2—C3—C1i0.2 (2)C5—O3—C6—C7177.83 (12)
C1—O1—C4—C5178.01 (11)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1-C3/C1i-C3i ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cgii0.992.573.426 (2)145
C6—H6B···O1iii0.992.653.340 (2)127
C6—H6B···O2iii0.992.683.401 (2)130
Symmetry codes: (ii) x1, y, z; (iii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H18O6
Mr282.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)115
a, b, c (Å)4.9254 (3), 9.7194 (5), 14.9170 (11)
β (°) 108.313 (3)
V3)677.94 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.27 × 0.15
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2560, 1536, 1344
Rint0.029
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.09
No. of reflections1536
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1-C3/C1i-C3i ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cgi0.9902.5723.426 (2)144.5
C6—H6B···O1ii0.9902.6453.340 (2)127.3
C6—H6B···O2ii0.9902.6813.401 (2)129.9
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank the CNRS for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCarter, W. & Lawrence, W. T. (1900). J. Chem. Soc. 77, 1222–1227.  CrossRef CAS Google Scholar
First citationDu, M., Zhang, Z.-H., Zhao, X.-J. & Cai, H. (2006). Cryst. Growth Des. 6, 114–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m1370–m1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHodge, P., Monvisade, P., Owen, G. J., Heatley, F. & Pang, Y. (2000). New J. Chem. 24, 703–709.  Web of Science CrossRef CAS Google Scholar
First citationKassem, A. A. (1997). Polym. Degrad. Stabil. 56, 203–207.  CrossRef CAS Web of Science Google Scholar
First citationMoser, C. M. (1950). J. Am. Chem. Soc. 72, 1413–1415.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, the Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuang, L. & Wang, G. (2009). Acta Cryst. E65, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds